
A machine learning pipeline for extracting
decision-support features from traffic scenes
Vitor A. Fraga1, Lincoln V. Schreiber1, Rafael Kunst1, Jorge Luis V. Barbosa1 and
Gabriel de O. Ramos1

1Graduate Program in Applied Computing, Universidade do Vale do Rio dos Sinos, São Leopoldo, Brazil

Abstract
Traffic systems play a key role in modern society. However, these systems are increasingly suffering
from problems, such as congestions. A well-known way to efficiently reduce this kind of problem is
to perform traffic light control intelligently through reinforcement learning (RL) algorithms. In this
context, extracting relevant features from the traffic environment to support decision-making becomes a
central concern. Examples of such features include vehicle counting on each queue, identification of
vehicles’ origins and destinations, among others. Recently, the advent of deep learning has paved to
way to efficient methods for extracting some of the aforementioned features. However, the problem
of identifying vehicles and their origins and destinations within an intersection has not been fully
addressed in the literature, even though such information has shown to play a role in RL-based traffic
signal control. Building against this background, in this work we propose a deep learning pipeline for
extracting relevant features from intersections based on traffic scenes. Our pipeline comprises three main
steps: (i) a YOLO-based object detector fine-tuned using the UAVDT dataset, (ii) a tracking algorithm to
keep track of vehicles along their trajectories, and (iii) an origin-destination identification algorithm.
Using this pipeline, it is possible to identify vehicles as well as their origins and destinations within a
given intersection. In order to assess our pipeline, we evaluated each of its modules separately as well
as the pipeline as a whole. The object detector model obtained 98.2% recall and 79.5% accuracy. The
tracking algorithm obtained a MOTA of 72.6% and a MOTP of 74.4%. Finally, the complete pipeline
obtained an error of 7.53% in terms of origin and destination counts.
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1. Introduction

Traffic congestion represents a major challenge in urban areas [1]. Intelligent Transportation
Systems (ITS) emerged as a way to more efficiently handle traffic issues by means of infor-
mation and communication technologies, as leveraged by data-driven artificial intelligence
approaches [2]. In this context, obtaining data becomes a central concern in order to enable
a more intelligent management of the traffic environment [3]. Such data is of great value for
several purposes, namely for estimating the flow of vehicles, monitoring them, controlling
traffic lights, among others.
Recently, reinforcement learning (RL) algorithms have shown potential for traffic lights
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control [4]. Roughly, considering that traffic light control can be seen as a sequential decision-
making problem, RL can be used to learn a behavior able to indicate which action should be
taken for any given traffic condition. In this context, having access to relevant information
describing traffic conditions is essential to enable RL adoption [5]. One such information refers
to the origin and destination of each vehicle on the scene, which enables traffic light controllers
to consider the traffic dynamics on the decision-making process.

The extraction of features from traffic scenes can be performed using different approaches. Re-
current approaches include [6]: lane sensors to count vehicles passing through a given location,
connected GPS devices to keep track of vehicles’ routes, laser radars to help reducing collisions,
and so on. However, these approaches typically rely on expensive, intrusive infrastructure.
On the other hand, recent advances in digital image processing leveraged by deep learning
techniques have enabled the adoption of less invasive, more easily deployable approaches. A
particularly interesting direction here refers to the use of intersection cameras coupled with
computer vision techniques to automatically extract relevant traffic information [7].

The problem of extracting information from traffic scenes has been increasingly investigated
in the literature [7, 8, 9, 10, 11, 12, 13]. Typically, existing works consider traffic scenes (e.g.,
images, videos) and extract relevant information using classification or object detection models,
such as YOLO [14], SSD [15], CornerNet [16, 17], as well as two-stage approaches like R-CNN [18],
Fast R-CNN [19], and Faster R-CNN [20]. However, these works fail to obtain more complex
traffic information, like the origin and destination of the vehicles, which has shown essential
for traffic light control [4, 5, 21]. More recently, other works [22, 23] took a step forward by
also proposing tracking methods able to keep track of vehicles’ trajectories along the traffic
scenes. However, to the best of our knowledge, the identification of origins and destinations
has been neglected in the the literature, which has hindered the applicability of RL-based traffic
light control in real world.
Motivated by the need to obtain relevant information for supporting RL-based traffic lights

control, in this work we introduce a complete pipeline for identifying and counting vehicles’
origins and destinations from traffic scenes. Our pipeline includes three main steps. The first
step employs a YOLOv4 network [14] for detecting vehicles in a traffic scene. Our model is
pre-trained on the COCO dataset [24] and then fine-tuned for traffic scenes using aerial images
from intersections, as available in the UAVDT dataset [25]. The second step of our pipeline
consists in a tracking algorithm, which identifies vehicles along frames in order to recognize
their trajectories throughout the intersection. Finally, as the last step, our pipeline identifies the
origin and destination of each vehicle by analyzing the lane from which it has departed and the
lane in which it arrived.
The proposed pipeline was assessed using previously unseen traffic scenes. The object

detector step obtained a recall of 98.2% and accuracy of 79.5%. The tracking step yielded a
multiple object tracker accuracy (MOTA) of 72.6% and precision (MOTP) of 74.4%. The complete
pipeline obtained an average error as lower as 7.53% in terms of origins and destination counts.
Hence, putting all together, our pipeline has shown to recognize vehicles, their trajectories and
their origin and destinations, thus being able to properly summarize the origin-destination table
for a given traffic intersection.
The main contributions of this work can be enumerated as follows:



• A customized YOLOv4 neural network [14] fine-tuned with the UAVDT dataset [25] for
detecting vehicles at intersections. Our model also features larger input images, with a
shape of 832 × 832.

• A vehicle tracking algorithm to identify the trajectory of a vehicle throughout an inter-
section by comparing its position along different frames.

• An algorithm for analyzing the vehicles’ trajectories and extracting the number of vehicles
belonging to each origin and destination lanes in the intersection.

The rest of this paper is organized as follows. Section 2 presents a brief overview of related
work. Section 3 introduces the pipeline presented in this paper. Section 4 presents an empirical
evaluation of our pipeline. Finally, Section 5 brings the concluding remarks.

2. Related Work

In this section, we briefly review the literature from two perspectives. As for the first perspective,
we consider approaches related to multi-object tracking, which comprise the first and second
stages of our pipeline. Considering the second perspective, we review works related to traffic
flow control from video inputs.
In multi-object detection and object tracking. The detector aims at extracting information

about objects of interest, such as their location in the scene. Currently, most methods that fall
within this category are based on Convolution Neural Networks (CNNs). Roughly, CNN-based
approaches can be divided into one-stage, such as YOLO [14], SSD [15], and CornerNet [16, 17],
and two-stage, such as R-CNN [18], Fast R-CNN [19], and Faster R-CNN [20]. On the other
hand, the tracker aims at identifying the same object throughout different scenes. To this end,
the tracker typically relies on detections output by a detector along multiple frames. Object
tracking can then be used for counting unique objects in a video, for example. Some of the
approaches that can be used to perform tracking include IOU Tracker [26], SORT [27], and
DEEP SORT [28].

When it comes to vehicle counting, however, it is necessary to go beyond. Once vehicles are
detected and tracked throughout a traffic scene, specific methods are necessary to count the
number of vehicles, to estimate the traffic flow, or even to identify the origin and destination of
each vehicle in the scene. For this type of problem, [22] and [29] proposed the use of virtual
lines, which enable trajectories to be associated with given origins and destinations.
In spite of the promising results achieved in the literature, to the best of our knowledge no

previous work proposed a complete pipeline for extracting and analyzing the origins and desti-
nations of vehicles within traffic intersections using a combination of deep learning approaches.
In particular, none of them jointly: consider the use of aerial images of intersections, recog-
nize vehicles, identify their paths, and quantify the number of vehicles for each combination
of origin-destination pairs. The lack of solutions comprising all these aspects motivates the
pipeline we propose in this work.
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Figure 1: Overview of the proposed pipeline, comprising the vehicle detection, vehicle tracking, and
origin-destination identification steps.

3. Proposed Pipeline

This paper introduces a deep learning pipeline for extracting the origin and destination of
vehicles throughout a traffic intersection using aerial images. The underlying idea of our
pipeline is that, by identifying a vehicle and keeping track of its trajectory, it is possible to
identify the lanes through which it has entered and exited the intersection. That information
can then be used to count the number of vehicles on each origin and destination within the
intersection. In order to accomplish that task, our pipeline performs three tasks: (i) vehicle
detection, (ii) vehicle tracking, and (iii) origin-destination identification. The overview of our
pipeline is presented in Fig. 1.

Roughly speaking, our pipeline starts with a frame being received as input. The first phase is
object detection one (Section 3.2), which detects the vehicles on the frame using a fine-tuned
YOLOv4 network [14]. The network is fine-tuning using the UAVDT dataset, as described in
Section 3.1. Once vehicles are detected, it is time for the object tracking phase (Section 3.3),
where the positions of a vehicle within subsequent frames are used to form its trajectory.
This step is performed using the tracking method proposed in [26]. Finally, the origins and
destinations identification phase (Section 3.3) is responsible for detecting the entrance and
exit points of each trajectory in order to allow summarizing the number of vehicles on each
origin-destination pair within the intersection.

3.1. Dataset

In order to train and validate our pipeline, we first had to search a dataset featuring traffic footage
with aerial angulation and appropriately annotated vehicles. Meeting these requirements provide
sufficient conditions to perform object detection and tracking tasks using CNN architectures.

We consider the UAVDT dataset [25]. The UAVDT dataset features traffic scenes with diverse



Table 1
Subset of UAVDT dataset scenes used in our work for training and validation.

Name Frames View Altitude Car Truck Bus Total ve-
hicles

Unique
vehicles

Type

M0101 407 Front+Side Medium 5156 188 70 5414 20 Train
M0210 583 Bird Medium 4725 1796 0 6521 33 Train
M0402 410 Side Medium 10210 0 0 10210 45 Train
M0601 372 Front+Side High 9908 150 365 10423 51 Train
M0606 1374 Front+Side Medium 17071 224 459 17754 96 Train
M0701 1308 Bird High 90563 2472 1008 94043 182 Train
M0702 777 Bird Medium 42042 386 3699 46127 94 Train
M0703 683 Bird Low 15235 643 628 16506 89 Train
M0801 298 Bird Low 3832 108 207 4147 24 Train
M1201 1197 Front+Side Medium 23080 4188 0 27268 59 Train
M0403 514 Front+Side Medium 31403 0 0 31403 99 Validation
M0603 2035 Bird Medium 41478 1748 1500 44726 71 Validation

heights (i.e., low, medium, high) and angulations (i.e., front, side, and bird). This dataset includes
50 different traffic scenes, totaling over 80,000 frames. However, in order to ensure that the
whole intersection is captured in the scenes, we selected only a subset of scenes that are high
enough to enable all incoming and outcoming lanes to be observed. This includes scenes with
front or side views with at least medium altitude as well as bird view at any altitude. The final
list of scenes is presented in Table 1. These scenes are essential to train the vehicle detector
method, which we describe in detail in the next section.

3.2. Object Detection Phase

At this stage of the pipeline, the objective is to use the frames provided by the dataset as input to
the detector and thus carry out the identification of vehicles in the scene. During this stage, the
data is provided to the detector for use as input, and the result is the identification of vehicles.
In order to perform object detection, we employ the YOLOv4 network [14], which can be

considered the state-of-the-art when real-time object detection architecture. The YOLOv4
network is pre-trained with the COCO dataset. However, for the particular case of traffic scenes,
this is not enough to yield satisfactory performance. To this regard, we fine tuned the YOLOv4
network using the UAVDT dataset (described in the previous section) as detailed next.
We depart from the darknet implementation of YOLOv41 pre-trained on the COCO dataset.

The loaded model had its first 136 layers frozen, while the remaining layers were unfrozen for
training. In this way, we seek to accelerate the learning process while preserving the knowledge
already acquired by the pre-trained model. We further customized the input shape of the
network to 832 × 832 pixels (the original network had an input of 512 × 512 pixels) to improve
the performance of the network on distant scenes. Finally, we set the batch size to 6000 samples
(the original network uses 2000 samples) in order to take into account the RAM limitations of

1Available at https://github.com/AlexeyAB/darknet



Figure 2: Output of the vehicle detection phase based on a frame from the M0603 scene.

(a) (b)

Figure 3: Object tracking phase. Figure 3a shows a sketch of the method proposed by [26]. Figure 3b
presents the output of the tracking phase based on a frame from the M0603 scene.

our setup. Fig. 2 illustrates the output of this phase.

3.3. Object Tracking Phase

In the object tracking phase, each vehicle detected in the previous phase is tracked throughout
a sequence of frames in order to enable the identification of its trajectory. This step is essential
to enable the interpretation of the origins of destinations of the vehicles, as performed by the
phase described in the next section.

We highlight that, although the object detection phase is the one responsible for identifying
the vehicles, it is not able to tell whether an object appearing in subsequent frames represent
the same vehicle. This is precisely the objective of the tracking phase, which needs to compare
the position of vehicles in subsequent frames in order to have a unique correspondence.

In order to perform this task, we consider the tracker proposed in [26]. This method is based
on the assumption that the detector produces one detection per frame for each vehicle to be
tracked. In other words, for a given vehicle, the distance between its positions in subsequent
frames should be small or should not exist. Furthermore, this method assumes that the bounding
boxes representing the vehicle in two subsequent frames should have a high overlap, as measured
by the Intersect Over Union (IoU) metric.

Figure 3a illustrates how the tracking technique works. In the figure, two objects are shown
along a sequence of four frames. Each object is delimited by a bounding box and the arrow
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Figure 4: Origin and destination identification phase. (a) shows how the virtual lines are positioned in
the scene. (b) illustrates the detection of a single vehicle in a single frame, and (c) its center. (d) presents
the same vehicle being detected along multiple frames and their corresponding detection centers. (e)
shows the detection centers being joined by a line, thus representing a trajectory. (f) represents the
moment that the trajectory touches the virtual line A. (g) illustrates the moment that the trajectory
touches virtual line F.

denotes its direction. Position are represented as 𝑥 and 𝑦 coordinates. As seen, for any object, the
bounding boxes on subsequent frames present a high overlap. Building upon that observation,
the trajectory of an object can be inferred by observing the position of its bounding box along
frames.

In this sense, after receiving the vehicle detection coordinates, the tracking algorithm starts
its verification to infer whether the vehicle is new on the scene or not. If the vehicle is new,
an ID is assigned to it. Otherwise, the newly perceived coordinates are stored in an array
containing all coordinates previously detected for that particular vehicle. Fig. 3b presents the
result of the tracking method, where an ID is assigned to each vehicle identified in the previous
stage.

3.4. Origin and Destination Identification

At this stage of the pipeline, the objective is to detect the points where a vehicle enters and
exits the intersection. The idea is that, by detecting such points, one can infer the origin and
destination of each vehicle. Recall that, for RL-based traffic light control, this information is of
uttermost importance, as it allows the agent to properly model the flow of vehicles and make
its decisions [4]. To this end, we define virtual lines in the frames to represent the entrance
and exit points of the intersection, where each virtual line is composed of a pair of 𝑥 and 𝑦
coordinates. The sequence of steps of this phase are depicted in Fig. 4a.
In order to enable the identification of origins and destinations, virtual lines are placed at

the entrances and exits of the intersections. Then, through the data provided by the tracking
phase, it is possible to discover the entire trajectory of the vehicle along the scene based on
the returned array of coordinates. For each coordinate, its center is calculated to generate the
trajectory, as depicted in Fig. 4d. In this way, the trajectory is a set of centroids obtained from
the array of coordinates, as seen in Fig. 4e.



(a) (b)

Figure 5: Identification of the origins and destinations of the vehicles based on frames from the M0603
(Fig. 5a) and M0403 (Fig. 5b) scenes.

To be able to know where a vehicle entered and exited the intersection, we calculate the
intersection between the vehicle’s trajectory and the annotated virtual line, as shown in Figs. 4f
and 4g. If the intersection is positive, we store the vehicle ID in an array associated with the
respective straight segment. In addition, we increment a counter that shows how many vehicles
have passed through that line.

In Fig. 5, we can observe the operation of the pipeline. In the figure, once vehicles and their
trajectories are detected, it is possible to compute through which entrance and exit lines each
vehicle goes through. Such information can then be used to count the number of vehicles on
each origin and destination pair within the given intersection.

4. Experimental Evaluation

In this section, we present the experiments performed to assess our pipeline. The main objective
here is to evaluate the performance of each phase of the pipeline, as well as of the complete
pipeline. The evaluation methodology is presented in Section 4.1. Results are then detailed and
discussed in Section 4.2.

4.1. Methodology

In order to test our pipeline, we selected the scenes M0403 and M0603 from the UAVDT dataset.
For testing each phase of the pipeline, a different set of metrics is necessary. For multi-object
tracking tasks, the following metrics can be used [30]:

• IDF1: Global min-cost F1 score.
• IDP: Global min-cost precision.
• IDR: Global min-cost recall.
• Recall: Number of detections over number of objects
• Precision: Number of detected objects over sum of detected and false positives.
• FP: Total number of false positives.
• FN: Total number of misses.
• IDs: Total number of track switches.



Table 2
Results for the vehicle detection and vehicle tracking methods. Arrows denote whether metrics should
be maximized (↑) or minimized (↓). Best results are highlighted in bold.

Metrics M0603 M0403 Average State-of-art [31]

Frames 2035 514 2549 -
IDF1 ↑ 82.5% 90.6% 85.7% 62.6%
IDP ↑ 72.4% 86.1% 77.5% 76.00%
IDR ↑ 95.9% 95.5% 95.8% 58.00%
Recall ↑ 98.4% 97.8% 98.2% -
Precision ↑ 74.3% 88.3% 79.5% -
FP ↓ 15241 4087 19328 -
FN ↓ 726 677 1403 -
IDs ↓ 57 45 102 -
MOTA ↑ 64.2% 84.7% 72.6% 43.1%
MOTP ↑ 74.6% 74.1% 74.4% 78.5%

• MOTA: Multiple object tracker accuracy.
• MOTP: Multiple object tracker precision.

The primary metrics used to evaluate the vehicle detection method were precision and recall.
In order to evaluate the vehicle tracking method, we employed MOTA and MOTP. The purpose
of adopting these metrics is to highlight the model’s success.

In order to evaluate the complete pipeline, we need a metric able to compare the number of
vehicles on each origin-destination pair as output by our pipeline in comparison to the ground
truth counting. To this end, we propose a new metric called OD Error, as shown below:

𝑂𝐷 𝐶𝑜𝑢𝑛𝑡𝑖𝑛𝑔 𝐸𝑟𝑟𝑜𝑟 =
𝑛
∑
𝑖=0

|
𝐷𝑒𝑡𝑒𝑐𝑡 𝑖𝑜𝑛𝑖 − 𝐺𝑇𝑖

𝐺𝑇𝑖
| , (1)

where 𝑛 represents the number of virtual lines in the scene or the number of routes, and
𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑖 and 𝐺𝑇𝑖 denote the number of vehicles on virtual line 𝑖 as detected by our pipeline
and represented as ground truth, respectively.
Our pipeline was trained using Google Colab Pro, featuring a NVIDIA Tesla P100 GPU. The

experiments, in turn, were performed on a standard computer with Intel Core I7 CPU with on
16GB of RAM and a NVIDIA GeForce RTX 2060 GPU.

In order to better assess the performance of our approach, we adopted [31] as a baseline
method for object detection and tracking, which we consider to be the state of the art in the
context of traffic. As for the origin-destination identification part, we include no comparison
given the lack of works on the topic.

4.2. Results

We start the results section by analyzing the performance of our pipeline in its first two phases,
the vehicle detector and the vehicle tracker. Table 2 presents the results obtained by our method
and the baseline for the M0603 and M0403 scenes of the UAVDT dataset. As seen, the average



Table 3
Results for the number of vehicles passing through each virtual line for scenes M0403 and M0603.

Virtual line M0603 M0403
GT Detections Error (N) GT Detections Error (N)

A 24 24 0 28 27 1
B 26 26 0 5 3 2
C 0 0 0 3 3 0
D 5 5 0 8 8 0
E 36 36 0 22 22 0
F 25 25 0 3 3 0
G 3 3 0 3 3 0
H - - - 5 5 0
I - - - 9 9 0

results obtained by our pipeline outperform the current state-of-the-art approach by a good
margin for most metrics. These results indicate that our pipeline is able to properly detect and
track vehicles. This was made possible because we used a fine-tuned version of the YOLOv4
network, which yielded superior results than those obtained by the siamese network used
in [31]. Moreover, since the our method yields better detections, the tracking phase ends up
outperforming [31] as well.

The detector achieved an accuracy of 79.5%. This result directly influence the accuracy of the
tracker, which ended up with an MOTP 74.4%. In order to improve the accuracy of the detector,
it is necessary to train the model with more instances of the truck and bus classes, whose
number was not sufficient in the UAVDT dataset. Throughout the experiments we observed
that these specific classes end up failing more than cars. In addition, the use bird view images
hinders the identification of smaller objects in the image. To improve this aspect, one could
increase the size of the network at the time of training, which could enhance the accuracy at
the cost of increasing the complexity of the object detection network.
Table 3 presents the results related to the number of vehicles that passed through each

virtual line drawn in the scenes. Observe that the number of virtual lines is seven and nine
for the M0603 and M0403 scenes, respectively. Results are compared to the annotated ground
truth values. As seen, our method correctly detected all cases in the first scene and mistakenly
detected only 3.38% of the cases in the second scene. We remark that the errors occurred because
the detector failed to identify these vehicles. These errors could be reduced by improving the
accuracy of the detector.
Table 4 presents the overall results of our pipeline on the M0603 scene by means of the OD

Error metric. Recall that this metric shows for how many vehicles the pipeline failed to identify
their complete trajectories. As seen in the table, our pipeline missed a single vehicle, which
goes from A to F. The error happened because the detector failed to detect that vehicle in a
single frame in the middle of the trajectory. As such, the tracker ended up assigning a different
ID to the vehicle once it was detected again on the subsequent frame. From the table, it can also
be observed that our pipeline presented a more substantial error for the E-D pair. In that case,
the error happened because part of the scene is occluded, which prevented the detector from



Table 4
Origin-destination identification results for the M0603 scene.

Route GT Detections OD Error by Route -

A to F 22 21 1 -
E to B 26 26 0 -
E to D 5 0 5 -
G to F 3 3 0 -
OD Error % ↓ 56 50 6 10.71%

Table 5
Origin-destination identification results for the M0403 scene.

Route GT Detections OD Error by Route -

A to D 5 5 0 -
A to E 12 12 0 -
C to B 3 2 1 -
F to G 3 3 0 -
OD Error % ↓ 23 22 1 4.35%

(a) (b) (c)

Figure 6: Illustration of the loss of identification problem in the M0603 scene, where the vehicle detector
fails to identify the vehicle in a single frame, thus leading the tracker to assign a new identifier to the
vehicle once it is re-identified in later frames. In the figures, (a) a vehicle with ID 80 goes from point E
to D where there is a tree occluding the view; then (b) the vehicle is lost by the vehicle detector; finally,
(c) when the vehicle is re-identified as a new one.

detecting the vehicles on that part of the scene. This situation is illustrated in Fig. 6, where
the vehicle with ID 80 becomes undetectable when passing close to a tree and then becomes
detectable again, thus receiving a new ID.

Finally, Table 5 presents the overall results of our pipeline on the M0403 scene by means of the
OD Error metric. As seen, only a single vehicle was not properly identified, which represents
a percentage error of 4.35% in the identification of the complete trajectory of the vehicles. In
this scene, no occlusion points exist. However, the error also happened due to a failure in the
detector. After the vehicle started its trajectory entering C, the detector failed, as such the
vehicle ended up receiving a new ID before ending its trajectory.



5. Conclusion

In this paper, we presented a complete pipeline to extract the origins and destinations of vehicles
from scenes of traffic intersections. This information plays a role on enabling reinforcement
learning agents to control traffic lights [5, 4, 21] and could also be extended to other traffic
problems.
In general, the pipeline obtained promising results, achieving an average error rate as low

as 7.53% in terms of origins and destinations identification. However, some aspects of the
pipeline presented less impressive results when facing occlusions or even when facing trajectory
interruptions. We achieved an average accuracy of 79.5%, which detracted from the tracker
accuracy, which reached 74.4%.
As future work, we plan to train the model with a more significant number of instances to

increase its accuracy and thus improve the tracker’s accuracy. Likewise, our model could be
extended to deal with multi-camera settings, which could enable overcome occlusion-related
limitations. Another improvement that we are going to propose is a tracker method capable
of re-identifying the vehicle when it passes through an occlusion point, which could mitigate
discontinuities in the trajectory identification. Together, these changes would pave the way for
a future deployment of our pipeline. Another interesting direction for future work refers to
adopting some of themost recent object detection architectures, such as Vision Transformers [32]
and SWIN Transformers [33], which could improve the vehicles’ detection accuracy.
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