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Abstract
As communities become multilingual, code-mixing becomes a prevalent phenomenon. Traditional mod-
els trained on monolingual data have proved to be inadequate for code-mixed data. This work was sub-
mitted for the Dravidian-CodeMix-HASOC 2021 task on offensive language detection.The paper depicts
a deep learning and Naive Bayes based approach towards solving the problem of understanding text
written in non-native script and classifying them into offensive and not-offensive text. A Bidirectional
Long Short Term Memory (BiLSTM) model is employed to solve this classification task. The model is
tested for F1 score to obtain the degree to which the model correctly classifies the text as offensive or
non-offensive, where the BiLSTM is observed to have performed well than the Naive Bayes approach
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1. Introduction

Recently, social media has become the most sought after mode of practicing one’s right to
speech. The inadequacy of the rules imposed by social media platforms has led to the rise
of offensive speech that tends to destabilize communities. Additionally, most of the social
media comments are made in non-native script. This code mixed text makes the task even
more challenging as models trained on monolingual data fail on code-mixed data due to the
complexity of code-switching at different linguistic levels in the text. It is difficult to transliterate
Tamil to English effectively using the libraries indic-nlp. Most of the Tamil text did not match
with its English equivalent because of the letters that are unique to Tamil and do not exist in the
English scripture. Additionally, Tamil has many words that have different meanings in different
contexts and predicting the offensiveness of the comment was a challenging task.

In the current scenario people are working on newer models like BERT and their variants are
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Language Training Validation

Tamil 3999 939
Malayalam 3999 950

Table 1
Number of training and validation samples

currently employed and researched upon for offensive language classification. Here we have
used BiLSTM for detecting offensive tweets.

2. Literature Survey

Anti social comments in YouTube have been classified into offensive and non offensive in
[1]. Initially the input is tokenized, filtered and normalized as the part of pre-processing steps.
Supervised machine learning technique namely, Support Vector Machine (SVM) has been applied
with the help of word level features and achieved F1 score of 82%. Authors in [2] studied the
performance of the dataset fused with augmented data to detect the offensive content. The
original data is 100k tweets of ICWSM-2020 Data Challenge Task. To balance the class imbalance
problem, generation-based data augmentation techniques named Dager was employed. The
work shown an 22% increase in F1 score with fusing ratio of Dager generated data and original
data to a ratio of 70% and 10% of original data.

Tweets are preprocessed to remove punctuation, repeated characters, non Arabic characters
before classifying them into offensive or not. Dataset belonged to OSACT Shared task having
10,000 Arabic tweets [3]. Several classifiers were employed in this work, including the combina-
tion architecture of CNN-BiLSTM, M-BERT and SVM. Among which the SVM outperformed
the other classifiers with 97.1% accuracy.

KanCMD dataset with 7,671 post has code mixed text in Kannada posted as YouTube comments
[4]. Two tasks that have performed are Sentiment Analysis and offensive Language classification
with six classes. A variety of machine learning techniques have been used to perform both the
tasks. Authors observed that almost all the algorithms employed have performed poorly, out
of which Random Forest and logistic regression have outperformed others with around 66%
accuracy for offensive Language classification.

Four different models have been used to detect offensive language [5]. SVM, Naive Bayes
have used TF-IDF vector as features, LSTM with attention is fed with GloVe word embeddings
applied on 220,000 comments,taken from toxic comments dataset with six classes. LSTM has
provided 99.67% of Explanatory Power Index measure. Similar researches on offensive language
identification are found in [6], [7], [8] and [9].

3. Datasets

The given datasets are already split into 2 files for training and validation separately. The
training file for Tamil language comprises of 1980/3999 offensive labels and validation set



Figure 1: Flowchart of the proposed BiLSTM Model

contains 474/939 offensive labels as shown in Table 1. Similarly Malayalam dataset also contains
2047/3999 and 478/950 offensive labels in corresponding training and validation sets [9]. As
we can see the two classes are almost equally balanced and hence do not require any kind of
further preprocessing to prevent over fitting of the dominant class.

4. Methodology

The proposed architecture uses both a machine learning classifier and a deep learning architec-
ture for offensive tweet classification. BiLSTM [10] and Naive Bayes classifier [11] are the two
chosen approaches for the given shared task.

4.0.1. Deep Learning Model Architecture: BiLSTM

Our method employs a bidirectional LSTM to classify comments as offensive and not offensive.
A bidirectional LSTM runs two LSTMs to read the text from front and back simultaneously.
This marks the basis of difference between LSTM and BiLSTM. LSTM stores only the past while
BiLSTM stores both the past and future. This makes a Bi-LSTM more efficient in understanding
the mood and context of the comment when compared to other models.
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The Equations 1, 2, 3 [12] render the base for computation at a layer in a bidirectional lstm
model. The score results from the forward LSTM and backward LSTM are concatenated as given
in the third equation. Mathematically, at time t, an intermediate neuron receives one set of
parameters from the previous time-step of the same LSTM layer and two sets of parameters from
the previous LSTM layer, one from the forward and the other from the backward LSTM. The



Figure 2: Proposed Naive-Bayes Model

aggregated sum of results of all the hidden states is passed to the softmax activation function to
compute the probability of each class.

The first layer of the model constitutes the embedding layer that converts the tokenized
words into fixed-sized vectors. The Embeddings layer in Keras module was used to obtain
a dense vector representation for words which learns the relational order of words and this
adjusted embedding is fed to the BiLSTM layer [13].

This BiLSTM layer learns the context of sentences and learns the weightage of every word or
a group of words in deciding whether it is offensive or not. BiLSTM also considers the order
of occurrence of the words which makes the model more efficient in determining the context
and mood of the sentence. The proposed architecture with BiLSTM is shown in Figure 1. The
loss function used in Binary cross entropy which is optimized using the Adam optimizer with a
learning rate of 0.01. The model performance during training is evaluated using the accuracy
metric.

4.1. Naive Bayes Model

The Naive Bayes model uses an approximation of the well known Bayes theorem. It takes
the probability of each feature given an output to predict the probability of classifying the
given input to a particular output. This algorithm is widely used in sentimental analysis with
large datasets. The model architecture is shown in Figure 2. Bayes Theorem and Naive Bayes
Theorem are represented as in Equation 4, 5.

𝑃 (𝑌 |𝑥1𝑥2 * ... * 𝑥𝑛) = 𝑃 (𝑌 )
𝑃 (𝑥1𝑥2...𝑥𝑛|𝑌 )

𝑃 (𝑥1𝑥2...𝑥𝑛)
(4)

𝑃 (𝑌 |𝑥1𝑥2...𝑥𝑛) = 𝑃 (𝑌 )
𝑃 (𝑥1|𝑌 )𝑃 (𝑥2|𝑌 )...𝑃 (𝑥𝑛|𝑌 )

𝑃 (𝑥1𝑥2...𝑥𝑛|𝑌 )
(5)



As we can see from above equations, Naive Bayes theorem assumes conditional independence
of each feature present in the input. Therefore it fails to account for cases where a set of words
determine the offensiveness of a tweet rather than individually.

5. Implementation and Experiments

5.1. LSTM Pre-processing

The redundant rows containing no meaningful tweets were removed as the first step of prepro-
cessing the training dataset for BiLSTM network. The tweets were converted to lower case to
avoid the same words being counted as separate words. Then the tweets were tokenized using
the Keras Tokenizer, which splits the sentences into words and assigns a unique number to
each word. The text to sequences function fits the encoding on the training data converting
the string of words to that of numbers. The tokenized tweets were pre-padded to a uniform
length of 100 tokens. Since, the number of words is not constant in the dataset, a safe upper
bound of 100 words was chosen to fit the longest sentences in the dataset as well. Finally, the
column containing the output was converted into categorical data. Since the training dataset
was limited to non-native script and script without emoticons, no special libraries were used
for transliteration or demotifying the text.

The same pre-processing steps as the training dataset are applied to the testing dataset. Addi-
tionally, the testing dataset contained comments in native script and raw data with emoticons.
To deal with such data, the following libraries were used:

• langdetect : To detect the language of the script based on individual characters in the
text

• indic-transliteration : To transliterate native script to roman script
• re : To identify and remove emoticons from the comments

A single Embedding layer is used, whose output is fed to a BiLSTM layer with an output
dimension of 150. The output layer has an activation function of softmax. Adam optimizer with
a learning rate of 0.01 and binary_crossentropy loss function were used to train the model.

5.1.1. Pre-processing for Naive Bayes

The train set is initially cleaned off punctuation and other English stop words with the help
of stop word and punctuation corpus in nltk.The cleaned data is sent to another layer for
transforming emojis found in the tweets to their corresponding emotions.Additionally a English
language based Wordnet lemmatizer was used which didn’t add up to any further improvement
(add this to modifications) , The transformed tweets are used to generate a bag of words count
vector. The mutual info classify function was used to obtain the k strongest word features from
the dataset. k is iteratively set to the numbers in the set { 100, 500, 1000} This is used to train the
multinomial naive Bayes model.The test data and validation data follow the same preprocessing
procedure.

Multinomial Naive Bayes was used directly from the sklearn library with the default parame-
ters with Additive Laplace smoothing parameter as 1.



Model Language Training Accuracy Validation Accuracy
F1-score

BiLSTM Tamil 0.8170 0.8296
0.6628
BiLSTM Malayalam 0.5414 0.5558
0.6979
NaiveBayes Tamil 0.8487 0.839
0.804
NaiveBayes Malayalam 0.7432 0.6804

Table 2
Performance of proposed Models during training

Computation is done in Python using Google Colab notebook and its GPU was used to train
the model 1. A general purpose RAM size of 8GB was allotted with a 2.3GHz Intel Xenon CPU.

6. Results

TeamName Precision Recall F1-Score Rank

AI_ML_NIT_Patna 0.539 0.509 0.515 15
JBTTM 0.537 0.483 0.503 16

Table 3
Tamil codemix Task

TeamName Precision Recall F1-Score Rank

MUM 0.628 0.637 0.632 10
JBTTM 0.577 0.584 0.58 11

Table 4
Malayalam codemix Task

Table 2 shows the performance of the two models on two languages Tamil and Malayalam
with respect to accuracy. The validation accuracy of Naive Bayes on both languages is observed
to be greater than the validation accuracy of BiLSTM model. Naive Bayes model could only
give a maximum validation accuracy of 68% even after changing the number of best features
chosen from input at training. But with respect to the languages the models trained for Tamil
language fared well than the model for offensive language prediction for Malayalam and this
can be attributed to the class imbalance of samples in the dataset.

1https://github.com/ask-1710/FIRE2021-OffensiveLanguageDetection.git



The two proposed models are submitted for evaluation in HASOC-Dravidian CodeMix Shared
Task on Offensive Language Detection in Tamil and Malayalam. Out of which the deep learning
BiLSTM model was evaluated to be placed in rank 16 and rank 11 in Tamil Task and Malayalam
task respectively based on the recall, precision and F1-score as shown in Tables 3 and 4. The
BiLSTM model which performed well on Tamil language during training did not reflect the
same when it was tested on unseen data. It has achieved only 55% accuracy in validation for
Malayalam language but performed better than its Tamil counterpart in testing.

The Naive Bayes model was not ranked may be due to the conditional independence assumed
by that approach on each feature of the input, and not fare well. Therefore it would have failed
to account for cases where a set of words determine the offensiveness of a tweet rather than
individually.

7. Conclusion

To predict the offensiveness of the text, one machine learning based Naive Bayes approach and
a deep learning based BiLSTM were proposed in this work. The deep learning based model has
not performed well in training when compared with Naive Bayes approach but have shown a
noticeable performance during testing and placed in 16 and 11 ranks for Tamil and Malayalam
languages respectively. Other classic algorithm Naive Bayes were also tested and not considered
on the basis of accuracy values. From the results obtained it can be observed that that our
proposed BiLSTM model too gives lower accuracy on unseen data. In the future we plan to
use an ensemble model consisting of BiLSTM and BERT models to get better results. The
performance can also be improved by employing augmentation techniques to handle the class
imbalance problem.
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