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Abstract

Background: Clinical protocols and guidelines have been considered as a major means to ensure that cost-effective
services are provided at the point of care. Recently, the computerisation of clinical guidelines has attracted exten-
sive research interest. Many languages and frameworks have been developed. Thus far, however, an enactment
mechanism to facilitate decentralised guideline execution has been a largely neglected line of research. It is
our contention that decentralisation is essential to maintain a high-performance system in pervasive health care
scenarios. In this paper, we propose the use of Lightweight Coordination Calculus (LCC) as a feasible solution.
LCC is a light-weight and executable process calculus that has been used successfully in multi-agent systems,
peer-to-peer (p2p) computer networks, etc. In light of an envisaged pervasive health care scenario, LCC, which
represents clinical protocols and guidelines as message-based interaction models, allows information exchange
among software agents distributed across different departments and/or hospitals.

Results: We outlined the syntax and semantics of LCC; proposed a list of refined criteria against which the appro-
priateness of candidate clinical guideline modelling languages are evaluated; and presented two LCC interaction
models of real life clinical guidelines.

Conclusions: We demonstrated that LCC is particularly useful in modelling clinical guidelines. It specifies the
exact partition of a workflow of events or tasks that should be observed by multiple “players” as well as the
interactions among these “players”. LCC presents the strength of both process calculi and Horn clauses pair of
which can provide a close resemblance of logic programming and the flexibility of practical implementation.

Background

The prevalence of the Internet has slowly but steadily changed the health care industry. One of the most
far-reaching outcomes is that an emerging paradigm is gradually reshaping the old “patient-seeing-doctor”
scenario into one in which health services and information (e.g. clinical advice and warnings, patient status
monitoring, etc.) are decentralised. In line with the WHQO’s view on “increasing the effectiveness of adher-
ence interventions” [1], this envisioned pervasive health care paradigm offers patients more convenient and



personalised health services than ever before and assists in patient’s adherence to treatment regimens; and
in the meantime it relieves clinicians of many tedious routine jobs and significantly reduces administrative
cost. At the heart of the “anywhere and anytime” health care are empowering software agents with decision-
making autonomy based on distributed available information. Such a scenario has broached new challenges
to the modelling of clinical protocols and guidelines (CPGs): instead of the conventional centralised fashion,
guidelines might have to be collaboratively fulfilled by software agents, each only seeing a small fragment of
the broad picture. Their local knowledge is then jigsawed together to ensure that the correct protocols have
been enforced. A good example that indicates the necessity of decentralised CPG awareness is the situation
of comorbidity (e.g. heart disease, AIDS, cancer, diabetes, or mental health). With the development of
modern transportation, communication, and tele-medicine, an occurrence of comorbidity might result in the
patient being examined and treated concurrently by different experts, in different specialist hospitals, and/or
in different regions/countries. How to establish a common understanding with respect to CPGs across dif-
ferent institutions, therefore, becomes a major concern to realise this new health care paradigm. Certainly,
such a common understanding requires international efforts and covers multiple research disciplines such as
medicine, sociology, psychology, to name but a few. A full account of this is beyond the scope of the paper.
Hereinafter, we inspect this issue from knowledge representation point of view: we assume the existence of
widely accepted CPGs and focus on a technology that would systematically bring together local agreements
amongst distributed clinical services and professionals.

Clinical guidelines for Chronic Cough and Breast Cancer Triple Assessment

CPGs are “[...]systematically developed statements to assist practitioners and patient decisions about ap-
propriate health care for specific circumstances]...]” [2]. A CPG captures recommendations and regulations
that have to be observed when medical investigations and interventions are to be performed. Normally, such
information is presented in free text or in semi-structured form and is sometimes reinforced with diagrams,
flowcharts, and tables. CPGs have been developed to cover almost every aspect of clinical practice and
adopted by a wide variety of medical professionals to ensure the delivery of services with consistent quality
and improved cost effectiveness of the health care industry. With the advance in technology, computerised
CPGs have begun to attract research and development efforts and serve as the underlying rationale of
decision-support systems that are used at the point of care.

Motivation
The vast interest in formalising CPGs has resulted in a variety of guideline modelling languages providing
computer understandable and executable representations wherein guidelines and protocols can be faithfully
captured, interpreted and/or enforced [3,4]. Research has been carried out also on the collaborative as-
pects of guideline modelling and maintenance, e.g. collaborative editing [5], version management [6], and
interoperability [7]. Arguably, the ultimate goal of computerising CPGs is to endow software agents with
the capability of practicing or, less ambitiously, of model-checking formal medical procedures on behalf of
human experts [8]. Hitherto, this was easily underpinned with centralised guideline models. In the envis-
aged “next-generation” health care paradigm, however, physically and geographically distributed software
agents/human experts might be involved in taking different roles and fulfilling the responsibilities that are
allocated to them. Any centralised solutions are evidently inappropriate. Although the existing approaches
can accommodate decentralisation to a certain extent, it by no means implies that decentralised guideline
enforcement is trivial. A lack of formalisation forces us to distribute tasks among participants by presenting
a model to the entire group who then agree upon and mark a partition of the tasks. The ad hoc and informal
nature of such a partition method provides no guarantee of consistency and repeatability and might raise
ethical and quality assurance concerns, thus jeopardising the operational effectiveness of the entire process.
To the best of our knowledge a formalisation of CPG execution in a distributed environment has not
been fully explored. The current CPG modelling languages are not designed for distributed tasks and thus
do not provide a mechanism to specify unambiguously the task partition/allocation and multiple thread



of execution. For instance, in the Breast Cancer Triple Assessment example used by PROforma!, a single
thread workflow is defined. Tasks and actions are specified under top-level plans. It, however, does not specify
the executor of a plan and how the plan status is preserved, publicised, and shared should it be carried out
at different sites by different individuals. It also fails to clearly “tag” the responsibility of individuals (e.g.
radiologists) willing to participate in the process, the expected behaviour from these individuals and the
communication protocol between the centre on the one side and the individuals on the other side. In other
words, CPGs captured in PROforma cannot be used directly to regulate guideline fulfillment in a distributed
environment. Our research indicates that a majority of current CPG modelling languages share the same
shortcomings (based on the comparative study in [9] and materials of PRODIGY, Asbru, GLARE, GUIDE,
and Stepper?).

We propose a solution to accommodate the needs of decentralised characteristics in guideline modelling.
Instead of taking the conventional “task-network model”, we address the inefficiency of decentralisation with
respect to current CPG modelling languages by investigating into a formalisation of interactions. One of
the exemplary techniques facilitating declarative interaction specification is the Lightweight Coordination
Calculus (LCC) [10]. In the rest of this paper, we first set up a list of features that are essential for a CPG
modelling language. We then study the applicability of the proposed formalisation by evaluating its capacity
against this list of criteria. We further examine LCC by way of examples, i.e. capturing two real-life CPGs
as LCC interaction models. Finally, we conclude the paper with possible extensions to LCC that make it
more suitable for the problem at hand.

Methods

Examining whether LCC is suitable for the task of CPG modelling should start with a foundation of essential
expressiveness growing out from the desired functionalities of the domain under consideration. In order to
compile such a checklist, we adopted the eight axes purposely designed to compare existing CPG modelling
frameworks [9]. We further refined/enriched these eight aspects with the general requirements of clinical
languages identified by Arnoud and colleagues in their recent study [11]. The final evaluation criteria that
are specific to CPG modelling languages are enumerated as follows. Note that these criteria are specific to
CPG modelling and should not be generalised to other clinical applications.

e Formalisation and flexibility

A machine-comprehensible guideline modelling language should have formally defined syntax that al-
lows computers to do basic grammar checking and compose well-formed formulae from primitives. The
semantics of language constructs should be unambiguously specified, which are interpreted consistently
across different models. In the meantime, a candidate modelling language should allow users to define
new predicates/functions as a short hand for a set of existing functionalities or for introducing new
knowledge.

e Conceptualisation

Although CPG models should abstract away from implementation idiosyncrasies (e.g. data structure),
we would argue that failing to address certain special “needs” in this particular domain might unnec-
essarily increase the modelling efforts. Such special capabilities include: i) introducing abstraction and
concrete expression and ii) representing patient information and using medical domain knowledge. The
introduction of abstract medical terms/concepts is essential, so is the manipulation of concrete® (e.g.
logical, arithmetic and comparison) operators. Meanwhile, a suitable modelling language is expected to
have the capability of embedding structured patient data from which decisions and recommendations
are drawn.

Thttp://www.acl.icnet.uk/lab/tallis/Samples.htm

?Details of and links to these CPG representation formalisms are available from OPENCLINICAL “Guideline Modelling Methods
Summaries” page at http://www.openclinical.org/gmmsummaries.html

3The notion of concrete expression is borrowed from Description Logic [12]



e Expressiveness and specificity

The expressiveness of a modelling language refers to what can be left unspoken. The specificity of
a language gives the “readiness” of a language in capturing domain-specific (i.e. guideline-specific)
knowledge. These two criteria impinge on each other in the the following ways: the specificity might
require the language to be equipped with special constructs/operators and primitives that indeed
enhance the expressiveness while high expressiveness needs to be tuned to fit in with the CPG domain—
the complexity of reasoning with respect to a language might be unnecessarily increased if unwanted
expressiveness abounds. We expect a candidate language to be able to express the following components
without resorting to external means: 1) Plans, including sequential, parallel, cyclical, and iterative
plans and IF.. . THEN branching and conditional control; 2) Goals, the purpose of the guideline; and 3)
Actions, the executable components that change the status of an object when the guideline is enforced.
On the other hand, we prefer a candidate language to have as simple non-essential functionality as
possible to reduce the overall reasoning complexity.

e Readability

A formalised CPG model is meant to be used by not only computers but also human experts. The
modelling language, therefore, should be easily comprehended by the users who have only limited or
no computer knowledge. Preferably, natural language-like communications are facilitated to reduce
the learning curve.

Apart from the above criteria, we also studied LCC with concrete examples. We experimented with
the guideline for treating adult chronic cough [13] and the guideline for the Triple Assessment (TA) for
Breast Cancer [14] to examine the applicability of LCC in capturing essential CPG information. These
CPGs are published by the UK NHS National Library for Health?. These two guidelines are selected due
to a wide coverage of the workflow control and data manipulation characteristics. The Chronic Cough
guideline line is composed mainly in unstructured text while the Triple Assessment guideline complements
text with flowcharts and tables. Regarding the target users, the former only concerns general practitioners
(family doctors) and nurses while the latter regulates the behaviour of a wide variety of clinical professionals.
Although both CPGs are currently used in practice, the former was in effect recently in 2006 while the latter
was adopted in 2001 with revisions. We present the resultant LCC guideline models in the next section
together with detailed explanations. Note that due to the space limit, only fragments of the LCC guideline
models are shown in this paper.

Results and Discussion

Situated in a decentralised environment, CPG enforcement can be seen as a concurrent process. Among
others, process calculi represent the interaction and synchronisation among independent agents through
their ability to send and receive messages [15]. Analogously, when proceeding against an established CPG,
clinical professionals can rely on message-passing style information exchange (e.g. through patient record,
clinical images, etc.) to detect the behaviours of others. This gives us a reasonable inspiration to borrow
established formalisms for modelling concurrent systems.

LCC is designed originally for representing coordination between distributed agents. In a multi-agent
system, interactions between agents take the form of messages. For instance, an auction is broken down into
a series of bidding requests from the bidders and accept/deny responses from the auctioneer. LCC tries to
answer the call of formalising such interactions so as to glue software agents together. Although it is not
designed for modelling CPGs, LCC clauses can be used to prescribe the behaviours that are allowed in a
collaborative environment. For each individual, accepting an LCC interaction model means that he/she is
willing to obey message exchanging protocols regulated by the corresponding LCC clauses. That is to say
that he/she observes the message passing sequence and accepts the conditions associated with any messages.

4http://www.library.nhs.uk/



Meanwhile, messages also serve as triggers to further events. All these fit very well with the envisaged
pervasive health care environment. Imagine that a particular patient has to be investigated in separated sites
due to unavailability of medical apparatus and/or clinical expertise. Apart from certification/authentication
and reputation which only guarantee the general performance of a site rather than its involvement in the
current case, one way to ensure other sites act according to protocols is through scheduled communication.
Reflecting in computerised modelling languages, scheduled communication is tantamount to sending and
expecting messages at pre-defined check-points and restricting the content and format of the messages. The
current version of LCC provides suitable tools to tackle messaging-based communications.

Meanwhile, the merit of adopting an existing language/framework is the maturity of mathematical and
logic models and the availability of supporting tools. Existing languages bring along with them existing
software packages and well-established user communities. In the case of LCC, parsers and visualisation tools
have been and are being actively developed, e.g. in the EU-funded OpenKnowledge® project for formalising
communications in a p2p framework. In this section, we recapitulate the grammar of LCC as well as the
semantics of LCC constructs; we explain how LCC meets the requirements set up in the previous section;
we present two exemplar LCC applications.

Syntax and semantics of LCC

Generally speaking, LCC is a process calculus for specifying coordination among multiple participants.
It does so by clearly indicating what role an individual plays in a messaging process wherein “roles” are
borrowed from institution based systems and reinterpreted as “[...]Ja form of typing on a process in a process
calculus]...]” [10]. An LCC model is built upon the principle that role-playing agents should obey the laws
and/or protocols that are explicitly specified against the roles that such agents are expected to take. LCC
ensures the fulfillment of roles by individuals through regulating the message-flows among them. These
include: the messages that should be sent and are expected to be received and what constraints should
be satisfied before a message can be handled. The full picture of LCC syntax is specified in Extended
Backus-Naur Form (EBNF) as follows:

(Framework) := {(Clause) ,}'"

(Clause) := (Agent) :: (Definition)

(Agent) := a((Type), (ID))

(Definition) := (Agent) | (Message Clause) | (Definition) then (Definition) |
(Definition) or (Definition) | (Definition) par (Definition) |
null — (Constraint)

(Message Clause) := (Message) = (Agent) | (Message) = (Agent) « (Constraint) |
(Message) < (Agent) | (Constraint) « (Message) <= (Agent)
(Constraint) := Term | (Constraint) A (Constraint) | (Constraint) V (Constraint)
(Type) := Term
(ID) := Constant
(Message) := Term

In an LCC interaction model, we use predicate a() to specify the role that an individual is playing, = and
< to specify the direction of message flow, and « for constraints. T'erm and Constant are implementation-
specific. In the current version, Term is a well-formed formula in Prolog logic programming language and
Constant is a Prolog constant starting with a lowercase letter.

In order to enable decentralised execution of a CPG strictly based on an LCC interaction model, it is
important to provide software agents with a mechanism to unpack LCC clauses, finding the next tasks that
it is permitted to perform and updating the status of an interaction accordingly. A set of clause rewriting
rules are introduced to ensure LCC constructs are interpreted in a consistent manner [10]. Let C; be an LCC
clause from a model M; I; be a set of received messages currently queueing for an individual participating in
an M-based interaction; C;41 be the unfolded new LCC clause; I; 11 C I; be the set of remaining unprocessed

Shttp://www.openk.org/



messages; and O; be the outgoing messages generated when processing C;. An LCC CPG model is interpreted
by exhaustively unfolding clauses as detailed in [10] to produce the following sequence:

I,,I,, M, 0, Iy Iiga, M, O; In—1,1n,M,0On_1
— 2 e

Gy

CQ,...7Ci CiJrl,...,Cn,l

Ch,

The interpretation of LCC constraints depends on a particular implementation. In this paper, we assume
Prolog as the underlying programming language and thus interpret the constraints in terms of a Prolog logic
program. Nevertheless, this by no means deny the possibility of implement LCC constraints with other
programming languages, such as JAVA.

a(on_call_ doctor, N) ::
routine_check(P) < a(,A) then
take_temperature(P) = a(nurse, S) then
( take_blood_sample(P) = a(nurse, T') < —blood_test(P) )

Pooling together the rewriting rules for LCC-specific constructs and the interpretation of a Prolog program,
we obtain the semantics of LCC models. For instance, in the above LCC interaction model, the sequence
construct then is unfolded by examining the first part of the sequence or, if it is closed (i.e. executed),
unfolding the next part. After unfolding, the system tries to instantiate all the variables (e.g. P and A)
to examine the satisfiability of LCC clauses. A narrative interpretation of this LCC model, therefore, reads
“when an on call doctor receives a routine check request on a patient (P), he/she first asks an arbitrary
nurse (S) to take P’s body temperature. When the body temperature is done, he/she asks an arbitrary
nurse (T') to take P’s blood sample if P has not been given blood test before.”

LCC as clinical guideline modelling language
LCC fits very well with the profile set up for a candidate CPG modelling language. In the following, we
review LCC-specific characteristics in the context of CPG modelling.

LCC has well-defined syntax and semantics as discussed in the previous section. That is to say that
when distributed across different institutes, the perspective users are provided the foundation upon which a
unanimous interpretation of LCC clauses can be built as long as the users pledge to endorse an LCC model.

Meanwhile, LCC is equipped with the means to express essential CPG components (i.e. goals, plans,
and actions). Unfolding an LCC model is a goal-driven process that makes it a perfect candidate preserving
the “intention-action” structure of most CPGs. A straightforward approach is to capture the intentions and
goals of a CPG as well-formed head/Agent of an LCC clause and use the body/Definition to detail the
expected behaviour and process. An LCC goal might contain more than one sub-goal imitating the nesting
of CPG components.

A guideline or protocol might specify sequential, iterative, and concurrent activities. LCC-specific con-
structs extend Prolog with the capability of naturally representing a wide variety of types of plans. Sequen-
tial plans are guaranteed by the way that an LCC model is rewritten and a Prolog program is interpreted:
construct then makes sure that Definitions are closed in a first-come-first-serve order, while in Prolog, in-
terpretation of sub-goals are decided by the order in which they are introduced. For instance, in Figure 1(a),
it is required that the body temperature is taken before blood samples. Combined with constraints, then
construct allows one to capture (conditional) switch statements. For instance, line 7 to 15 in Figure 3(b), two
alternative routes are regulated by the condition whether a received variable T equals 0. This fragment can
be translated into “if (T" # 0) then ... else ...”. Parallel plans are materialised by LCC construct par which
connects two or more tasks that are meant to be performed in parallel. In Figure 1(b), body temperature
and blood samples are taken by different clinicians. Note that, performing the two tasks simultaneously
is not mandatory as no temporal constraint is given. This, however, by no means implies that temporal
constraints cannot be emulated. The current LCC interpreter allows Constraints to be implemented by
other programming languages. Temporal and complicated numeric constraints, as well as system calls, can,



therefore, be realised through imperative programming languages such as JAVA or purposely designed Pro-
log libraries. Cyclical plans are implemented through recursion. Iterative plans can be achieved by cyclical
invocations of sub-goals that encapsulate the desired functionalities till the termination or abortion condi-
tion is met. In Figure 1(d), blood samples are taken iteratively from a group of patients while list L is
used to control maximum number of repeats and termination. In certain circumstances, CPGs give a list of
recommendations and allow those who enforce these guidelines to choose from alternatives. Such a style is
prevalent when specifying the treatments due to that different medications might have similar or the same
effects. For instance when treating acute cough, menthol can be “prescribed as menthol crystals BPC or in
the form of proprietary capsules.” [13] LCC models this with construct or as shown in Figure 1(c). When
accompanied with switch conditions, or is also able to describe mutually exclusive branching of guideline
control flow.

Meanwhile, LCC-based interaction adds an extra layer of security to distributed CPG execution. In LCC,
coordination is regulated by message passing which suggests that one can leverage the content and format of
messages to restrict accesses to confidential and sensible information. Individuals instantiating LCC models
are only exposed to the information contained in the messages associated with their roles. This is different
from centralised models wherein access control is normally exercised with third-part tools.

Readability of LCC is evident. Predicates can be composed with proper English words and phrased
in an informative and self-explained manner. For instance, in Figure 1, short phrases “take temperature”
and “take blood sample” are used as task names. Nevertheless, user studies should be carried out to have
a better understanding of the readability issue. Human intervention in LCC models is exercised through
Constraints: an LCC Constraint can be automatically evaluated by software agents or semi-automatically
and manually evaluated by human experts through a GUI. Such human driven constraints can be used when
confirmation/authorisation is required.

When considering concrete data types, we seek solutions from the underlying programming languages
implementing the constraints. Although the capabilities of LCC might be restricted by a particular im-
plementation, some basic Prolog spirits are preserved. These include the convenience of introducing new
predicates and the ability to utilise a knowledge base (facts) in representing patient information and domain
knowledge. For instance, when recommending an action, one can introduce references to medical terminolo-
gies (e.g. UMLS®) and ontologies (e.g. SNOMED [16]); embed drug interactions in a local knowledge base;
and set up a template structure to extract useful information from patient records. The flexibility of satisfying
constraints with arbitrary programming languages simplifies the manipulation of arithmetic and basic logical
operators, e.g. negation, conjunction, disjunction, etc. All these tools allow one to exploit concrete numbers
(e.g. heart rate and body temperature), strings (e.g. patient’s full names as the concatenation of her first
name and surname and symbolic constants) and comparisons (e.g. (heart_rate > 85) A (temp > 40)). Such
knowledge is essential in measuring critical physical conditions of patients and decision criteria in making
recommendations (see, for example, Figure 3).

Case Study

We use two real-life CPGs as examples to explain how LCC interaction models can contribute to the distrib-
uted CPG modelling. Some interesting characteristics of these two CPG models are depicted in figures and
detailed in this section. We would like to emphasise that the guideline examples demonstrate how one can
use LCC to fulfill CPGs with arguments (Figure 2 and 3), collect patient data/information from multiple
sources and recommend clinical interventions which are to be carried out at multiple sites (Figure 4), and
query patients according to a formal procedure (Figure 5).

6http://umlsinfo.nlm.nih.gov/



Breast Cancer Triple Assessment

In Figure 2, a fragment of the LCC guideline model is illustrated. This LCC model views the Triple
Assessment (TA) from the perspective of a radiologist (namely Rad). Upon receiving a radiology request
from the TA coordinator, Rad retrieves routine breast cancer screen results from the TA coordinator or
mammography staff if appropriate. Note that certain steps for housekeeping and environment setup are
ignored from this LCC model. Rad needs to decide how follow-up clinical investigations are performed.
According to UK NHS guideline [14], all patients with reported mass should undergo further mammography
with specific parameters and some patients are given ultrasound should they meet the requirements. This
is reflected as two separate task running in parallel whose results are collected as R2 and R3 respectively.
The parameters of mammography are compiled in Req and sent to mammography staff alone with patient’s
identifier. The results from routine screen, ultrasound and well-targeted mammography are aggregated to
establish the nature of the breast mass. Subsequently, recommendations which are modelled as a list of or
alternatives are made based on the radiology investigation.

The example shown in Figure 3 presents a complete interaction model of ultrasound recommendation.
During a TA, a proper model of imaging should be recommended to the patient. In some cases, the recom-
mendation of a particular model is drawn from the evaluation of more than one criterion and accumulated
as arguments for and against a decision. The ultrasound recommendation model (Figure 3(a)) leverages a
cyclic call to repetitively evaluate patient’s status and update a numeric score until the termination condition
is met. After jumping out of the loop, a final recommendation, based on the accumulative score, is sent
back to the radiologist. Note that having single “ultrasound expert” to evaluate all the listed criteria is not
mandatory. The ultrasound recommendation model allows such results to be gathered from more than one
source as long as every individual taking the role of “ultrasound_expert” accepts and instantiates the LCC
data evaluation protocol (as shown in Figure 3(b)). This is facilitated by an anonymous variable denoted
using the underscore. In the meantime, an “ultrasound expert” examines and updates received patient
records and quantifies his/her decision as an integer. He/she uses the number 0 to signify the termination
of the local patient status evaluation procedure.

Chronic Cough

Figure 4 illustrates the recommended procedure of an early stage of the engagement with patients having
chronic cough. The entry point of Chronic Cough guideline Model is “treating_cough” which is a top-level
goal /intention. This fragment of LCC model comprises four components: cough related data gathering,
physical examination, three recommended medical investigations which are running in parallel, and HRCT
investigation that is performed when other more targeted investigations do not give abnormal findings—each
component is enclosed with parentheses. The recommended investigations are running independently in par-
allel and are performed by different clinical professionals when their respective entry conditions are satisfied.
Meanwhile, it is evident that HRCT is only performed when the results of the first three investigations do
not reveal the cause of chronic cough. The execution of this model would not reach the HRCT component
otherwise.

During the process of diagnosing and treating chronic cough, an individual might frequently refer to others
for the information that is unavailable locally. For instance, in Figure 5, a guideline model regulating how
and what information should be collected from patients is shown. As recommended in the guideline for adult
chronic cough, five different types of information are acquired, including patient’s demographic information,
smoking habits, characteristic of cough, medications, occupation/hobbies and cough-related medical history.
These information acquisition tasks are considered equally important and are defined/performed in parallel.
At the end of each acquisition task, patient’s EHR is updated accordingly. When all the parallel-running
information acquiring tasks are finished, ehr_collector updates the EHR with patient’s confirmation. Cycles
present if either an “ehr_collector” feels more information is necessary or details regarding the patients have
been changed in the previous acquisition process. When the termination condition is met, “ehr_collector”
returns the update EHR as a message sent to a(treating_cough,T').



Conclusions

Medical guidelines have been widely acknowledged as an important means to improve the quality and satisfi-
ability of health care. It provide a tangible and interpretable “template” against which medical practitioners
can examine their routines so as to minimise the practice variability and thus reduce the potential cost. The
state-of-art languages for CPG modelling perform well in centralised settings. However, a lack of means
for task partition and allocation plagues such languages and prevents them from being applied in distrib-
uted/pervasive health care scenarios. In this paper, a process calculus based language, LCC, is examined in
the context of CPG modelling. We argue that Prolog-based LCC has all the essential functionalities of a
guideline modelling language. It further enriches these functionalities with a coordination control mechanism
facilitated by message passing. Individuals who pledge to endorse a guideline, therefore, are able to clearly
identify their roles, follow the expected behaviours and produce results that are acceptable to others.

The applicability of LCC as a CPG modelling language still requires further investigation in the following
directions. Firstly, user studies are necessary to demonstrate the learning curve of LCC. Such users are
preferably domain experts who compile guidelines rather than knowledge engineers. Secondly, user friendly
parsers and visualisation tools are still under development. Once finished, we can then test guideline models
in real hospital settings. Thirdly, LCC guideline models might significantly benefit from common domain
knowledge. Capturing such knowledge in a ready-to-use knowledge base and deliver it together with the
guideline models is beneficial to both users and developers. Finally, LCC can be enhanced with features such
as typed variables, new workflow control constructs (e.g. branching), built-in facilities handling temporal
constraints, and assertions with probability. Although it is possible to emulate many of these with the current
capacity of LCC (through calls to other programming languages implementing Constraints), explicitly
introducing them can certainly increase LCC’s readability and usability. Other extensions to LCC that are
specific to CPG modelling might be identified when more real-life CPGs are rewritten with LCC. This is
also the immediate further work that we will commit ourselves to.
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Figure 3 - Fragment of LCC model for recommending Ultrasound
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Figure 5 - Fragment of LCC data gathering model for Chronic Cough

take_temperature(P) = a(_, S) then take_temperature(P) = a(_, S) par
take_blood_sample(P) = a(-, T) take_blood_sample(P) = a(-, T)
(a) Sequential execution (b) Parallel execution

a(blood_sample(L), X) ::

menthol _crystal _bpc (P) = a(-, S) or (M = a(-,T) «— L =[P | Rest] then
propretary-capsule (P) = a(-, T) a(blood_sample(Rest), X)) or
null — L =]

(¢) Nondeterministic choice

(d) Cyclical execution

Figure 1: LCC constructs



a(radiologist, Rad) ::
radiology_order(P) < a(ta_coordinator, C') then

routine_screen_result(R1) <= a(ta_coordinator, C') or
routine_screen_result(R1) <= a(mammographer, M) then

/* evaluate the patient’s status to see if a ultrasound is required */
evaluate_ultrasound(P) = a(ultrasound_recomm(P, R1,0), Eus) then
recommend (P, Rec) < a(ultrasound_-recomm(P, _, _), Eus) then

/* If ultrasound is recommended, send off an order */
null — equals(Rec, “ultrasound”) then
ultrasound_order(P) = a(ultrasound_technician, U) < mass(R1) then
ultrasound(R2) < a(ultrasound_technician, U) then
or
null «— equals(Rec, “no ultrasound”) then null — R2 =]

par
/* In the meantime, if mass is confirmed, */
/% order a further mammography with specific requirements */

null «— extract-mass_feature(F, R1) then

mammo_order_ext(P, Req) = a(mammographer, M) «— confirm(F') A add(Req, F)A
add(Req, focal_paddle_compression) A add(Req, cc-view) then

further_mammography_result(R3) < a(mammographer, M)

/* evaluate the results so far and save the conclusion in variable A */
null < overallimpression (A, R1, R2, R3) then

/* make recommendations accordingly */
discharge(P) = a(ta_coordinator, C') < normal(A)
or
discharge(P) = a(ta_coordinator, C') « typical_cyst(A) A —residual_abnormality(A)
or
recommend_aspiration(P) = a(ta_coordinator, C) « atypical _cyst(A)
or
recommend_needle_biopsy(P) = a(ta_coordinator, C) « typical_cyst(A) A residual_abnorm(A)
or
get_patient_record(P) = a(ta_coordinator, C') then
patient_record(H) < a(ta_coordinator, C') then
recommend_needle_biopsy(P) = a(ta_coordinator, C) « (solid-mass(A) V —exists(H, A))A
= adenolipoma(A) N —lymphnode(A)

Figure 2: Fragment of Triple Assessment Guideline in LCC

then




a(ultrasound_recomm(P, D, S), M) ::

/* forward patient record to a field expert */
patient_ehr(D) = a(ultrasound_expert,_) then
/* accumulate a final score for recommendation */
score(T) < a(ultrasound_expert, _) then
null — —equals(T,0) then
null — update(S,T) then
a(ultrasound_recomm(P, D, S), M)
or
null — equals(T,0) then
/* make final recommendation */
recommend (P, “ultrasound”) = a(radiologist, Rad) < (S > 1)
or
recommend (P, “no ultrasound”) = a(radiologist, Rad) « (S < 1)

(a) Cyclic LCC model for ultrasound recommendation

a(ultrasound_expert, X) ::
patient_ehr(D) < a(ultrasound_recomm(P, D, S), M) then

/* assign scores to different situations */

score(1l) = a(ultrasound_recomm(P, D, S), M) «— azillary_lymph_lump(D) then update(D)

szore(l) = a(ultrasound_recomm(P, D, S), M) < breast_implants(D) then update(D)

;)(I:‘ore(l) = a(ultrasound_recomm(P, D, S), M) « localised_breast_nodularity(D) then update(D)
ggare(l) = a(ultrasound_recomm(P, D, S), M) «— (abnorm(D) > P3 A age(D) < 35) then update(D)
;)(fore(l) = a(ultrasound_recomm(P, D, S), M) « palpable_breast_lump(D) then update(D)

or

score(—99) = a(ultrasound_recomm(P, D, S), M) «— ((last_us(D) — date_of _invest(D)) < t) then update(D)
or
score(0) = a(ultrasound_recomm(P, D, S), M)

(b) LCC model for patient data evaluation

Figure 3: Fragment of LCC Model for recommending ultrasound




a(treating_cough, T') ::

/* retrieve patient record */

( patient_data(cough, P) = a(ehr_collector, R) « find_patient(P) A find_data_provider(R) then ) then
cough_related_data(D) < a(ehr_collector, R)

/* order a physical examimantion and get the results */

( get_result(P) = a(physical_examination, PE) «— find_pe(PE) then ) then
pe_result(PED) < a(physical_examination, PE)

null «— evaluate(P, PED, Result) then

/* recommend further tests based on patient’s status */

/* there is no specific order in which the tests are performed */

chest_radiography_order(P) = a(radiologist, RA) « chronic-cough(Result) V
atypical _acute_cough(Result) then

radiography-result(PRD) < a(radiologist, RA)

par

spirometry_order(P) = a(spirometry_staff, SS) « chronic_cough(Result) then
spirometry_result(PSD) < a(spirometry_staff, SS) then then
prednisolone_order(P) = a(trail_.admin, T A) < normal(PSD) A asthma_symptom(Result) €

par

bronchoscopy-order(P) = a(bronchoscopy_staff, PF) < foreign_body_inhal(Result) or
bronchoscopy_order(P) = a(bronchoscopy_staff, BS) < cause_unclear(Result) then
bronchoscopy-result(PSD) < a(bronchoscopy_staff, BS) then

prednisolone_order(P) = a(trail_admin, TA) < normal(PSD) A asthma_symptom(Result)

/* whether HRCT is performed depends on the results of other testsx/

hrct_order(P) = a(tomography_staff, T'S) « (duration_atypical_cough(Result) > T1)A
normal(PRD) A normal(PSD) A normal(PSD) then then

hrct_result(PHD) < a(tomography_staff, T'S) < hrct_per formed(P)

Figure 4: Fragment of Chronic Cough Guideline in LCC



a(ehr_collector(D), R) ::
patient_data(cough, P) < a(treating_cough, T') then
/* acquire cough-related patient data */
get_sex(P) = a(patient, P) then
update_ehr(D, Sex) «— sex(Sex) < a(patient, P) then

par

get_age(P) = a(patient, P) then
update_ehr(D, Age) «— age(Age) < a(patient, P)

par

get_smoking_habit(P) = a(patient, P) then
update_ehr(D, Smoke) «— smoking_habit(Smoke) < a(patient, P)

par

get_onset_cough(P) = a(patient, P) then
update_ehr(D, Onset) < onset(Onset) < a(patient, P)

par

par

get_family_history(P) = a(patient, P) then
update_ehr(D, FH) < history(FH) < a(patient, P)

/* repeat if more data is to be acquired */

then

con firmation(D) = a(patient, P) «— changed(D) V request_more_in formation(P) then

confirmed(D) < a(patient, P) then
a(ehr_collector(D), R)

or

cough_related_data(D) = a(treating_cough,T') < —changed(D)

Figure 5: Fragment of LCC data gathering model for Chronic Cough



