
A Semantic Search Pipeline for Causality-driven
Adhoc Information Retrieval
Dhairya Dalal1, Sharmi Dev Gupta2 and Bentolhoda Binaei1

1SFI Centre for Research and Training in Artificial Intelligence, Data Science Institute, National University of Ireland
Galway
2SFI Centre for Research and Training in Artificial Intelligence, School of Computer Science and Information Technology,
University College Cork

Abstract
We present a unsupervised semantic search pipeline for the Causality-driven Adhoc Information Retrieval
(CAIR-2021) shared task. The CAIR shared task expands traditional information retrieval to support the
retrieval of documents containing the likely causes of a query event. A successful system must be able
to distinguish between topical documents and documents containing causal descriptions of events that
are causally related to the query event. Our approach involves aggregating results from multiple query
strategies over a semantic and lexical index. The proposed approach leads the CAIR-2021 leaderboard
and outperformed both traditional IR and pure semantic embedding-based approaches.

Keywords
semantic search, causal information retrieval, causality detection, causal search

1. Introduction

The Causality-driven Adhoc Information Retrieval (CAIR) shared task consists of retrieving
documents with the likely causes of a query event [1]. The search system must be able to
differentiate between topical documents and casual documents. Traditional information retrieval
(IR) systems usually rely on keyword matching and corpus level n-gram statistics to score which
documents are most topically relevant to a provided query. In contrast, given a query event
(e.g. Shashi Tharoor resigned), the goal of the causal search system is to identify documents
that contain causal information about the events that lead to the query event. For example,
causally relevant documents for the query in Figure 1 would refer to the IPL controversy and
illicit behavior by Shashi Tharoor. General documents that mention Shashi Tharoor, while
topically relevant, may not be causally relevant if they do not contain information about his
misbehavior.

In this paper, we describe our solution for the CAIR shared task. We design a unsupervised
semantic search pipeline, which aggregates results across several query strategies and indices.
The pipeline leverages both a lexical index and a semantic index to retrieve causally relevant
documents. Our approach both outperformed standard IR baselines and semantic baselines and
was the top method on the CAIR-2021 task leaderboard.

Forum for Information Retrieval Evaluation, December 13-17, 2021, India
Envelope-Open d.dalal1@nuigalway.ie (D. Dalal); sharmi.devgupta@cs.ucc.ie (S. D. Gupta); b.binaei1@nuigalway.ie (B. Binaei)
Orcid 0000-0003-0279-234X (D. Dalal); 0000-0003-0376-2206 (S. D. Gupta)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:d.dalal1@nuigalway.ie
mailto:sharmi.devgupta@cs.ucc.ie
mailto:b.binaei1@nuigalway.ie
https://orcid.org/0000-0003-0279-234X
https://orcid.org/0000-0003-0376-2206
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


Figure 1: Example CAIR topic. Each topic consists of a query (title), which describes an event, and a
narrative, which contains descriptions of documents that are causally relevant to the event.

2. Related Works

Datta et al. [2] provide a brief survey of the literature on causality in natural language processing
and explore the task of causal information retrieval in the context of news articles. They also
introduce a recursive causal retrieval model which allows for identifying the causal chain of
events that led to a news event. Datta et al. [3] propose an unsupervised pseudo-relevance
feedback approach that estimates the distribution of infrequent terms that are potentially
relevant to the causality of the query event. Recent advances in IR have focused on neural re-
ranking and leveraging latent embeddings to improve the overall recall and semantic relevance
of returned results. For example, Pang et al. [4] propose SetRank, a permutation-invariant
ranking model that jointly learns the embeddings of retrieved documents using self-attention.
Most modern IR approaches combine lexical and semantic approaches. For example, Gao
et al. [5] presents CLEAR in which a residual-based learning framework teaches the neural
embedding to be complementary to the lexical retrieval model. Our approach follows the trend
of combining lexical models with semantic embeddings.

3. Methods

Our approach focused on developing an unsupervised semantic search pipeline. Documents
were indexed in two indices: a semantic index and a lexical index (see Section 3.1). Results
from multiple queries across the two indices were then aggregated to return the most relevant
documents. We additionally explored a post query filter step that aimed to identify documents
that contained causal language in the context of the query event. This approach did not produce
viable results and was not pursued. In this section, we will present our methodology and
experimental setup in further detail.

3.1. Document Indexing

Two document indices were created for our semantic search pipeline. The first was a lexical
index that treated documents as bags of words and was optimized for Okapi BM25 [6] retrieval.



Before indexing, documents were cleaned and tokenized using standard preprocessing steps:
lowercasing, stripping out all non-alphanumeric characters, and lemmatization. Thus each
document 𝐷 was broken into lemmatized unigram tokens 𝑡1...𝑡𝑛. Next, the tokenized documents
were further processed to support the Okapi BM25 ranking algorithm. Given a query 𝑄 which
consists of query tokens 𝑞1, ...𝑞𝑛, we score each document D in our index using the following
scoring function:
𝑆𝑐𝑜𝑟𝑒(𝐷, 𝑄) = ∑𝑛

𝑖=1 𝐼𝐷𝐹(𝑞𝑖) ⋅
𝑓 𝑟𝑒𝑞(𝑞𝑖,𝐷)⋅(𝑘1+1)

𝑓 𝑟𝑒𝑞(𝑞𝑖,𝐷)+𝑘1⋅(1−𝑏+𝑏⋅
𝐷𝑙𝑒𝑛𝑔𝑡ℎ
𝑎𝑣𝑔𝐷𝐿 )

𝐼𝐷𝐹(𝑞𝑖) is the inverse document frequency of the query token and 𝑓 𝑟𝑒𝑞(𝑞𝑖, 𝐷) is the frequency
of query token in the document. Finally, 𝐷𝑙𝑒𝑛𝑔𝑡ℎ is the length of the document (i.e. the total num-
ber of tokens) and 𝑎𝑣𝑔𝐷𝐿 is the average document length. Okapi BM25 scores are unbounded
and larger scores indicate the retrieved document is more relevant compared to lower scored
documents in the context of the query.

The second index was a semantic indexwhere documents were represented fixed dimension
vector embeddings generated by a sentence embedding model. The broad goal of the semantic
index was to retrieve documents that are semantically similar to the query. Semantic relevance
is measured by the cosine similarity between query embedding 𝑈 and document embedding 𝑉
which can be defined as:

𝑠𝑖𝑚𝑖𝑙𝑎𝑟 𝑖𝑡𝑦(𝑈 , 𝑉 ) = 𝑈 ⋅𝑉
‖𝑈‖⋅‖𝑉‖ =

∑𝑛
𝑖=0 𝑈𝑖𝑉𝑖

√∑
𝑛
𝑖=1 𝑈

2
𝑖 √∑

𝑛
𝑖=1 𝑉

2
𝑖

Figure 2: Siamese sentence embedding architecture for asymmetric matching.

Sentence embedding models generate a fixed dimension representation for a provided input
text and are trained to represent sentence-level inputs for tasks such as semantic text similarity,
paraphrase detection, and textual entailment. Search applications present challenges when
considering sentence embedding models. Applying sentence embedding to document-level
inputs (e.g. paragraphs or new articles) dilutes the quality of embedding representation and
will likely result in poorer performance in the context of dense passage retrieval and ranking.
Additionally, there is an input asymmetry challenge where the query length is often shorter



than the relevant document that is to be retrieved. Finally, there may be limited lexical overlap
between the query text and the relevant document. As a result standard sentence embeddings
models like USE (Universal Sentence Encoder) [7] will struggle for general semantic search use
cases. To account for this we use a Siamese network architecture [8] that was pretrained to
support asymmetric (Figure 2) matching. The Siamese architecture takes as input query and
relevant passage pairs and fine-tunes a shared sentence embedding model to increase the cosine
similarity between relevant pairs and decreases the similarity between negative pair samples.
The resulting sentence embedding model is better tuned to support the asymmetric nature of
determining the semantic similarity between a query and document embedding. Details on the
pretrained sentence embedding model can be found in Section 4.2.

3.2. Semantic Search Pipeline

Our semantic search pipeline (Figure 3) aggregates results from three distinct query strategies
to produce the final set of relevant causal documents. Provided a topic consisting of a title and
narrative (e,g, Figure 1), we treat the title as the query text and narrative as a source for causal
keywords.
𝑄1 retrieves the 500 most semantically similar documents from the semantic index. This is

accomplished by embedding the query text using the sentence embedding model, retrieving the
closest document embeddings based on cosine distance, and then ranking the documents using
cosine similarity scores between query embedding and document embedding.
𝑄2 retrieves the 500 most relevant documents from the lexical index, where the relevance is

measured by the Okapi BM25 between the candidate documents tokens and query tokens.
𝑄3 also retrieves 500 results from the lexical index but uses causal keywords extracted

from the narrative description. The narrative text is first passed through a filter step which
removes any statements in the description that describes irrelevant documents. The filter uses a
simple keyword-based regex (e.g. not relevant, not considered, irrelevant, etc) to identify those
statements. Next, the filtered narrative is converted into a set of keywords using TopicRank [9].
Finally, the causal keywords from the narrative are used to query the lexical index.
𝑄1, 𝑄2, and 𝑄3 each produce a set of candidate documents (𝑄1′, 𝑄2′, and 𝑄3′ respectively).

These results are sent to an aggregator module that deduplicates and re-ranks all the candidate
documents. If a document appears in multiple results sets, its scores are summed. The top 500
documents are returned as the final result set.

3.3. Post Query Causal Filtering

We additionally explored a post query filtering step. This involved extracting causal relations (if
any were found) from the candidate document. Candidate documents would have passed this
filtering stage if the extracted cause had an overlap with the query text and the extracted effect
overlapped with the narrative causal keywords. This approach did not yield promising results
on the train topics and was not explored further on the test topics. Often the causal documents
did not mention the caused event as the document was reporting news that occurred before the
query event. This filtering method would have failed to identify news reports of events in the



Figure 3: The semantic search pipeline aggregates results from three query strategies, 𝑄1, 𝑄2, and 𝑄3.
𝑄1 embeds the query using the sentence embedding model and retrieves the most relevant results based
on cosine similarity. 𝑄2 and 𝑄3 retrieve the most relevant documents from the lexical index. 𝑄3 adds
filtering and keyword extraction steps to transform the narrative description in causal search terms.
Finally results from all three queries (𝑄1′, 𝑄2′, and 𝑄3′) are aggregated and re-ranked by the aggregator
module. The top 500 relevant submissions are returned.

past that lead to the query event because at the time of the reporting, the article did not know
about the query event (as it would happen in the future).

4. Experiments

In this section, we describe our implementation and experiment results.

4.1. Data

The CAIR dataset contains 303,291 Telegraph India news articles from 2001 to 2010 [3]. There
are 5 train topics and 20 test topics provided. Each topic (e.g. Figure 1) consists of a title, which
describes the query event, and a narrative that describes the expected relevant and irrelevant
documents.



4.2. Setup

The spacy library 1 was used for prepossessing (i.e. lemmatizing and tokenizing). We used the
python rank25 library 2 to implement a lexical index optimized for Okapi BM25 scoring. The
default values were used for the 𝑘1 (1.5) and 𝑏 (0.75) parameters.

For the semantic index, we use the pretrainedmsmarco-distilbert-base-v4 sentence embedding
model from the SentenceTransformers library [8]. This model was pretrained on the MS Marco
passage ranking dataset [10] which has asymmetric input properties as the query is often
shorted the relevant passage. The MS Marco dataset consists of a million queries from the Bing
search engine and 8.8 million passages from search results. The passage ranking task requires
the model to find the most relevant passages for a provided query and rank them. Documents
and qrels from the CAIR corpus were not used for the pretraining of the sentence embedding
model.

All the documents in the CAIR corpus were embedded using the msmarco-distilbert-base-v4
sentence embedding model and then stored in an index optimized for approximate nearest
neighbors search. We used the ANNOY python library 3 to store the document embeddings and
built a search index of 1000 trees.

4.3. Baselines

We evaluated our approach against four different lexical and semantic baselines. All the baselines
returned the top 500 relevant results which were evaluated against the gold document relevance
set. Mean Average Precision (MAP) and Precision at 5 (P@5) metrics were used for evaluation.
The first (Narrative Only Okapi BM25) baseline used returned results from the lexical index
using the narrative text as the query. The second baseline (Query Only Okapi BM25) used the
title as the query for lexical index. The third baseline (Query + Narrative Semantic) combined
the query and title texts and retrieved the most relevant semantic results from the semantic
index. Finally, the last baseline only used the title text to query the semantic index.

4.4. Results

Experiment results can be found in Table 4.4. In addition to our baselines, we include the results
of the best submission from the NITS team in the CAIR 2021 shared task. The test set contained
20 topics and a gold relevance set which identified causally relevant documents in the corpus.
Our semantic search pipeline outperforms all the baseline methods and leads the shared task
leader board. The semantic search pipeline posted a twenty-five percent increase in MAP and a
fourteen percent increase in P@5 over the Narrative Only Okapi BM25 baseline.

Our semantic search pipeline uses the same lexical and semantic indexes as the baselines.
However, the pipeline is better able to combine the lexical and semantic results to produce
the most causally relevant documents. The aggregator module conceptually functions as an
ensemble model and weights documents that appear in multiple query result sets higher. Each

1https://spacy.io
2https://github.com/dorianbrown/rank_bm25
3https://github.com/spotify/annoy



Table 1
Experiment Results for the 20 test topics.

Method MAP P@5

Semantic Pipeline .5761 .7800
Narrative Only Okapi BM25 baseline .3285 .6399
Query Only Okapi BM25 baseline .2561 .4999
Query + Narrative Semantic baseline .2239 .5500
Query Only Semantic baseline .1611 .5000
NITS-Run .1063 .4800

query strategy utilized information from the topic differently and the final result set reflected
that.

Amongst the baselines, the Narrative Only Okapi BM25 baseline was the strongest. The
narrative text contains the most useful information about what caused the query event and was
expected to provide the best results amongst the baselines. However, the narrative input with a
lexical index is still prone to returning topical documents that are not causally relevant. Figure
4 provides a qualitative comparison between the Narrative Only Okapi BM25 baseline and the
Semantic Search Pipeline. The baseline models match on terms present in the narrative but
the article is focused on accusing Modi of misconduct in the context of the IPL Kochi scandal.
In contrast, the Semantic Search Pipeline correctly identifies a document that describes why
Shashi Tharoor resigned in relation to scandal and his friend Sunanda Pushkar.

Figure 4: Example results returned by Semantic Search Pipeline and the Narrative Only Okapi BM25
baseline. The baseline returns a topically relevant result based on keyword matches but fails to describe
why Shashi Tharoor resigned.

5. Conclusion

In this paper, we introduced a semantic search pipeline for the CAIR-2021 shared task. Our
approach aggregated results from multiple query strategies across a lexical and semantic index.



The semantic search pipeline outperformed the lexical and simple semantic baselines and was
the top method on the CAIR 2021 leader board. This approach should serve as a stepping stone
toward better causal information retrieval. Future work could explore developing a better model
of causality and retrieving results using the query title only. The narrative text provides strong
clues as the causal terms that would be in the causally relevant documents. A causal search
system would have a better way identify and causally linking events.

Acknowledgments

This work was supported by Science Foundation Ireland under grants SFI/18/CRT/6223 (Centre
for Research Training in Artificial Intelligence).

References

[1] S. Datta, D. Ganguly, D. Roy, D. Greene, C. Jochim, F. Bonin, Overview of the causality-
driven adhoc information retrieval (cair) task at fire-2020, in: Forum for Information
Retrieval Evaluation, FIRE 2020, Association for Computing Machinery, New York, NY,
USA, 2020, p. 14–17. URL: https://doi.org/10.1145/3441501.3441513. doi:10.1145/3441501.
3441513 .

[2] S. Datta, D. Greene, D. Ganguly, D. Roy, M. Mitra, Where’s the why? in search of chains
of causes for query events, in: AICS, 2020.

[3] S. Datta, D. Ganguly, D. Roy, F. Bonin, C. Jochim, M. Mitra, Retrieving potential causes
from a query event, in: Proceedings of the 43rd International ACM SIGIR Conference on
Research and Development in Information Retrieval, 2020, pp. 1689–1692.

[4] L. Pang, J. Xu, Q. Ai, Y. Lan, X. Cheng, J. Wen, Setrank: Learning a permutation-invariant
ranking model for information retrieval, in: Proceedings of the 43rd International ACM SI-
GIR Conference on Research and Development in Information Retrieval, 2020, pp. 499–508.

[5] L. Gao, Z. Dai, T. Chen, Z. Fan, B. V. Durme, J. Callan, Complement lexical retrieval model
with semantic residual embeddings, in: European Conference on Information Retrieval,
Springer, 2021, pp. 146–160.

[6] S. Robertson, S. Walker, S. Jones, M. Hancock-Beaulieu, M. Gatford, Okapi at trec-3, in:
TREC, 1994.

[7] D. Cer, Y. Yang, S.-y. Kong, N. Hua, N. Limtiaco, R. St. John, N. Constant, M. Guajardo-
Cespedes, S. Yuan, C. Tar, B. Strope, R. Kurzweil, Universal sentence encoder for English, in:
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing:
System Demonstrations, Association for Computational Linguistics, Brussels, Belgium,
2018, pp. 169–174. URL: https://aclanthology.org/D18-2029. doi:10.18653/v1/D18- 2029 .

[8] N. Reimers, I. Gurevych, Sentence-bert: Sentence embeddings using siamese bert-networks,
in: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Process-
ing, Association for Computational Linguistics, 2019. URL: http://arxiv.org/abs/1908.10084.

[9] A. Bougouin, F. Boudin, B. Daille, TopicRank: Graph-based topic ranking for keyphrase
extraction, in: Proceedings of the Sixth International Joint Conference onNatural Language

https://doi.org/10.1145/3441501.3441513
http://dx.doi.org/10.1145/3441501.3441513
http://dx.doi.org/10.1145/3441501.3441513
https://aclanthology.org/D18-2029
http://dx.doi.org/10.18653/v1/D18-2029
http://arxiv.org/abs/1908.10084


Processing, Asian Federation of Natural Language Processing, Nagoya, Japan, 2013, pp.
543–551. URL: https://aclanthology.org/I13-1062.

[10] T. Nguyen, M. Rosenberg, X. Song, J. Gao, S. Tiwary, R. Majumder, L. Deng, MS MARCO:
A human generated machine reading comprehension dataset, CoRR abs/1611.09268 (2016).
URL: http://arxiv.org/abs/1611.09268. arXiv:1611.09268 .

https://aclanthology.org/I13-1062
http://arxiv.org/abs/1611.09268
http://arxiv.org/abs/1611.09268

	1 Introduction
	2 Related Works
	3 Methods
	3.1 Document Indexing
	3.2 Semantic Search Pipeline
	3.3 Post Query Causal Filtering

	4 Experiments
	4.1 Data
	4.2 Setup
	4.3 Baselines
	4.4 Results

	5 Conclusion

