
A Common Derivation for Parsing and Generation

with Expectation-Based Minimalist Grammars (e-MGs)

Cristiano Chesi

NeTS – IUSS lab for NEurolinguistics, Computational Linguistics,

and Theoretical Syntax, Pavia
cristiano.chesi@iusspavia.it

Abstract

Expectation-based Minimalist Grammars

(e-MGs) are simplified versions of the

(Conflated) Minimalist Grammars,

(C)MGs, formalized by Stabler (Stabler

1997; Stabler 2011; Stabler 2013) and

Phase-based Minimalist Grammars,

PMGs (Chesi 2007; Chesi 2005; Stabler

2011). The crucial simplification consists

of driving structure building only using

lexically encoded categorial top-down ex-

pectations. The commitment on a top-

down procedure (in e-MGs and PMGs, as

opposed to (C)MGs, Chomsky, 1995; Sta-

bler, 2011) allows us to define a core der-

ivation that is the same in both parsing and

generation (Momma & Phillips 2018).

1 Introduction*

Minimalism (Chomsky 1995; Chomsky 2001) is

an elegant transformational grammatical frame-

work that defines structural dependencies in

phrasal (i.e. hierarchical) terms simply relying on

one core structure building operation, Merge, that

combines lexical items and the result of other

Merge operations. (1).a is the representative result

of two ordered Merge operations (i.e. Merge(γ,

Merge(α, β)) both taking the items α, β and γ di-

rectly from the lexicon, while (1).b relies on the

so called Internal Merge (Move): the re-Merge of

an item that was already merged in the structure.

(1) a. [γ [α, β]] Merge only

b. [β [γ [α, _β]] Merge + Move

As result, Move connects the item at the edge of

the structure (β) with a trace (_β), a phonetically

empty copy of the item that in a previous Merge

* Copyright ©️ 2021 for this paper by its author. Use

permitted under Creative Commons License Attribu-

tion 4.0 International (CC BY 4.0).

 1 α and β are lexical items, =X indicates the selection

of X, where X is a categorial feature. Lexical items are

tuples consisting of selections/expectations (=X) and

operation combined with a hierarchically lower

item (α in (1).b). In both (Conflated) Minimalist

and Phase-based Minimalist Grammars ([C]MGs

and PMGs respectively) Merge and Move are fea-

ture-driven operations, that is, a successful opera-

tion must be triggered by the relevant (categorial)

features matching, and, once these features are

used, they get deleted. Consequently, a feature

pair is always responsible for each operation (un-

less specific features are left unerased after a suc-

cessful operation, as in raising predicates and suc-

cessive cyclic movement, Stabler 2011). One cru-

cial difference between PMGs and MGs is that

while MGs operate from-bottom-to-top, as indi-

cated in (2), PMGs structure building operations

apply top-down as schematized in (3)1:

(2) Merge(α=X, Xβ) = [α [α=X Xβ]] MGs

Move(+Yα, [… β-Y …]) =

[α [β-Y [+Yα [… β-Y …]]]]

(3) Merge(α=X, Xβ) = [α=X [Xβ]] PMGs

Move([α=S +Y[Y Z β]]) =

[α=S +Y[Y Z β] S[… (=Z [Z β]) …]]

Another relevant difference between the two ap-

proaches is related to the implementation of

Move: MGs use the “+/-” feature distinction and

the same deletion procedure after matching, while

PMGs do not use “-” features and simply assume

that both “+” and “=” select categorial features,

which are deleted after Merge. In PMGs, “+” fea-

tures force memory storage and hence the move-

ment (downward) of the licensed item, until the

relevant prominent category identifying the

moved item (Z in (3)) is selected. If no proper se-

lection is found, the sentence is ungrammatical.

CMG as well dispenses the grammar with the +/-

feature distinction and only relies on select fea-

tures (=X), but it must assume that feature dele-

tion can be procrastinated (again, for instance, in

categories (X, i.e. selected/expected features); for

convenience, select features are expressed by right-

ward subscripts, and categories as leftward subscripts.

Similarly, Move is driven by licensing (-Y, leftward

subscripts) and licensors (+Y, rightward subscripts)

features (Stabler 2011).

raising predicates). Despite the fact that, from a

generative point of view, all these formalisms are

equivalent and they all fall under the so called

mildly-context sensitive domain (Stabler 2011), it

is worth to appreciate the dynamics of structure

building “on-line”, namely how the derivation un-

rolls, word by word. Taking the MGs lexicon (4),

the expected constituents in (1) are built adding

items to the left-edge of the structure at each

Merge/Move application, as described in (5).

(4) LexMG = {[Yα=X], [X -Zβ], [γ=Y +Z]}

(5) i. Merge(Yα=X, X -Zβ) = [Yα [α=X X -Zβ]]

ii. Merge(γ=Y +Z, [Yα [α -Zβ]]) =

 [γ=Y +Z [Yα [α -Zβ]]]

iii. Move ([γ+Z [α [α -Zβ]]]) =

 [[-Zβ] γ+Z [γ [α [α _β]]]

An equivalent structure is obtained in PMGs2 as

shown in (7). Notice a minimal difference in the

lexicon (6): the absence of the “-” features.

(6) LexPMG = { [Yα=X], [Z X β], [γ+Z =Y] }

(7) i. Merge(Z Xβ, γ+Z =Y) = [[Z Xβ] γ+Z =Y]

 Xβ → M

ii. Merge([[β] γ =Y], Yα =X) =

 [[β] γ [(γ) =Y [Yα =X]] M = {Xβ}

iii. Move([[β] γ [(γ) [α =X]], Xβ) =

 [[β] γ [(γ) [α=X [(α) X_β]]]] Xβ ← M

The result of the two derivations is (strongly)

equivalent in hierarchical (and dependency)

terms. The simplicity, in pre-theoretical terms, of

the two descriptions is comparable: while PMGs

must postulate the M storage to implement Move

(as result of the missing selection of a categorial

feature), MGs must postulate independent work-

space to build nontrivial left-branching structures,

for instance before merging a multi-word subject

like “the boy” with its predicate (e.g., “runs”).

Furthermore, both formalisms must restrict the

behavior either of the M buffer operativity or the

accessibility to the -f features to limits the Move

operation (e.g., island constraints, Huang, 1982).

1.1 Top-Down is Better

There are at least three reasons to commit our-

selves to the top-down orientation instead of re-

maining agnostic or relying on the mainstream

Minimalist brick-over-brick (from-bottom-to-top)

approach (Chesi 2007): First, the order in which

2 Move is implemented using a Last-In-First-Out ad-

dressable memory buffer M, where the item (β) with

unselected categorie(s) (X) is stored (“Xβ → M”) and

retrieved (“Xβ ← M”) when selected (i.e. “=X”).

the structure is built is grossly transparent with re-

spect to the order in which the words are pro-

cessed in real-life tasks, both in generation and in

parsing in PMGs, but not in MGs.

Second, in PMGs, the simple processing order

of multiple expectations is sufficient to distin-

guish between sequential (the last expectation of

a given lexical item) and nested expectations (any

other expectation): The first qualifies as the trans-

parent branch of the tree (i.e. it is able to license

pending items from the superordinate selecting

item), while constituents licensed by nested ex-

pectations qualify as configurational islands

(Bianchi & Chesi 2006; Chesi 2015). Moreover,

successive cyclic movement is easily described in

PMGs without relying on feature checking at any

step or non-deterministic assumptions on features

deletion (Chesi 2015) contrary to (C)MGs.

A third logical reason to prefer the top-down

orientation over the bottom-up alternative is re-

lated to the unicity of the root node in tree graphs.

As anticipated, the creation of complex (binary)

branching structures poses a puzzle for (C)MGs:

Independent workspaces must be postulated,

namely [the boy] and [sings …] phrases must be

created before one can merge with the other:

(8) [VP [DP the boy] [V sings [DP a song]]]

This is the case of “complex” subject or adjunct

(i.e., non-projecting constituents which are simply

composed by more than one lexical item) that

must be the result of (at least) one independent

Merge operation, before this can merge with the

relevant predicate (e.g. [V sings …]3 in (8)). Pro-

cessing these constituents represents a major dif-

ference between (bottom-up) MGs and (top-

down) PMGs derivations. While MGs must de-

cide where to start from (and both solutions are

possible and forcefully logically independent

from parsing or generation, which undeniably

proceed “left-right”), PMGs take advantage of the

“single root condition” (Partee, Meulen & Wall

1993: 439) and avoid this problem:

(9) In every well-formed constituent structure

tree, there is exactly one node that domi-

nates every node.

As indicated in (3), the binary operation Merge

simply produces a hierarchical dependency in

which the dominating (asymmetrically C-

3 Considering the inflection “-s” as part of the lexical

element or by (head) moving the root “sing-“ to T is

uninfluential here. This sort of head movement is im-

plemented lexically in e-MGs (e.g. [T (=V V) eats …].

commanding, in the sense of Kayne 1994) item is

above the dominated (C-commanded) one. This is

compatible with Stabler notation (10).a-b and

plainly solves the ambiguity of the nature of the

“label” of the constituent (Rizzi 2016). In this

sense, PMGs (and the e-MGs discussed later) can

adopt directly a more concise description, that is

(10).c, more transparent with respect to the (Uni-

versal) Dependency approach (Nivre et al. 2017):

Elements are “dependent” when they Merge.

(10) a. MGs b. (C)MGs c. (P/e-)MGs

The higher node (possibly the root) is always the

selecting item (a probe, in minimalist terms), and

it is the first item to be processed. This does not

necessarily imply that this item is linearized be-

fore the selected category (the goal, in minimalist

terms): if the selecting node has multiple selection

needs, it must remain to the right-edge of the

structure to license, locally, the other(s) selection

expectation(s). E.g., if [α=X =Y], [Xβ] and [Yγ], then:

(11) [α=X =Y [Xβ] [(α=Y) [Y γ]]]

In this case, <α, β, γ> would be the default linear-

ization, but it is easy to derive <β, α, γ> instead,

assuming a simple parameterization on spell-out

in case of multiple select features.

Here, I will argue that we can push further this

intuition and only rely on (categorial) expecta-

tions, encoded in the lexical items, to guide the

derivation. This leads to the so-called expectation-

based Minimalist Grammars (e-MGs).

In the following sections, I will sketch a simple

formalization for e-MGs (§2), and the core deri-

vation algorithm (§3) that would be used both in

Generation and Parsing tasks (§3.2).

2 The Grammar

As (C/P)MGs, e-MGs include a specification of a

lexicon (Lex) and a set of functions (F), the struc-

ture building operations. The lexicon, in turn, is a

finite set composed by words each consisting of

phonetic/orthographic information (Phon) and a

combination of categorical features (Cat),

4 As in MGs, lexical items could be specified both for

phonetic (Phon) and semantic features (Sem). In e-

MGs, expectations (=/+X) and expectees (X) corre-

spond to MGs selectors/licensors and selectees/licen-

sees respectively. Agreement features indicate catego-

rial values to be unified (Chesi 2021).

expressing expect(ations), expected and agree-

ment categories4. In the end, an optional set of Pa-

rameters (P) (see Chesi 2021), inducing minimal

modifications to the structure building operations

F and, possibly, to the Cat set, under the fair as-

sumption that F and Cat are universal. More pre-

cisely, any e-MG is a 5-tuple such that:

(12) G = (Phon, Cat, Lex, F, P), where

Phon, a finite set of phonetic/orthographic

features (i.e., orthographic forms repre-

senting words, e.g., “the”, “smiles”)

Cat, a finite set (morphosyntactic categories,

that can be expect, expected or agreement

features e.g., “D”, “V”… “gen(der)”,

“num(ber)”, “pl(ural)” etc.)

Lex, a set of expressions built from Phon and

Cat (the lexicon)

F, a set of partial functions from tuples of ex-

pressions to expressions (the structure

building operations)

P, a finite set of minimal transformations of

F and/or Cat (the parameters), producing

F' and Cat', respectively.

2.1 Lexical Items and Categories

Each lexical item l in Lex, namely each word, is a

4-tuple defined as follows5:

(13) l = (Ph, Exp(ect), Exp(ect)ed, Agr(ee)),

Phon, from Phon in G (e.g., “the”)

Exp, a finite list of ordered features from Cat

in G (the category/ies that the item ex-

pects will follow, e.g., =N)

Exped is a finite list of ordered features from

Cat in G (the category/ies that should be

licensed/expected, e.g., N)

Agr(ee) is a structured list of features from

Cat in G (e.g., gen.fem, num.pl)

All Exp(ect), Exp(ect)ed and Agr(ee) features are

then subsets of Cat in G. In Agr, for instance, a

feminine gender specification (gen.fem) expresses

a subset relation (i.e., “feminine”  “gender”).

For sake of simplicity, each l will be repre-

sented as [Expected(; Agree) Phon =/+Expect] as in (14):

(14) [D the =N], [N; num.pl dogs], [T barks =D]

5 This is the simplest possible implementation. Attrib-

ute-Value Matrices, as in HPSH (Pollard & Sag 1994)

or TRIE/compact trees exploiting the sequence of ex-

pectations (Chesi 2018; Stabler 2013) are possible im-

plementations.

α

α=X

=
βX

α=X

=

βX

<

α=X βX

We refer to the most prominent (i.e., the first) Ex-

pected feature as the Label (L) of the item. E.g.,

the label L of “the” will be D, while the label of

“barks” will be T. Similarly, let us call S (for se-

lect) the first Expect feature and R the remaining

Expect(actions) (if any).

2.2 Structure Building Operations

Given lx an arbitrary item such that lx = (Px,

Lx/Expedx, Sx/Rx/Expx, Agrx) we can define MERGE

as follows:

(15) MERGE(l1(S1), l2(L2)) =

{
1, [𝑙1(𝑆1)[𝑙2(𝐿2)]] 𝑖𝑓 𝑆1 = 𝐿2

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}

MERGE is implemented as the usual binary func-

tion that is successful (it returns “1”) and creates

the dependency (asymmetric C-command or in-

clusion, in set theoretic terms) (10).c, namely [l1

[l2]], if and only if the label of the subsequent item

(l2) is exactly the one expected by the preceding

item (l1), namely S1 = L2. This is probably both too

strict in one sense (adjuncts are not properly se-

lected) and too permissive in another (certain ele-

ments must agree to be merged). In the first case,

I assume that [l1 [l2]] can be formed even if S1 is

not =X but +X: while =X corresponds to func-

tional selection (in compositional semantics terms

Heim & Kratzer 1998), +X corresponds to an in-

tersective compositional interpretation (e.g. ad-

juncts and restrictive relative clauses). As for the

agreement constraint, I postulate an extra (possi-

bly parametrized) condition on MERGE, namely

the sharing (inclusion) of the relevant Agr features

associated to some specific categories.

The auxiliary functions necessary to implement

Agreement are AGREE and UNIFY and can be min-

imally defined as follows:

(16) AGREE(l1(L1), l2(L2)) =

{
1 𝑖𝑓 𝐿1 ∧ 𝐿2 ∈ 𝑃{𝐴𝑔𝑟} → 𝑈𝑛𝑖𝑓𝑦(𝑙1, 𝑙2)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}

(17) UNIFY(𝑙1(agr1), 𝑙2(agr2)) =

{
1, 𝑎, ∀𝑎: 𝐴𝑔𝑟1∀𝑏: 𝐴𝑔𝑟2 𝑎 ∩ b 𝑖𝑓 𝑎 ⊆ 𝑏
1, 𝑏, ∀𝑎: 𝐴𝑔𝑟1 ∀𝑏: 𝐴𝑔𝑟2 𝑎 ∩ b 𝑖𝑓 𝑏 ⊆ 𝑎
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}

Unification is simply expressed as an inclusion re-

lation returning true and the most specific feature

for any possible featural intersection between l1

and l2 Agr features6. Notice that Agreement is a

6 UNIFY(num, num.pl) = num.pl; UNIFY(, num.pl) =

num.pl; UNIFY(gen.f, num.pl) = gen.f, num.pl, since

gen and num are distinct agree subsets. On the other

hand, UNIFY([gen.f, num.sg], num.pl) would fail.

conditional, parametrized option, that is, it only

involves specific categories (possibly specified in

the parameter set P): if the L category belongs to

the Agreement set (Agr) in P for the grammar G,

unification will be attempted, otherwise agree-

ment will be trivially successful. The fact that

AGREE should apply in conjunction with MERGE

is straightforward in the D-N domain: in most Ro-

mance languages, in which gender and number are

shared between the determiner and the noun, we

assume that D selects N (this happens also for in-

termediate functional specifications, according to

the cartographic intuition, Cinque 2002). This is

less evident in the Subject – Predicate case, in SV

language, where the predicate should select (then

precede) D. Since the subject is clearly processed

(i.e. merged) before T, in canonical SV sentences,

and it does not select T, a re-merge operation

should be considered (e.g. case checking). This re-

merge (inducing the locality of Agree, pace

Chomsky 2001) is logically and empirically sound

(movement and agreement can be related and par-

ametrized, Alexiadou & Anagnostopoulou 1998).

In this case, re-merge must be preceded by MOVE,

an operation that stores in memory an item which

is “not fully” expected (i.e. there are exped2 fea-

tures remaining) by the previous MERGE:

(18) MOVE(l1(M1), l2(L2)) =

{
1, 𝑃𝑢𝑠ℎ(𝑀1, 𝑙2(𝑃ℎ𝑜𝑛2=∅)) 𝑖𝑓 𝐿2 ≠ ∅)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}

The definition of MOVE tells us that an item (l2)

must be moved (pushed7) into the memory buffer

(M1) of the superordinate item (l1) if it still has ex-

pected features to be selected (L2 ≠ ). Notice that

item moved in M1 is not an exact copy of l2: the

used features (including Phon) will not be stored

in memory. This definition produces the expected

derivation if it applies right after MERGE, that is,

once the item l2 is properly (at least partially) se-

lected; in this case, if l2 still has exp(ect)ed fea-

tures to be licensed, it must hold in the memory

buffer of the selecting item, waiting for a proper

selection of what has become the new l2 label (i.e.

L2). (Re-)Merge is then when agreement will be

attempted (i.e. if MERGE(l1, l2) in §3, should then

be interpreted as if MERGE(l1, l2)  AGREE(l1, l2)

then… for specific parameterized categories). In

the end, the top-down derivation in SV languages

would unroll as follows: the subject (a DP) is first

7 PUSH and POP are trivial functions operating on ar-

rays: insert (PUSH) / remove (POP) an item to/from the

first available slot of a stack or a priority queue.

selected by a superordinate item (presuppositional

subject position, situation topic, focus etc.)8 then

it gets (partially) stored in the M buffer of the se-

lecting item in virtue of the unselected D features,

then re-merged as soon as a proper predicate, ex-

pressing the relevant T category requiring agree-

ment (T should be included in the parameterized

Agreement), is merged and properly selects a D

argument (or it selects a V that later selects D).

The content of the memory buffer is transmitted

(inherited) through the last selected expectation,

namely when the expecting and the expectee

items successfully merge and the expecting item

has no more expectations (R1 ≠ ).

If the expecting item has expectations, then the

expected item constitutes a nested expansion, and

the inheritance mechanism is blocked:

(19) INHERIT(l1(M1), l2(M2)) =

{
1, 𝑀2 ⟸ 𝑀1 𝑖𝑓 MERGE(𝑙1, 𝑙2) ∧ 𝑅1 ≠ ∅)
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}

The M buffer of the last selected item that does

not have other expectations (namely a right

phrasal edge, i.e., S=) must be empty (i.e.,

M=). If not, the derivation fails (i.e., it stops)

since a pending item remains unlicensed:

(20) SUCCESS(lx(Sx, Mx)) =

{
1, 𝑖𝑓 𝑆𝑥 = ∅ → 𝑀𝑥 = ∅)
𝑆𝑇𝑂𝑃 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}

Notice that the sequential item must be properly

selected (=SX). If this is not the case, the inher-

itance would transmit the content of the memory

buffer of the superordinate phase into the memory

buffer of an adjunct or a restrictive relative clause,

which clearly qualify as (right-branching) islands.

Therefore, the “restrictive” (since feature driven)

MERGE definition in (15) seems correct and em-

pirically more accurate than “free Merge” (Chom-

sky, Gallego & Ott 2019: 238).

3 The Derivation Algorithm

We can now define the full-fledged top-down der-

ivation algorithm which is common both to gen-

eration and to parsing tasks (§3.2). Consider cn to

be the current node, exp the list of pending expec-

tations and mem the ordered list of items in

memory. We initialize our procedure by picking

up an arbitrary node from G.Lex as cn. Being cn

8 We have various options to implement this selection:

a specific feature (+focus, +topic, +presupposed etc.)

can be added to the relevant item (but this would lead

to a proliferation of lexical ambiguity, e.g. [D the …]

the root node of our derivation(al tree) and w the

array of words we want to produce/recognize, we

can define the function DERIVE(cn, w) as follows:

while cn.exp & w

 while cn.mem

 foreach cn.mem[i] in cn.mem

 if MERGE(cn.exp[0], cn.mem[i])

 POP(cn.exp)

 POP(cn.mem)

 else break

 if MERGE(cn.exp[0], w[0])

 POP(cn.exp)

 if w[0].exped

 MOVE(cn, w[0])

 if w[0].exp

 cn = w[0]

 INHERIT(exp[0], w[0])

 SUCCESS(w[0])

 POP(w)

 if not cn.exp

 while !cn.exp & (cn != root)

 cn = cn.father

 else fail

Informally speaking, as long as we have lexical

items to consume (w), we loop into the set of ex-

pectations of cn (cn.exp), first attempting to

Merge items from (cn.)mem (if any), as in the ac-

tive filler strategy (Frazier & Clifton 1989), then

consuming words in the input (being w[0] the first

available word). Remember that each word has

exp(ect)ed features (the first being the label L),

exp(ectations) and agr(eement) features. Cns have

their own mem that can be inherited only by the

last expected item, and, apart from the root node,

a father. The derivation is then a depth-first, left-

right (i.e., real-time) strategy to derive a structure

given a grammar, a root node, and a sequence of

lexical items to be integrated.

3.1 The Complexity of Lexical Ambiguity

Ignoring Parameters, the derivation procedure in

§3 should face lexical ambiguity: the same Phon

in w[n] might be associated to multiple items l in

Lex with different features; the default option is to

initialize a new derivational tree for any ambigu-

ous item in Lex. Given an ambiguity rate m in Lex,

the derivation procedure would have an exponen-

tial order of complexity O(mn). We can mitigate

this, either by selecting the element(s) bringing

only coherent (i.e. expected) categories (a catego-

rial priming strategy, Ziegler et al., 2019) or to use

a statistical oracle, following Stabler (2013), to

vs [FOC D the …]) or we assume that certain superordi-

nate items can select specific categories, without de-

leting them (e.g. [+D ε FOC]). In this implementation, I

will pursue this second, more economic, alternative.

limit (or rank) the number of possible alternatives.

It is however important to stress that lexical am-

biguity is the major source of complexity in this

derivation: syntactic ambiguity is greatly sub-

sumed by the lexicon, being the source of struc-

tural differences related to the set of categorial ex-

pectations processed and to the order in which lex-

ical items are introduce in the derivation. With the

strict version of MERGE defined in (15), no attach-

ment ambiguity is allowed, since a matching se-

lection must be readily satisfied as soon as the rel-

evant configuration is created (but see Chesi &

Brattico 2018). This is not the case if we would

admit “free merge” instead of select/licensors-

driven merge: in the first case, admitting that

MERGE(l1(S1), l2(L2)) is possible also if S1 ≠ L2,

would produce a syntactic ambiguity which is (ex-

ponentially) proportional to the number of items

merged in the structure. This is a crucial argument

to prefer feature-driven Merge. Notice, moreover,

that admitting that re-merge is also possible with-

out proper licensors/selectors, would quickly lead

to unbounded unstoppable recursion. This must be

prevented if we want to avoid the halting problem.

Therefore the licensors/selectors option seem to

be a more logical, self-contained, solution.

3.2 Generation and Parsing

As far as Generation is concerned, the procedure

described in §3 is integrally adopted and it is suf-

ficient to produce the expected sentence with the

associated, dependency-based, structural descrip-

tion. As long as the sequence of words w is con-

cerned, once a root node is selected, it is easy to

imagine a dynamic function, instead of the static

ordered sequence w, that incrementally proposes

items to be integrated, given the history of the der-

ivation or, at least, the last expectation (a sort of

structural priming, possibly enriched with seman-

tic features if we add to the lexicon Sem(antic)

specifications in addition to Cat and Phon ones).

Notice that the lexicon can include phonetically

empty categories; this is not a problem for the

generation procedure, that consumes input tokens

one by one, and then considers a phonetically

empty category on a par with phonetically real-

ized ones, namely each item should be postulated

as incoming token to be processed.

From this perspective, the Parsing procedure is

minimally different since it must postulate a pho-

netically empty item, for instance in pro-drop lan-

guages, by deducting that the w sequence received

in input is incomplete/incompatible with specific

structural hypotheses. One proposal (Brattico &

Chesi 2020) relies on inflectional morphology as

an overt realization of unambiguous person and

number features cliticized on the predicate, hence

doubling the (null) subject. Otherwise, only after

a relevant category is selected (with its agreement

features) and unmatched by the current input, the

empty item could be postulated. This non-deter-

minism is exacerbated by the attachment/selection

ambiguity: given [l1 =/+X [l2 =/+X]], for instance, an

incoming item with X exp(ect)ed feature that

should be merged with l2 first, according to the

derivation algorithm provided in §3, could, in fact,

be merged also with l1, assuming that l2 =X expec-

tation can be satisfied with an empty item bearing

X as exp(ect)ed. Similarly, an adjunct marked with

Y exp(ect)ed category could be merged with both

l1 and l2 in [l1 [l2]] in case of lexical ambiguity ([l1],

[l1 +Y], [l2], [l2 +Y]). In this sense, the derivation

procedure in §3 is insufficient as a full-fledged

parsing strategy and must be integrated with dis-

ambiguation routines dealing with the possibili-

ties just mentioned. It is however important to

stress that these disambiguation strategies do not

alter the general derivation procedure introduced

here, which remains the lowest common denomi-

nator of Generation and Parsing in e-MGs.

4 Conclusions

The e-MGs formalization proposed here is a sim-

ple (parametrized) framework for comparing syn-

tactic predictions directly with human parsing and

generation performance evidence. This is possible

since the core derivation algorithm is assumed to

be the same in both tasks (token transparency,

Miller & Chomsky 1963). While there is little to

add to implement a full-fledged Generation pro-

cedure (see §3.2), as long as the Parsing perspec-

tive is concerned, the information asymmetry of

this task with respect to Generation requires extra

routines to be implemented, in addition to the

basic derivation algorithm: lexical ambiguity

must be resolved “on-line” and phonetically

empty items must be postulated when needed.

This creates an extra level of complexity which is

however manageable under the same derivational

perspective here presented: the core derivation is

sufficiently specified to operate independently

from parsing-specific disambiguation assump-

tions which operate monotonically with respect to

MERGE, MOVE and AGREE. This is an ideal foot-

hold for metrics that aim at comparing the pre-

dicted difficulty not only globally (De Santo,

2020; Graf et al., 2017) but also “on-line” that is,

on a word by word basis (Chesi & Canal 2019;

Chesi 2021).

Implementation:

https://github.com/cristianochesi/e-MGs

References

Alexiadou, Artemis & Elena Anagnostopoulou. 1998.

Parametrizing AGR: Word order, V-movement and

EPP-checking. Natural Language & Linguistic The-

ory. Springer 16(3). 491–539.

Bianchi, Valentina & Cristiano Chesi. 2006. Phases,

left-branch islands, and computational nesting. Pro-

ceedings of the 29th Annual Penn Linguistics Collo-

quium (University of Pennsylvania Working Papers

in Linguistics) 12.1. 15–28.

Brattico, Pauli & Cristiano Chesi. 2020. A top-down,

parser-friendly approach to pied-piping and opera-

tor movement. Lingua. Elsevier 233(102760). 1–28.

https://doi.org/10.1016/j.lingua.2019.102760.

Chesi, Cristiano. 2005. Phases and Complexity in

Phrase Structure Building. In Computational Lin-

guistics in the Netherlands 2004: Selected Papers of

the 15th Meeting of Computational Linguistics in

the Netherlands, 59–75. UTRECHT: LOT.

http://lotos.library.uu.nl/publish/issues/4/.

Chesi, Cristiano. 2007. An introduction to Phase-based

Minimalist Grammars: why move is Top-Down

from Left-to-Right. In STIL - Studies in Linguistics

- Vol. 1, vol. 1, 38–75. Siena: CISCL Press.

Chesi, Cristiano. 2015. On directionality of phrase

structure building. Journal of Psycholinguistic Re-

search 65–89. https://doi.org/10.1007/s10936-014-

9330-6.

Chesi, Cristiano. 2018. An efficient Trie for binding

(and movement). In Proceedings of the Fifth Italian

Conference on Computational Linguistics (CLiC-it

2018), vol. 2253. https://www.scopus.com/in-

ward/record.uri?eid=2-s2.0-85057729135&part-

nerID=40&md5=3c941a7524597857a24b64d671e

7239a.

Chesi, Cristiano. 2021. Expectation-based Minimalist

Grammars. arXiv:2109.13871 [cs].

http://arxiv.org/abs/2109.13871 (2 November,

2021).

Chesi, Cristiano & PAULI JUHANI Brattico. 2018.

Larger than expected: constraints on pied-piping

across languages. RGG. RIVISTA DI GRAMMAT-

ICA GENERATIVA 2008.4. 1–38.

Chesi, Cristiano & Paolo Canal. 2019. Person Features

and Lexical Restrictions in Italian Clefts. FRON-

TIERS IN PSYCHOLOGY.

https://doi.org/10.3389/fpsyg.2019.02105.

https://www.frontiersin.org/arti-

cles/10.3389/fpsyg.2019.02105/full.

Chomsky, Noam. 1995. The minimalist program.

Cambridge, MA: MIT press.

Chomsky, Noam. 2001. Derivation by phase. In Mi-

chael Kenstowicz (ed.), Ken Hale: A life in lan-

guage, 1–52. Cambridge (MA): MIT Press.

Chomsky, Noam, Ángel J Gallego & Dennis Ott. 2019.

Generative grammar and the faculty of language: In-

sights, questions, and challenges. Catalan Journal

of Linguistics 229–261.

Cinque, Guglielmo. 2002. Functional Structure in DP

and IP: The Cartography of Syntactic Structures,

Volume 1. Oxford University Press.

De Santo, Aniello. 2020. MG Parsing as a Model of

Gradient Acceptability in Syntactic Islands. In Pro-

ceedings of the Society for Computation in Linguis-

tics 2020, 59–69. New York, New York: Associa-

tion for Computational Linguistics.

https://www.aclweb.org/anthology/2020.scil-1.7.

Frazier, Lyn & Charles Clifton. 1989. Successive cy-

clicity in the grammar and the parser. Language and

Cognitive Processes 4(2). 93–126.

https://doi.org/10.1080/01690968908406359.

Graf, Thomas, James Monette & Chong Zhang. 2017.

Relative clauses as a benchmark for Minimalist

parsing. Journal of Language Modelling 5(1).

https://doi.org/10.15398/jlm.v5i1.157.

https://jlm.ipipan.waw.pl/index.php/JLM/arti-

cle/view/157 (21 June, 2021).

Heim, Irene & Angelika Kratzer. 1998. Semantics in

generative grammar (Blackwell Textbooks in Lin-

guistics 13). Malden, MA: Blackwell.

Huang, C.-T. James. 1982. Logical relations in Chi-

nese and the theory of grammar. Cambridge (MA):

MIT.

Kayne, Richard S. 1994. The antisymmetry of syntax

(Linguistic Inquiry Monographs 25). Cambridge,

Mass: MIT Press.

Miller, George A. & Noam Chomsky. 1963. Finitary

Models of Language Users. In D. Luce (ed.), Hand-

book of Mathematical Psychology, 2–419. John

Wiley & Sons.

Momma, Shota & Colin Phillips. 2018. The Relation-

ship Between Parsing and Generation. Annual Re-

view of Linguistics 4(1). 233–254.

https://doi.org/10.1146/annurev-linguistics-

011817-045719.

Nivre, Joakim, Željko Agić, Lars Ahrenberg, Lene An-

tonsen, Maria Jesus Aranzabe, Masayuki Asahara,

Luma Ateyah, et al. 2017. Universal Dependencies

2.1.

Partee, Barbara H., Alice ter Meulen & Robert E. Wall.

1993. Mathematical methods in linguistics (Studies

in Linguistics and Philosophy volume 30). Cor-

rected second printing of the first edition. Dordrecht

Boston London: Kluwer Academic Publishers.

https://github.com/cristianochesi/e-MGs

Pollard, Carl Jesse & Ivan A. Sag. 1994. Head-driven

phrase structure grammar (Studies in Contempo-

rary Linguistics). Stanford : Chicago: Center for the

Study of Language and Information ; University of

Chicago Press.

Rizzi, Luigi. 2016. Labeling, maximality and the head–

phrase distinction. The Linguistic Review. De Gruy-

ter Mouton 33(1). 103–127.

Stabler, Edward. 1997. Derivational minimalism. In

Christian Retoré (ed.), Logical Aspects of Computa-

tional Linguistics, 68–95. Berlin, Heidelberg:

Springer Berlin Heidelberg.

Stabler, Edward. 2011. Computational Perspectives on

Minimalism. In Cedric Boeckx (ed.), The Oxford

Handbook of Linguistic Minimalism. Oxford Uni-

versity Press. https://doi.org/10.1093/ox-

fordhb/9780199549368.013.0027. http://ox-

fordhandbooks.com/view/10.1093/ox-

fordhb/9780199549368.001.0001/oxfordhb-

9780199549368-e-027 (26 April, 2021).

Stabler, Edward. 2013. Two Models of Minimalist, In-

cremental Syntactic Analysis. Topics in Cognitive

Science 5(3). 611–633.

https://doi.org/10.1111/tops.12031.

Ziegler, Jayden, Giulia Bencini, Adele Goldberg &

Jesse Snedeker. 2019. How abstract is syntax? Evi-

dence from structural priming. Cognition 193.

104045. https://doi.org/10.1016/j.cogni-

tion.2019.104045.

