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Abstract

Recent advances in neural modeling
boosted performance of many machine
learning applications. Training neural net-
works requires large amounts of clean
data, which are rarely available; many
methods have been designed and inves-
tigated by researchers to tackle this is-
sue. As a partner of a project, we were
asked to build translation engines for the
weather forecast domain, relying on few,
noisy data. Step by step, we developed
neural translation models, which outper-
form by far Google Translate. This pa-
per details our approach, that - we think
- is paradigmatic for a broader category of
applications of machine learning, and as
such could be of widespread utility.

1 Introduction

The field of machine translation (MT) has experi-
enced significant advances in recent years thanks
to improvements in neural modeling. On the one
hand, this represents a great opportunity for indus-
trial MT, on the other it also poses the great chal-
lenge of collecting large amounts of clean data,
needed to train neural networks. MT training data
are parallel corpora, that is collections of sentence
pairs where a sentence in the source language is
paired with the corresponding translation in the
target language. Parallel corpora are typically
gathered from any available source, in most cases
the web, without much guarantees about quality
nor domain homogeneity.

Over the years, the scientific community has
accumulated a lot of knowledge on ways to ad-
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dress the problem of the quantitative and qualita-
tive inadequacy of parallel data necessary to de-
velop translation models. Among others, deeply
investigated methods are: corpus filtering (Koehn
et al., 2020), data augmentation such as data
selection (Moore and Lewis, 2010; Axelrod et
al., 2011) and back-translation (Bertoldi and Fed-
erico, 2009; Sennrich et al., 2016), model adapta-
tion (Luong and Manning, 2015; Chu and Wang,
2018). They should be the working tools of any-
one who has to develop neural MT models for spe-
cific language pairs and domains.

This paper reports on the development of neural
MT models for translating forecast bulletins from
German into English and Italian, and from Ital-
ian into English and German. We were provided
with in-domain parallel corpora for each language
pair but not in sufficient quantity to train a neural
model from scratch. Moreover, from the prelim-
inary analysis of data, the English side resulted
noisy (e.g. missing or partial translations, mis-
aligned sentences, etc.), affecting the quality of
any pair involving that language. For this very rea-
son, we focus on one of the pairs involving English
we had to cover, namely Italian-English.

An overview of the in-domain data and the de-
scription of their analysis are given in Section 2,
highlighting the issues that emerged. Section 3 de-
scribes the previously listed methods together with
their employment in our specific use-case. De-
veloped neural translation models are itemized in
Section 4, where their performance are compared
and discussed; our best models outperform by far
Google Translate and some examples will give a
grasp of the actual translation quality.

We think that our approach to the specific prob-
lem we had to face is paradigmatic for a broader
category of machine learning applications, and we
hope that it will be useful to the whole NLP scien-
tific community.



2 Data

We were provided with two csv files of weather
forecast bulletins, issued by two different forecast
services that from here on are identified with the
acronyms BB and TT. Each row of the BB csv con-
tains, among other things, the text of the original
bulletin written in German and, possibly, its trans-
lation into Italian and/or English; in the TT csv
rows, the Italian bulletin is paired with its transla-
tion into German and/or English.

2.1 Statistics
BB Bulletins were extracted from the BB csv file
and paired for any possible combination of lan-
guages. Each bulletin is stored on a single line
but split in a few dozen fields; the average length
of each field (about 18 German words) is appro-
priate for MT systems, which process long sen-
tences with difficulty. Table 1 shows statistics of
the training and test sets for the it-en language pair.

site task set #seg #src w #trg w
trn-nsy 30,957 626,211 505,688

BB it-en tst-nsy 20,000 376,553 298,560
tot 50,957 1,002,764 804,248

Table 1: Statistics of the BB it-en benchmark. The
label nsy will be clear after reading Section 3.2.

TT Bulletins were extracted from the TT csv file
and paired for each language combination. Dif-
ferently than the BB case, each TT bulletin was
stored on a single line without any field split;
since bulletins are quite long for automatic pro-
cessing (on average 30 Italian words) and are
the concatenation of rather heterogeneous sen-
tences, we decided to segment them by splitting on
strong punctuation. This requires a re-alignment
of source/target segments because in general they
differ in number. The re-alignment was performed
by means of the hunalign sentence aligner1(Varga
et al., 2005). Table 2 shows statistics of the train-
ing and test sets for the it-en language pair.

site task set #seg #src w #trg w
trn 5,177 78,834 73,763

TT it-en tst 1,962 30,232 28,135
tot 7,139 109,066 101,898

Table 2: Statistics of the TT it-en benchmark.

1github.com/danielvarga/hunalign

2.2 Analysis and Issues
As a good practice before starting the creation of
MT models, data have been inspected and ana-
lyzed looking for potential problems. Several crit-
ical issues emerged, which are described in the fol-
lowing paragraphs.

Non-homogeneity of data - Since data originated
from two distinct weather forecast services (BB
and TT), first of all it must be established whether
they are linguistically similar and, if so, to what
extent. For this purpose, focusing on the lan-
guages of the it-en benchmarks, we measured the
perplexity of the BB and TT test sets on n-gram
language models (LMs) estimated on the BB and
TT training sets:2 the closer the perplexity values
of a given text on the two LMs, the greater the lin-
guistic similarity of BB and TT training sets. Ta-
ble 3 reports values of perplexity (PP) and out-of-
vocabulary rates (%OOV) for all test sets vs. LMs
combinations.3

LM trained on
BB trn TT trn

PP %OOV PP %OOV

it
BB tst 10.8 0.22 92.0 12.07
TT tst 42.4 0.60 10.3 0.41

en
BB tst 8.9 0.14 80.1 8.49
TT tst 65.6 2.05 12.7 0.51

Table 3: Cross comparison of BB and TT texts.

Overall, we can notice that the PP of the two test
sets significantly varies when computed on in- and
out-of-domain data. The PP of any given test set is
4 (42.4 vs. 10.8) to 9 (92.0 vs. 10.3) times higher
when measured on the LM estimated on the text
of the other provider than on the text of the same
provider. These results highlight the remarkable
linguistic difference between the bulletins issued
by the two forecast services.

In-domain data scarcity - Current state-of-the-
art MT neural networks (Section 4.1) have dozens
to hundreds million parameters that have to be es-
timated from data. Unfortunately, the amount of
provided data does not allow an effective estima-
tion from scratch of such a huge number of param-
eters, as we will empirically prove in Section 4.3.

23-gram LMs with modified shift beta smoothing were es-
timated using the IRSTLM toolkit (Federico et al., 2008).

3In order to isolate the genuine PP of the text, the dictio-
nary upperbound to compute OOV word penalty was set to 0;
the OOV rates are shown for this very reason.



BB English side - BB data have a major problem
on the English side. In fact, looking at csv file,
we realized that many German bulletins were not
translated at all into English. Moreover, in the En-
glish side there are 20% fewer words than in the
corresponding German or Italian sides, a differ-
ence that is not justified by the morpho-syntactic
variations between languages. In fact, it happens
that entire portions of the original German bul-
letins are not translated into English, or that a def-
initely more compact form is used, as in:
de: Der Hochdruckeinfluss hält bis auf weiteres an.
en: High pressure conditions.

This critical issue affects both training and test
sets, as highlighted by figures in Table 1; as such,
it negatively impacts both the quality of the trans-
lation models, if trained/adapted on such noisy
data, and the reliability of evaluations, if run on
such distorted data. A careful corpus filtering is
therefore needed, as discussed in Section 3.2.

3 Methods

3.1 MT Model Adaptation
A standard method for facing the in-domain data
scarcity issue mentioned in Section 2.2 is the
so-called fine-tuning: given a neural MT model
trained on a large amount of data in one domain,
its parameters are tuned by continuing the train-
ing using a small amount of data from another do-
main (Luong and Manning, 2015; Chu and Wang,
2018). Though effective on the new in-domain
data supplied for model adaptation, fine-tuning
typically suffers from performance drops on un-
seen data (test set), unless proper regularization
techniques are adopted (Miceli Barone et al.,
2017). We avoid overfitting by fine-tuning our MT
models with dropout (set to 0.3) (Srivastava et al.,
2014) and performing only a limited number of
epochs (5) (Miceli Barone et al., 2017).

3.2 Corpus Filtering
Machine learning typically requires large sets of
clean data. Since rarely large data sets are also
clean, researchers devoted much effort to data
cleaning, the automatic process to identify and re-
move errors from data. The MT community is no
exception. Even, WMT - the conference on ma-
chine translation - in 2018, 2019 and 2020 edi-
tions organized a Shared Task on Parallel Corpus
Filtering. Koehn et al. (2020) provide details on
the task proposed in the more recent edition, on

participants, their methods and results. For ref-
erence purposes, organizers set up a competitive
baseline based on LASER (Language-Agnostic
SEntence Representations)4 (Schwenk and Douze,
2017) multilingual sentence embeddings. The un-
derlying idea is to use the cosine distance between
the embeddings of the source and the target sen-
tences to measure their parallelism. In a similar
way we cleaned the BB noisy benchmark, filtering
with a threshold of 0.9; statistics of the resulting
bi-text are given in Table 4.

site task set #seg #src w #trg w
trn-cln 1,673 37,629 40,256

BB it-en tst-cln 1,011 20,280 21,657
tot 2,684 57,909 61,913

Table 4: Stats of the filtered BB it-en benchmark.

The filtered bi-text does not suffer anymore
from the imbalance number of words but it is 20
times smaller than the original one.

3.3 Data Augmentation

Since the corpus filtering discussed in the previous
section removes most of the original data, further
exacerbating the problem of data scarcity, we tried
to overcome this unwanted side effect by means of
data augmentation methods.

3.3.1 Data Selection
A widespreadly adopted data augmentation
method is data selection. Data selection assumes
the availability of a large general domain corpus
and a small in-domain corpus; in MT, the aim is to
extract parallel sentences from the large bilingual
corpus that are most relevant to the target domain
as defined by the small corpus.

On the basis of the bilingual cross-entropy dif-
ference (Axelrod et al., 2011), we sorted the sen-
tence pairs of the OPUS collection,5 used as gen-
eral domain large dataset, according to their rel-
evance to the domain determined by the concate-
nation of the BB and TT training sets. To estab-
lish the optimal size of the selection, we trained
LMs - created in the same setup described in non-
homogeneity of data paragraph of Section 2.2 - on
increasing amounts of selected data and computed
the PP of BB and TT test sets, separately for each
side. Figure 1 plots the curves; the straight lines on

4github.com/facebookresearch/LASER
5opus.nlpl.eu



the bottom correspond to the PP of the same test
sets on LMs built on the in-domain training sets.

Figure 1: Perplexity of test sets on LMs estimated
on increasing amounts of selected data.

The form of curves is convex, as usual in data
selection. In our case, the best trade-off between
the pertinence of data and its amount occur when
something more than a million words is selected;
therefore, we decided to mine from OPUS the
bilingual text whose size is given in row DS of
Table 5. Anyway, note that the lowest PP for se-
lections is at least one order of magnitude greater
than on LMs trained on in-domain training sets.

task set #seg #src w #trg w

it-en
DS 206,990 1,352,623 1,312,068
BT 30,957 482,398 505,688

Table 5: Stats of selected and back translated data.

3.3.2 Back Translation
Another well-known data-augmentation method,
which somehow also represents an alternative
way to corpus filtering for dealing with the BB
English side issue, is back-translation. Back-
translation (Bertoldi and Federico, 2009; Sennrich
et al., 2016; Edunov et al., 2018) assumes the
availability of an MT system from the target lan-
guage to the source language and of target mono-
lingual data. The MT system is used to translate
the target monolingual data into the source lan-
guage. The result is a parallel corpus where the
source side is the synthetic MT output while the
target is human text. The synthetic parallel cor-
pus is then used to train or adapt a source-to-target
MT system. Although simple, this method has
been shown to be very effective. We used back-
translation to generate a synthetic, but hopefully
cleaner, version of the BB training set. The trans-

#segments #src w #trg w
it-en 32.0M 339M 352M

Table 6: Stats of the parallel generic training sets.

lation into Italian of the 31k English segments of
the training set (Table 1) was performed by an
in-house generic en-it MT engine (details in Ap-
pendix A.1 of (Bentivogli et al., 2021)). Row
BT of Table 5 shows the statistics of this artifi-
cial bilingual corpus; similarly to what happened
with the filtering process, the numbers of Italian
and English words are much more compatible than
they are in the original version of the corpus.

4 Experimental Results

4.1 MT Engine

The MT engine is built on the ModernMT
framework6 which implements the Trans-
former (Vaswani et al., 2017) architecture. The
original generic model is Big sized, as defined
in (Vaswani et al., 2017) by more than 200
million parameters. For training, bi-texts were
downloaded from the OPUS repository5 and
then filtered through the already mentioned data
selection method (Axelrod et al., 2011) using a
general-domain seed. Statistics of the resulting
corpus are provided in Table 6. Training was
performed in the setup detailed in (Bentivogli et
al., 2021).

The same Big model and its smaller variants,
the Base with 50 million parameters and the Tiny
with 20 million parameters, were also trained on
in-domain data only for the sake of comparison.

4.2 MT Models

We empirically compared the quality of trans-
lations generated by various MT models: two
generic, three genuine in-domain of different size
and several variants of our generic model adapted
(Section 3.1) on in-domain data resulting from the
presented methods: filtering (Section 3.2), data se-
lection (Section 3.3.1) and back-translation (Sec-
tion 3.3.2). Performance was measured on the
BB and TT test sets in terms of BLEU (Pap-
ineni et al., 2002), TER (Snover et al., 2006) and
CHRF (Popović, 2015) scores computed by means
of SacreBLEU (v1.4.14) (Post, 2018), with default

6github.com/modernmt/modernmt



BB TT
MT model noisy test set clean test set test set

%BLEU↑ %TER↓ CHRF↑ %BLEU↑ %TER↓ CHRF↑ %BLEU↑ %TER↓ CHRF↑
Generic models:
GT⋆ 11.45 106.61 .3502 32.59 51.72 .6104 32.20 61.56 .6315
FBK (Transformer big) 07.43 113.07 .3833 19.68 63.68 .5229 23.45 70.46 .5525
Pure in-domain models trained on BBtrn-nsy+TTtrn:
Transformer tiny 23.34 83.86 .4882 35.80 61.05 .5808 42.19 51.79 .6488
Transformer base 18.39 93.41 .4590 22.06 85.91 .5237 29.17 64.73 .5351
Transformer big 20.45 95.76 .4755 24.73 89.26 .5330 28.01 68.42 .5193
FBK model adapted on:
BBtrn-nsy 21.211 80.822 .47852 37.913 46.913 .6172 13.77 79.14 .4007
BBtrn-cln 10.67 108.86 .4195 31.57 52.54 .5950 27.68 65.05 .5912
TTtrn 10.44 107.48 .4241 28.64 54.20 .5800 39.61 52.64 .6702
DS 10.82 109.71 .4255 30.11 54.86 .5873 29.76 63.68 .6099
BT 12.50 106.85 .4507 34.85 49.78 .6339 32.71 58.95 .6372
BBtrn-nsy+TTtrn 19.303 79.291 .4449 32.81 52.38 .5680 40.513 51.973 .6579
BBtrn-nsy+TTtrn+DS+BT 19.362 86.333 .47921 41.171 44.671 .64882 40.692 51.842 .67343

BBtrn-cln+TTtrn 12.39 105.36 .4450 37.02 47.40 .63653 40.34 52.16 .67552

BBtrn-cln+TTtrn+DS+BT 13.75 104.59 .46193 40.092 45.282 .66171 41.161 51.011 .68031

Table 7: BLEU/TER/CHRF scores of MT models on it-en test sets. 1, 2 and 3 indicate the “podium
position” among the adapted models of each column. (⋆) Google Translate, as it was on 14 Sep 2021.

signatures.7

4.3 Results and Comments

Scores are collected in Table 7. First, as ex-
pected (in-domain data scarcity paragraph of Sec-
tion 2.2), it is not feasible to properly train a
huge number of parameters with few data; in
fact, the best performing pure in-domain model is
the smallest one (Transformer tiny). Instead, the
naive application of the MT state-of-the-art would
have led to simply train a Transformer big model
on the original in-domain data. This model would
not have been competitive with GT on TT data
(28.01 vs. 32.20 BLEU); it would have been on
BB data if we had only considered the noisy test
set (20.45 vs. 11.45) resulting in an important mis-
interpretation of the actual quality of the two sys-
tems; conversely, our preliminary analysis allowed
us to discover the need of cleaning BB data, which
guarantees a reliable assessment (24.73 vs. 32.59).

Data augmentation methods (DS, BT) are both
effective in making available additional useful bi-
texts; for example, the BLEU score of the model
BBtrn-cln+TTtrn increases by 3 absolute points

7BLEU+case.mixed+numrefs.1+smooth.exp+tok.13a,
TER+tok.tercom-nonorm-punct-noasian-uncased,
chrF2+numchars.6+space.false

(from 37.02 to 40.09) when DS and BT data are
added to the adaptation corpus.

The fine-tuning of a Transformer big generic
model to the weather forecast domain turned out
to be more effective than any training from scratch
using original in-domain data only: the top per-
forming model - BBtrn-cln+TTtrn+DS+BT - def-
initely improves the Transformer tiny with re-
spect to all metrics on the BB clean test set
(40.09/45.28/.6617 vs 35.80/61.05/.5808), and to
two metrics out of three on the TT test set (TER:
51.01 vs. 51.79, CHRF: .6803 vs. .6488). More-
over, all its scores are a lot better than those of
Google Translate.

4.4 Examples

To give a grasp of the actual quality of automatic
translations, Table 8 collects the English text gen-
erated by some of the tested MT models fed with a
rather complex Italian source sentence. The man-
ual translations observed in BB data are shown as
well: their number, their variety, some question-
able/wrong lexical choices in them (“high” instead
of “upper-level currents”, “South-western” instead
of “Southwesterly”) and one totally wrong (“Weak
high pressure conditions.”) prove the difficulty of
learning from such data and the need to pay par-



Italian source sentence:
Le correnti in quota si disporranno da sudovest avvicinando masse d’aria più umida alle Alpi.

Manual English translations found in BB bulletins:
Weak high pressure conditions.
The high currents will turn to south-west and humid air mass will reach the Alps.
Southwesterly currents will bring humid air masses to South Tyrol.
South-western currents will bring humid air masses to the Alps.
South-westerly upper level flow will bring humid air masses towards our region.
More humid air masses will reach the Alps.
Humid air reaches the Alps with South-westerly winds.

Automatic English translations generated by some MT models:
GT The currents at high altitudes will arrange themselves from the southwest, bringing more

humid air masses closer to the Alps.
FBK Currents in altitude will be deployed from the southwest, bringing wet air masses closer to

the Alps.
Transformer tiny South-westerly upper level flow will bring humid air masses towards

the Alps.
BBtrn-cln+TTtrn+DS+BT The upper level flow will be arranged from the southwest approaching

more humid air masses to the Alps.

Table 8: Examples of manual and automatic translations.

ticular attention to the evaluation phase. Concern-
ing translations, GT is able to keep most of the
meaning of the source text but the translation is
too literal to result in fluent English. FBK only
partially transfers the meaning from the source
and generates a rather bad English text. Trans-
former tiny provides a very good translation both
from a semantic and a syntactic point of view, los-
ing only the negligible detail that the “air masses”
are “more humid”, not simply “humid”. Finally,
BBtrn-cln+TTtrn+DS+BT, the model that on the
basis of our evaluations is the best one, on this spe-
cific example works very well at the semantic level
but rather poorly on the grammatical level.

This example shows that pure in-domain mod-
els, as expected, are “more in-domain” than
generic models, though adapted, showing greater
adherence to domain-specific language. On the
other hand, according to scores in Table 7, adapted
models should be better in generalization. Only
subjective evaluations involving meteorologists
can settle the question of which model is the best.

5 Conclusions

In this paper we described the development pro-
cess that led us to build competitive customized
translation models. Given the provided in-domain
data, we started by analyzing them under sev-
eral perspectives and discovered that they are few,

noisy and heterogeneous. We faced these issues
by exploiting a number of methods which repre-
sent established knowledge of the scientific com-
munity: adaptation of neural models, corpus fil-
tering and data augmentation techniques such as
data selection and back-translation. In particular,
corpus filtering allowed us to avoid the misleading
results observed on the original noisy data, while
adaptation and data augmentation proved useful in
effectively taking advantage of out-of-domain re-
sources.
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