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Abstract 

Expectation-based  Minimalist  Grammars  

(e-MGs) are  simplified  versions  of  the 

(Conflated) Minimalist  Grammars, 

(C)MGs,  formalized  by  Stabler (Stabler 

1997; Stabler 2011; Stabler 2013) and 

Phase-based Minimalist Grammars, 

PMGs  (Chesi 2007; Chesi 2005; Stabler 

2011). The crucial simplification consists 

of driving structure building only using 

lexically encoded categorial top-down ex-

pectations. The commitment on a top-

down procedure (in e-MGs and PMGs, as 

opposed to (C)MGs, Chomsky, 1995; Sta-

bler, 2011) allows us to define a core der-

ivation that is the same in both parsing and 

generation (Momma & Phillips 2018). 

1 Introduction* 

Minimalism (Chomsky 1995; Chomsky 2001) is 

an elegant transformational grammatical frame-

work that defines structural dependencies in 

phrasal (i.e. hierarchical) terms simply relying on 

one core structure building operation, Merge, that 

combines lexical items and the result of other 

Merge operations. (1).a is the representative result 

of two ordered Merge operations (i.e. Merge(γ, 

Merge(α, β)) both taking the items α, β and γ di-

rectly from the lexicon, while (1).b relies on the 

so called Internal Merge (Move): the re-Merge of 

an item that was already merged in the structure.  

(1) a. [γ [α, β]]   Merge only 

b. [β [γ [α, _β]]  Merge + Move 

As result, Move connects the item at the edge of 

the structure (β) with a trace (_β), a phonetically 

empty copy of the item that in a previous Merge 

 
* Copyright ©️ 2021 for this paper by its author. Use 

permitted under Creative Commons License Attribu-

tion 4.0 International (CC BY 4.0).  

  1 α and β are lexical items, =X indicates the selection 

of X, where X is a categorial feature. Lexical items are 

tuples consisting of selections/expectations (=X) and 

operation combined with a hierarchically lower 

item (α in (1).b). In both (Conflated) Minimalist 

and Phase-based Minimalist Grammars ([C]MGs 

and PMGs respectively) Merge and Move are fea-

ture-driven operations, that is, a successful opera-

tion must be triggered by the relevant (categorial) 

features matching, and, once these features are 

used, they get deleted. Consequently, a feature 

pair is always responsible for each operation (un-

less specific features are left unerased after a suc-

cessful operation, as in raising predicates and suc-

cessive cyclic movement, Stabler 2011). One cru-

cial difference between PMGs and MGs is that 

while MGs operate from-bottom-to-top, as indi-

cated in (2), PMGs structure building operations 

apply top-down as schematized in (3)1: 

(2) Merge(α=X, Xβ) = [α [α=X Xβ]] MGs 

Move(+Yα, [… β-Y …]) =  

[α [β-Y [+Yα [… β-Y …]]]] 

(3) Merge(α=X, Xβ) = [α=X [Xβ]]  PMGs 

Move([α=S +Y[Y Z β]]) =  

[α=S +Y[Y Z β] S[… (=Z [Z β]) …]] 

Another relevant difference between the two ap-

proaches is related to the implementation of 

Move: MGs use the “+/-” feature distinction and 

the same deletion procedure after matching, while 

PMGs do not use “-” features and simply assume 

that both “+” and “=” select categorial features, 

which are deleted after Merge. In PMGs, “+” fea-

tures force memory storage and hence the move-

ment (downward) of the licensed item, until the 

relevant prominent category identifying the 

moved item (Z in (3)) is selected. If no proper se-

lection is found, the sentence is ungrammatical. 

CMG as well dispenses the grammar with the +/- 

feature distinction and only relies on select fea-

tures (=X), but it must assume that feature dele-

tion can be procrastinated (again, for instance, in 

categories (X, i.e. selected/expected features); for 

convenience, select features are expressed by right-

ward subscripts, and categories as leftward subscripts. 

Similarly, Move is driven by licensing (-Y, leftward 

subscripts) and licensors (+Y, rightward subscripts) 

features (Stabler 2011). 



raising predicates). Despite the fact that, from a 

generative point of view, all these formalisms are 

equivalent and they all fall under the so called 

mildly-context sensitive domain (Stabler 2011), it 

is worth to appreciate the dynamics of structure 

building “on-line”, namely how the derivation un-

rolls, word by word. Taking the MGs lexicon (4), 

the expected constituents in (1) are built adding 

items to the left-edge of the structure at each 

Merge/Move application, as described in (5). 

(4) LexMG = {[Yα=X], [X -Zβ], [γ=Y +Z]} 

(5) i. Merge(Yα=X, X -Zβ) = [Yα [α=X X -Zβ]] 

ii. Merge(γ=Y +Z, [Yα [α -Zβ]]) =  

 [γ=Y +Z [Yα [α  -Zβ]]] 

iii. Move ([γ+Z [α [α -Zβ]]]) =  

 [[-Zβ] γ+Z [γ [α [α _β]]] 

An equivalent structure is obtained in PMGs2 as 

shown in (7). Notice a minimal difference in the 

lexicon (6): the absence of the “-” features. 

(6) LexPMG = { [Yα=X], [Z X β], [γ+Z =Y] } 

(7) i. Merge(Z Xβ, γ+Z =Y) = [[Z Xβ] γ+Z =Y] 

  Xβ → M 

ii.  Merge([[β] γ =Y], Yα =X) =  

 [[β] γ [(γ) =Y [Yα =X]] M = {Xβ} 

iii. Move([[β] γ [(γ) [α =X]], Xβ) =  

 [[β] γ [(γ) [α=X [(α) X_β]]]]  Xβ ← M 

The result of the two derivations is (strongly) 

equivalent in hierarchical (and dependency) 

terms. The simplicity, in pre-theoretical terms, of 

the two descriptions is comparable: while PMGs 

must postulate the M storage to implement Move 

(as result of the missing selection of a categorial 

feature), MGs must postulate independent work-

space to build nontrivial left-branching structures, 

for instance before merging a multi-word subject 

like “the boy” with its predicate (e.g., “runs”). 

Furthermore, both formalisms must restrict the 

behavior either of the M buffer operativity or the 

accessibility to the -f features to limits the Move 

operation (e.g., island constraints, Huang, 1982). 

1.1 Top-Down is Better 

There are at least three reasons to commit our-

selves to the top-down orientation instead of re-

maining agnostic or relying on the mainstream 

Minimalist brick-over-brick (from-bottom-to-top) 

approach (Chesi 2007): First, the order in which 

 
2 Move is implemented using a Last-In-First-Out ad-

dressable memory buffer M, where the item (β) with 

unselected categorie(s) (X) is stored (“Xβ  → M”) and 

retrieved (“Xβ  ← M”) when selected (i.e. “=X”). 

the structure is built is grossly transparent with re-

spect to the order in which the words are pro-

cessed in real-life tasks, both in generation and in 

parsing in PMGs, but not in MGs.  

Second, in PMGs, the simple processing order 

of multiple expectations is sufficient to distin-

guish between sequential (the  last expectation of 

a given lexical item) and nested expectations (any 

other expectation): The first qualifies as the trans-

parent branch of the tree (i.e. it is able to license 

pending items from the superordinate selecting 

item), while constituents licensed by nested ex-

pectations qualify as configurational islands 

(Bianchi & Chesi 2006; Chesi 2015). Moreover, 

successive cyclic movement is easily described in 

PMGs without relying on feature checking at any 

step or non-deterministic assumptions on features 

deletion (Chesi 2015) contrary to (C)MGs.   

A third logical reason to prefer the top-down 

orientation over the bottom-up alternative is re-

lated to the unicity of the root node in tree graphs. 

As anticipated, the creation of complex (binary) 

branching structures poses a puzzle for (C)MGs: 

Independent workspaces must be postulated, 

namely [the boy] and [sings … ] phrases must be 

created before one can merge with the other: 

(8) [VP [DP the boy] [V sings [DP a song]]] 

This is the case of “complex” subject or adjunct 

(i.e., non-projecting constituents which are simply 

composed by more than one lexical item) that 

must be the result of (at least) one independent 

Merge operation, before this can merge with the 

relevant predicate (e.g. [V sings …]3 in (8)). Pro-

cessing these constituents represents a major dif-

ference between (bottom-up) MGs and (top-

down) PMGs derivations. While MGs must de-

cide where to start from (and both solutions are 

possible and forcefully logically independent 

from parsing or generation, which undeniably 

proceed “left-right”), PMGs take advantage of the 

“single root condition” (Partee, Meulen & Wall 

1993: 439) and avoid this problem: 

(9) In every well-formed constituent structure 

tree, there is exactly one node that domi-

nates every node. 

As indicated in (3), the binary operation Merge 

simply produces a hierarchical dependency in 

which the dominating (asymmetrically C-

3 Considering the inflection “-s” as part of the lexical 

element or by (head) moving the root “sing-“ to T is 

uninfluential here. This sort of head movement is im-

plemented lexically in e-MGs (e.g. [T (=V V) eats …]. 



commanding, in the sense of Kayne 1994) item is 

above the dominated (C-commanded) one. This is 

compatible with Stabler notation (10).a-b and 

plainly solves the ambiguity of the nature of the 

“label” of the constituent (Rizzi 2016). In this 

sense, PMGs (and the e-MGs discussed later) can 

adopt directly a more concise description, that is 

(10).c, more transparent with respect to the (Uni-

versal) Dependency approach (Nivre et al. 2017): 

Elements are “dependent” when they Merge. 

(10) a. MGs b. (C)MGs c. (P/e-)MGs 

 

The higher node (possibly the root) is always the 

selecting item (a probe, in minimalist terms), and 

it is the first item to be processed. This does not 

necessarily imply that this item is linearized be-

fore the selected category (the goal, in minimalist 

terms): if the selecting node has multiple selection 

needs, it must remain to the right-edge of the 

structure to license, locally, the other(s) selection 

expectation(s). E.g., if [α=X =Y], [Xβ] and [Yγ], then: 

(11) [α=X =Y [Xβ] [(α=Y) [Y γ]]] 

In this case, <α, β, γ> would be the default linear-

ization, but it is easy to derive <β, α, γ> instead, 

assuming a simple parameterization on spell-out 

in case of multiple select features. 

Here, I will argue that we can push further this 

intuition and only rely on (categorial) expecta-

tions, encoded in the lexical items, to guide the 

derivation. This leads to the so-called expectation-

based Minimalist Grammars (e-MGs). 

In the following sections, I will sketch a simple 

formalization for e-MGs (§2), and the core deri-

vation algorithm (§3) that would be used both in 

Generation and Parsing tasks (§3.2). 

2 The Grammar 

As (C/P)MGs, e-MGs include a specification of a 

lexicon (Lex) and a set of functions (F), the struc-

ture building operations. The lexicon, in turn, is a 

finite set composed by words each consisting of 

phonetic/orthographic information (Phon) and a 

combination of categorical features (Cat), 

 
4 As in MGs, lexical items could be specified both for 

phonetic (Phon) and semantic features (Sem). In e-

MGs, expectations (=/+X) and expectees (X) corre-

spond to MGs selectors/licensors and selectees/licen-

sees respectively. Agreement features indicate catego-

rial values to be unified (Chesi 2021). 

expressing expect(ations), expected and agree-

ment categories4. In the end, an optional set of Pa-

rameters (P) (see Chesi 2021), inducing minimal 

modifications to the structure building operations 

F and, possibly, to the Cat set, under the fair as-

sumption that F and Cat are universal. More pre-

cisely, any e-MG is a 5-tuple such that: 

(12) G = (Phon, Cat, Lex, F, P), where 

Phon, a finite set of phonetic/orthographic 

features (i.e., orthographic forms repre-

senting words, e.g., “the”, “smiles”) 

Cat, a finite set (morphosyntactic categories, 

that can be expect, expected or agreement 

features e.g., “D”, “V”… “gen(der)”, 

“num(ber)”, “pl(ural)” etc.) 

Lex, a set of expressions built from Phon and 

Cat (the lexicon) 

F, a set of partial functions from tuples of ex-

pressions to expressions (the structure 

building operations) 

P, a finite set of minimal transformations of 

F and/or Cat (the parameters), producing 

F' and Cat', respectively. 

2.1 Lexical Items and Categories 

Each lexical item l in Lex, namely each word, is a 

4-tuple defined as follows5: 

(13) l = (Ph, Exp(ect), Exp(ect)ed, Agr(ee)), 

Phon, from Phon in G (e.g., “the”) 

Exp, a finite list of ordered features from Cat 

in G (the category/ies that the item ex-

pects will follow, e.g., =N)  

Exped is a finite list of ordered features from 

Cat in G (the category/ies that should be 

licensed/expected, e.g., N) 

Agr(ee) is a structured list of features from 

Cat in G (e.g., gen.fem, num.pl) 

All Exp(ect), Exp(ect)ed and Agr(ee) features are 

then subsets of Cat in G. In Agr, for instance, a 

feminine gender specification (gen.fem) expresses 

a subset relation (i.e., “feminine”  “gender”). 

For sake of simplicity, each l will be repre-

sented as [Expected(; Agree) Phon =/+Expect] as in (14): 

(14)  [D the =N], [N; num.pl dogs], [T barks =D] 

5 This is the simplest possible implementation. Attrib-

ute-Value Matrices, as in HPSH (Pollard & Sag 1994) 

or TRIE/compact trees exploiting the sequence of ex-

pectations (Chesi 2018; Stabler 2013) are possible im-

plementations. 

α 

α=X 

= 
βX 

α=X 

= 

βX 

< 

α=X βX 



We refer to the most prominent (i.e., the first) Ex-

pected feature as the Label (L) of the item. E.g., 

the label L of “the” will be D, while the label of 

“barks” will be T. Similarly, let us call S (for se-

lect) the first Expect feature and R the remaining 

Expect(actions) (if any). 

2.2 Structure Building Operations 

Given lx an arbitrary item such that lx = (Px,  

Lx/Expedx, Sx/Rx/Expx, Agrx) we can define MERGE 

as follows: 

(15) MERGE(l1(S1), l2(L2)) = 

{
1, [𝑙1(𝑆1)[𝑙2(𝐿2)]] 𝑖𝑓 𝑆1 =  𝐿2

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
} 

MERGE is implemented as the usual binary func-

tion that is successful (it returns “1”) and creates 

the dependency (asymmetric C-command or in-

clusion, in set theoretic terms) (10).c, namely [l1 

[l2]], if and only if the label of the subsequent item 

(l2) is exactly the one expected by the preceding 

item (l1), namely S1 = L2. This is probably both too 

strict in one sense (adjuncts are not properly se-

lected) and too permissive in another (certain ele-

ments must agree to be merged). In the first case, 

I assume that [l1 [l2]] can be formed even if S1 is 

not =X but +X: while =X corresponds to func-

tional selection (in compositional semantics terms 

Heim & Kratzer 1998), +X corresponds to an in-

tersective compositional interpretation (e.g. ad-

juncts and restrictive relative clauses). As for the 

agreement constraint, I postulate an extra (possi-

bly parametrized) condition on MERGE, namely 

the sharing (inclusion) of the relevant Agr features 

associated to some specific categories. 

The auxiliary functions necessary to implement 

Agreement are AGREE and UNIFY and can be min-

imally defined as follows: 

(16) AGREE(l1(L1), l2(L2)) =   

{
1 𝑖𝑓 𝐿1 ∧ 𝐿2 ∈  𝑃{𝐴𝑔𝑟} →  𝑈𝑛𝑖𝑓𝑦( 𝑙1, 𝑙2)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
} 

(17) UNIFY(𝑙1(agr1), 𝑙2(agr2)) =   

{
1, 𝑎, ∀𝑎: 𝐴𝑔𝑟1∀𝑏: 𝐴𝑔𝑟2 𝑎 ∩ b 𝑖𝑓 𝑎 ⊆ 𝑏
1, 𝑏, ∀𝑎: 𝐴𝑔𝑟1 ∀𝑏: 𝐴𝑔𝑟2 𝑎 ∩ b 𝑖𝑓 𝑏 ⊆ 𝑎
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

} 

Unification is simply expressed as an inclusion re-

lation returning true and the most specific feature 

for any possible featural intersection between l1 

and l2 Agr features6. Notice that Agreement is a 

 
6 UNIFY(num, num.pl) = num.pl; UNIFY(, num.pl) = 

num.pl; UNIFY(gen.f, num.pl) = gen.f, num.pl, since 

gen and num are distinct agree subsets. On the other 

hand, UNIFY([gen.f, num.sg], num.pl) would fail. 

conditional, parametrized option, that is, it only 

involves specific categories (possibly specified in 

the parameter set P): if the L category belongs to 

the Agreement set (Agr) in P for the grammar G, 

unification will be attempted, otherwise agree-

ment will be trivially successful. The fact that 

AGREE should apply in conjunction with MERGE 

is straightforward in the D-N domain: in most Ro-

mance languages, in which gender and number are 

shared between the determiner and the noun, we 

assume that D selects N (this happens also for in-

termediate functional specifications, according to 

the cartographic intuition, Cinque 2002). This is 

less evident in the Subject – Predicate case, in SV 

language, where the predicate should select (then 

precede) D. Since the subject is clearly processed 

(i.e. merged) before T, in canonical SV sentences, 

and it does not select T, a re-merge operation 

should be considered (e.g. case checking). This re-

merge (inducing the locality of Agree, pace 

Chomsky 2001) is logically and empirically sound 

(movement and agreement can be related and par-

ametrized, Alexiadou & Anagnostopoulou 1998). 

In this case, re-merge must be preceded by MOVE, 

an operation that stores in memory an item which 

is “not fully” expected (i.e. there are exped2 fea-

tures remaining) by the previous MERGE:  

(18) MOVE(l1(M1), l2(L2)) = 

{
1, 𝑃𝑢𝑠ℎ(𝑀1, 𝑙2(𝑃ℎ𝑜𝑛2=∅)) 𝑖𝑓 𝐿2 ≠ ∅)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
} 

The definition of MOVE tells us that an item (l2) 

must be moved (pushed7) into the memory buffer 

(M1) of the superordinate item (l1) if it still has ex-

pected features to be selected (L2 ≠ ). Notice that 

item moved in M1 is not an exact copy of l2: the 

used features (including Phon) will not be stored 

in memory. This definition produces the expected 

derivation if it applies right after MERGE, that is, 

once the item l2 is properly (at least partially) se-

lected; in this case, if l2 still has exp(ect)ed fea-

tures to be licensed, it must hold in the memory 

buffer of the selecting item, waiting for a proper 

selection of what has become the new l2 label (i.e. 

L2). (Re-)Merge is then when agreement will be 

attempted (i.e. if MERGE(l1, l2) in §3, should then 

be interpreted as if MERGE(l1, l2)   AGREE(l1, l2) 

then… for specific parameterized categories). In 

the end, the top-down derivation in SV languages 

would unroll as follows: the subject (a DP) is first 

7 PUSH and POP are trivial functions operating on ar-

rays: insert (PUSH) / remove (POP) an item to/from the 

first available slot of a stack or a priority queue. 



selected by a superordinate item (presuppositional 

subject position, situation topic, focus etc.)8 then 

it gets (partially) stored in the M buffer of the se-

lecting item in virtue of the unselected D features, 

then re-merged as soon as a proper predicate, ex-

pressing the relevant T category requiring agree-

ment (T should be included in the parameterized 

Agreement), is merged and properly selects a D 

argument (or it selects a V that later selects D). 

The content of the memory buffer is transmitted  

(inherited) through the last selected expectation, 

namely when the expecting and the expectee 

items successfully merge and the expecting item 

has no more expectations (R1 ≠ ).  

If the expecting item has expectations, then the 

expected item constitutes a nested expansion, and 

the inheritance mechanism is blocked: 

(19) INHERIT(l1(M1), l2(M2)) = 

{
1, 𝑀2 ⟸ 𝑀1 𝑖𝑓 MERGE(𝑙1, 𝑙2)  ∧ 𝑅1 ≠ ∅)
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

} 

The M buffer of the last selected item that does 

not have other expectations (namely a right 

phrasal edge, i.e., S=) must be empty (i.e., 

M=). If not, the derivation fails (i.e., it stops) 

since a pending item remains unlicensed: 

(20) SUCCESS(lx(Sx, Mx)) = 

{
1, 𝑖𝑓 𝑆𝑥 = ∅ → 𝑀𝑥 = ∅)
𝑆𝑇𝑂𝑃 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

} 

Notice that the sequential item must be properly 

selected (=SX). If this is not the case, the inher-

itance would transmit the content of the memory 

buffer of the superordinate phase into the memory 

buffer of an adjunct or a restrictive relative clause, 

which clearly qualify as (right-branching) islands. 

Therefore, the “restrictive” (since feature driven) 

MERGE definition in (15) seems correct and em-

pirically more accurate than “free Merge” (Chom-

sky, Gallego & Ott 2019: 238). 

3 The Derivation Algorithm 

We can now define the full-fledged top-down der-

ivation algorithm which is common both to gen-

eration and to parsing tasks (§3.2). Consider cn to 

be the current node, exp the list of pending expec-

tations and mem the ordered list of items in 

memory. We initialize our procedure by picking 

up an arbitrary node from G.Lex as cn. Being cn 

 
8 We have various options to implement this selection: 

a specific feature (+focus, +topic, +presupposed etc.) 

can be added to the relevant item (but this would lead 

to a proliferation of lexical ambiguity, e.g. [D the …] 

the root node of our derivation(al tree) and w the 

array of words we want to produce/recognize, we 

can define the function DERIVE(cn, w) as follows: 

while cn.exp & w 

 while cn.mem 

  foreach cn.mem[i] in cn.mem 

   if MERGE(cn.exp[0], cn.mem[i]) 

    POP(cn.exp) 

     POP(cn.mem) 

   else break 

 if MERGE(cn.exp[0], w[0]) 

  POP(cn.exp) 

  if w[0].exped 

   MOVE(cn, w[0]) 

  if w[0].exp 

   cn = w[0] 

   INHERIT(exp[0], w[0]) 

  SUCCESS(w[0]) 

 POP(w) 

 if not cn.exp 

  while !cn.exp & (cn != root) 

   cn = cn.father 

 else fail 

Informally speaking, as long as we have lexical 

items to consume (w), we loop into the set of ex-

pectations of cn (cn.exp), first attempting to 

Merge items from (cn.)mem (if any), as in the ac-

tive filler strategy (Frazier & Clifton 1989), then 

consuming words in the input (being w[0] the first 

available word). Remember that each word has 

exp(ect)ed features (the first being the label L), 

exp(ectations) and agr(eement) features. Cns have 

their own mem that can be inherited only by the 

last expected item, and, apart from the root node, 

a father. The derivation is then a depth-first, left-

right (i.e., real-time) strategy to derive a structure 

given a grammar, a root node, and a sequence of 

lexical items to be integrated.  

3.1 The Complexity of Lexical Ambiguity 

Ignoring Parameters, the derivation procedure in 

§3 should face lexical ambiguity: the same Phon 

in w[n] might be associated to multiple items l in 

Lex with different features; the default option is to 

initialize a new derivational tree for any ambigu-

ous item in Lex. Given an ambiguity rate m in Lex, 

the derivation procedure would have an exponen-

tial order of complexity O(mn). We can mitigate 

this, either by selecting the element(s) bringing 

only coherent (i.e. expected) categories (a catego-

rial priming strategy, Ziegler et al., 2019) or to use 

a statistical oracle, following Stabler (2013), to 

vs [FOC D the …]) or we assume that certain superordi-

nate items can select specific categories, without de-

leting them (e.g. [+D ε FOC]). In this implementation, I 

will pursue this second, more economic, alternative. 



limit (or rank) the number of possible alternatives. 

It is however important to stress that lexical am-

biguity is the major source of complexity in this 

derivation: syntactic ambiguity is greatly sub-

sumed by the lexicon, being the source of struc-

tural differences related to the set of categorial ex-

pectations processed and to the order in which lex-

ical items are introduce in the derivation. With the 

strict version of MERGE defined in (15), no attach-

ment ambiguity is allowed, since a matching se-

lection must be readily satisfied as soon as the rel-

evant configuration is created (but see Chesi & 

Brattico 2018). This is not the case if we would 

admit “free merge” instead of select/licensors-

driven merge: in the first case, admitting that 

MERGE(l1(S1), l2(L2)) is possible also if S1 ≠ L2, 

would produce a syntactic ambiguity which is (ex-

ponentially) proportional to the number of items 

merged in the structure. This is a crucial argument 

to prefer feature-driven Merge. Notice, moreover, 

that admitting that re-merge is also possible with-

out proper licensors/selectors, would quickly lead 

to unbounded unstoppable recursion. This must be 

prevented if we want to avoid the halting problem. 

Therefore the licensors/selectors option seem to 

be a more logical, self-contained, solution. 

3.2 Generation and Parsing 

As far as Generation is concerned, the procedure 

described in §3 is integrally adopted and it is suf-

ficient to produce the expected sentence with the 

associated, dependency-based, structural descrip-

tion. As long as the sequence of words w is con-

cerned, once a root node is selected, it is easy to 

imagine a dynamic function, instead of the static 

ordered sequence w, that incrementally proposes 

items to be integrated, given the history of the der-

ivation or, at least, the last expectation (a sort of 

structural priming, possibly enriched with seman-

tic features if we add to the lexicon Sem(antic) 

specifications in addition to Cat and Phon ones). 

Notice that the lexicon can include phonetically 

empty categories; this is not a problem for the 

generation procedure, that consumes input tokens 

one by one, and then considers a phonetically 

empty category on a par with phonetically real-

ized ones, namely each item should be postulated 

as incoming token to be processed.  

From this perspective, the Parsing procedure is 

minimally different since it must postulate a pho-

netically empty item, for instance in pro-drop lan-

guages, by deducting that the w sequence received 

in input is incomplete/incompatible with specific 

structural hypotheses. One proposal (Brattico & 

Chesi 2020) relies on inflectional morphology as 

an overt realization of unambiguous person and 

number features cliticized on the predicate, hence 

doubling the (null) subject. Otherwise, only after 

a relevant category is selected (with its agreement 

features) and unmatched by the current input, the 

empty item could be postulated. This non-deter-

minism is exacerbated by the attachment/selection 

ambiguity: given [l1 =/+X [l2 =/+X]], for instance, an 

incoming item with X exp(ect)ed feature that 

should be merged with l2 first, according to the 

derivation algorithm provided in §3, could, in fact, 

be merged also with l1, assuming that l2 =X expec-

tation can be satisfied with an empty item bearing 

X as exp(ect)ed. Similarly, an adjunct marked with 

Y exp(ect)ed category could be merged with both 

l1 and l2 in [l1 [l2]] in case of lexical ambiguity ([l1], 

[l1 +Y], [l2], [l2 +Y]). In this sense, the derivation 

procedure in §3 is insufficient as a full-fledged 

parsing strategy and must be integrated with dis-

ambiguation routines dealing with the possibili-

ties just mentioned. It is however important to 

stress that these disambiguation strategies do not 

alter the general derivation procedure introduced 

here, which remains the lowest common denomi-

nator of Generation and Parsing in e-MGs. 

4 Conclusions 

The e-MGs formalization proposed here is a sim-

ple (parametrized) framework for comparing syn-

tactic predictions directly with human parsing and 

generation performance evidence. This is possible 

since the core derivation algorithm is assumed to 

be the same in both tasks (token transparency, 

Miller & Chomsky 1963). While there is little to 

add to implement a full-fledged Generation pro-

cedure (see §3.2), as long as the Parsing perspec-

tive is concerned, the information asymmetry of 

this task with respect to Generation requires extra 

routines to be implemented, in addition to the 

basic derivation algorithm: lexical ambiguity 

must be resolved “on-line” and phonetically 

empty items must be postulated when needed. 

This creates an extra level of complexity which is 

however manageable under the same derivational 

perspective here presented: the core derivation is 

sufficiently specified to operate independently 

from parsing-specific disambiguation assump-

tions which operate monotonically with respect to 

MERGE, MOVE and AGREE. This is an ideal foot-

hold for metrics that aim at comparing the pre-

dicted difficulty not only globally (De Santo, 

2020; Graf et al., 2017) but also “on-line” that is, 

on a word by word basis (Chesi & Canal 2019; 

Chesi 2021).  



Implementation: 

https://github.com/cristianochesi/e-MGs  
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