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Abstract
We study what can be learned when receiving reports from multiple non-expert information sources. We suppose that sources
report all that they consider possible, given their expertise. This may result in false and inconsistent reports when sources
lack expertise on a topic. A learning method is truth-tracking, roughly speaking, if it eventually converges to correct beliefs
about the “actual” world. This involves finding both the actual state of affairs in the domain described by the sources, and
finding the extent of the expertise of the sources themselves. We investigate the extent to which truth-tracking is possible,
and describe what information can be learned even if the actual world cannot be pinned down uniquely. We find that a broad
spread of expertise among the sources allows the actual state of affairs to be found, even if no individual source is an expert
on all topics. On the other hand, narrower expertise at the individual level allows the actual expertise to be found more easily.
Finally, we turn to learning methods themselves: we provide a postulate-based characterisation of truth-tracking for general
methods under mild assumptions, before looking at a specific class of methods well-known from the belief change literature.

1. Introduction
In this paper we study truth-tracking in the logical frame-
work of Singleton and Booth [1] for reasoning about mul-
tiple non-expert information sources. Broadly speaking,
the goal of truth-tracking is to find the true state of the
world given some input which describes it. In our case
this involves finding the true state of some propositional
domain about which the sources give reports, and finding
the extent of the expertise of the sources themselves.

The general problem of truth-tracking has been stud-
ied in various forms across many domains. Perhaps the
oldest approach goes back to de Condorcet [2], whose
celebrated Jury Theorem states that a majority vote on
a yes/no issue will yield the “correct” answer with prob-
ability approaching 1 as the number of voters tends to
infinity, provided that each voter is more reliable than
random choice. This result has since been generalised in
many directions (e.g. by Grofman et al. [3]). More widely,
epistemic social choice [4] studies aggregation methods
(e.g. voting rules) from the point of finding the “correct”
result with high probability, where individual votes are
seen as noisy approximations. Of particular relevance
to our work is truth-tracking in judgement aggregation
in social choice [5, 6], which also takes place in a logical
framework. Belief merging has close links with judge-
ment aggregation, and generalised jury theorems have
been found here too [7].

In crowdsourcing, the problem of truth discovery [8]
looks at how information from unreliable sources can
be aggregated to find the true value of a number of vari-
ables, and to find the true reliability level of the sources.
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This is close to our setting, since incoming information
is not always assumed to be reliable, and information
about the sources themselves is sought after. Work in
this area combines empirical results (e.g. how well meth-
ods find the truth on test datasets for which true values
are known) and theoretical guarantees, and is typically
set in a probabilistic framework.

On the other hand, formal learning theory [9] offers a
non-probabilistic view on truth-tracking, stemming from
the framework of Gold [10] for identification in the limit.
In this paradigm a learner receives an infinite sequence of
information step-by-step, such that all true information
eventually appears in the sequence. The learner outputs
a hypothesis at each step, and aims to stabilise on the cor-
rect hypothesis after some finite number of steps. This
framework has been combined with belief revision the-
ory [11, 12] and dynamic epistemic logic [13, 14, 15, 16].

This is the approach we take, and in particular we
adapt the truth-tracking setting of Baltag et al. [12]. We
apply this to the logical framework of Singleton and
Booth [1]. Briefly, this framework extends finite propo-
sitional logic with two new notions: that of a source
having expertise on a formula, and a formula being sound
for a source to report. Intuitively, expertise on 𝜙 means
the source has the epistemic capability to distinguish be-
tween any pair of𝜙 and ¬𝜙 states: they know whether or
not 𝜙 holds in any state. A formula is sound for a source
if it is true up to their lack of expertise. For example, if a
source has expertise on 𝜙 but not 𝜓, then 𝜙∧𝜓 is sound
whenever 𝜙 holds, since we can ignore the 𝜓 part (on
which the source has no expertise). The resulting logical
language therefore addresses both the ontic facts of the
world, through the propositional part, and the epistemic
state of the sources, via expertise and soundness.

For the most part, formal learning theory supposes
that all information received is true, and that all true
information is eventually received.1 This is not a ten-
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able assumption with non-expert sources: some sources
may simply lack the expertise to know whether 𝜙 is true
or false. Instead we make a different (and strong) as-
sumption: all and only sound reports are received. Thus,
sources report everything consistent with their expertise,
which necessitates inconsistent reports from non-experts.
Consequently, the input to our learning methods should
be distinguished from the inputs to belief revision and
belief merging methods [17, 18] – also propositional for-
mulas – which represent beliefs of the reporting sources.
Indeed, we do not model beliefs of the sources at all.

The following example informally illustrates the core
concepts of the logical framework and truth-tracking,
and will be returned to throughout the paper.

Example 1. Consider a medical scenario in which patient
𝐴 is checked for conditions 𝑝 and 𝑞. By examining 𝐴, a
doctor D has expertise to determine whether 𝐴 has at least
one of 𝑝 or 𝑞, but cannot tell which one(s) without a blood
test. A test is only available for 𝑝, however, so that the
technician T performing the test has expertise on 𝑝 but not
𝑞.

Supposing𝐴 in fact suffers from 𝑞 but not 𝑝, D considers
each of 𝑝 ∧ 𝑞, ¬𝑝 ∧ 𝑞 and 𝑝 ∧ ¬𝑞 possible, whereas T
considers both ¬𝑝∧𝑞 and ¬𝑝∧¬𝑞 possible. Assuming both
sources report all they consider possible, their combined
expertise leaves ¬𝑝 ∧ 𝑞 as the only possibility. Intuitively,
this means we can find the true values of 𝑝 and 𝑞 in this
case.

Now consider a patient 𝐵 who suffers from both condi-
tions. D cannot distinguish 𝐴 and 𝐵, so will provide the
same reports, and T considers both 𝑝 ∧ 𝑞 and 𝑝 ∧ ¬𝑞 pos-
sible. In this case T is more knowledgable than D – since
they consider fewer situations possible – but we cannot
narrow down the true value of 𝑞. Thus truth-tracking is
only possible for 𝑝. The second patient still provides useful
information, though, since together with the reports on 𝐴,
T’s lack of expertise tells us all the (in)distinctions between
states they are able to make. Namely, T cannot distinguish
between 𝑝∧𝑞 and 𝑝∧¬𝑞. Thus we can find the truth about
T’s expertise.

Paper outline. In Section 2 we outline the logical
framework for reasoning about expertise. Section 3 in-
troduces the key concepts of truth-tracking and solvable
questions. We characterise solvable questions in Sec-
tion 4, and explore what they can reveal about the actual
world in Section 5. Section 6 looks at learning methods
themselves, and characterises truth-tracking methods.
We conclude in Section 7.

1But see Jain et al. [9, §8.1], which considers inaccurate data of
various kinds, and Baltag et al. [12], which considers erroneous
reports provided that all errors are eventually corrected.
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Figure 1: Example of a world𝑊 , which formalises Example 1.
Here Prop = {𝑝, 𝑞}, 𝒮 = {D,T} and 𝒞 = {𝐴,𝐵}.

2. Preliminaries
In this section we recall the logical framework of Single-
ton and Booth [1] for reasoning with non-expert sources.

Syntax. Let Prop be a finite set of propositional vari-
ables, and let ℒ0 denote the propositional language gen-
erated from Prop. We use ℒ0 to model the domain under-
lying the truth-tracking problem; it describes the “ontic”
facts of the world, irrespective of the expertise of the
sources. Formulas in ℒ0 will be denoted by lower-case
Greek letters (𝜙, 𝜓, etc).

Let 𝒮 be a finite set of sources. The language ℒ ex-
tends ℒ0 with expertise and soundness formulas for each
source 𝑖 ∈ 𝒮 , and is defined by the following grammar:

Φ ::= 𝜙 | E𝑖𝜙 | S𝑖𝜙 | Φ ∧ Φ | ¬Φ,

for 𝜙 ∈ ℒ0 and 𝑖 ∈ 𝒮 . Formulas in ℒ will be denoted
by upper-case Greek letters (Φ, Ψ etc). Other logical
connectives (∨, →, ↔) are introduced as abbreviations.
We read E𝑖𝜙 as “𝑖 has expertise on 𝜙”, and S𝑖𝜙 as “𝜙
is sound for 𝑖”. Note that we restrict the expertise and
soundness formulas to propositional arguments, and do
not considered iterated formulas such as E𝑖S𝑗𝜙.

Semantics. Let 𝒱 denote the set of propositional valu-
ations over Prop. We represent the expertise of a source
𝑖 with a partition Π𝑖 of 𝒱 . Intuitively, this partition rep-
resents the distinctions between states the source is able
to make: valuations in the same cell in Π𝑖 are indistin-
guishable to 𝑖, whereas 𝑖 is able to tell apart valuations
in different cells. We say 𝑖 has expertise on 𝜙 iff 𝑖 can
distinguish all 𝜙 states from ¬𝜙 states, and 𝜙 is sound
for 𝑖 if the “actual” state is indistinguishable from some
𝜙 state.

Let 𝒞 be a finite set of cases, thought of as independent
instantiations of the domain of interest. For example, the
cases in Example 1 are the patients𝐴 and𝐵. We consider
the expertise of sources to be fixed across all cases.

A world is a pair 𝑊 = ⟨{𝑣𝑐}𝑐∈𝒞 , {Π𝑖}𝑖∈𝒮⟩, where

• 𝑣𝑐 ∈ 𝒱 is the “actual” valuation for case 𝑐;
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• Π𝑖 ⊆ 2𝒱 is a partition representing the expertise
of 𝑖.

Let 𝒲 denote the set of worlds. Note that 𝒲 is finite,
since 𝒱 , 𝒞 and 𝒮 are. For 𝜙 ∈ ℒ0, write ‖𝜙‖ ⊆ 𝒱 for
the models of 𝜙, and write 𝑣 ⊩ 𝜙 iff 𝑣 ∈ ‖𝜙‖. The
consequences of a set Γ ⊆ ℒ0 is denoted by Cn0 (Γ),
and we write Γ ⊩ 𝜙 if 𝜙 ∈ Cn0 (Γ). For a partition Π,
let Π[𝑣] denote the unique cell in Π containing 𝑣, and
write Π[𝑈 ] =

⋃︀
𝑣∈𝑈 Π[𝑣] for 𝑈 ⊆ 𝒱 . For brevity, we

write Π[𝜙] instead of Π[‖𝜙‖]. We evaluate ℒ formulas
with respect to a world 𝑊 and a case 𝑐 as follows:

𝑊, 𝑐 |= 𝜙 ⇐⇒ 𝑣𝑐 ⊩ 𝜙

𝑊, 𝑐 |= E𝑖𝜙 ⇐⇒ Π𝑖[𝜙] = ‖𝜙‖
𝑊, 𝑐 |= S𝑖𝜙 ⇐⇒ 𝑣𝑐 ∈ Π𝑖[𝜙],

where the clauses for conjunction and negation are as
standard. The semantics follows the intuition outlined
above: E𝑖𝜙 holds when Π𝑖 separates the 𝜙 states from
the¬𝜙 states, and S𝑖𝜙 holds when 𝑣𝑐 is indistinguishable
from some 𝜙 state. Thus, S𝑖𝜙 means 𝜙 is true up to the
expertise of 𝑖: if we weaken 𝜙 according to 𝑖’s expertise,
the resulting formula (with models Π𝑖[𝜙]) is true.

Note that expertise and soundness are closely related
to S5 knowledge from epistemic logic. By taking the equiv-
alence relations associated with each partition Π𝑖, we
obtain a (multi-agent) S5 Kripke model, and have the cor-
respondences S𝑖𝜙 ≡ ¬K𝑖¬𝜙 and E𝑖𝜙 ≡ A(𝜙 → K𝑖𝜙),
where K𝑖 denotes knowledge of source 𝑖 and A is the uni-
versal modality [19]. This gives expertise and soundness
precise interpretations in terms of knowledge; we refer
the reader to [1, 20] for further discussion.

Example 2. Take 𝑊 from Fig. 1, which formalises Ex-
ample 1. Then 𝑊, 𝑐 |= ED(𝑝 ∨ 𝑞) for all 𝑐 ∈ 𝒞, since
‖𝑝 ∨ 𝑞‖ is a cell in ΠD. We also have 𝑊,𝐴 |= ¬𝑝 ∧ SD𝑝,
i.e. patient 𝐴 does not suffer from condition 𝑝, but it is
consistent with D’s expertise that they do.

We write 𝑊, 𝑐 |= Γ, for a set of formulas Γ ⊆ ℒ, if
𝑊, 𝑐 |= Φ for all Φ ∈ Γ. For a set 𝑆 ⊆ 𝒲 , we write
𝑆, 𝑐 |= Φ iff 𝑊, 𝑐 |= Φ for all 𝑊 ∈ 𝑆.

Reports. A report is a triple ⟨𝑖, 𝑐, 𝜙⟩, where 𝑖 ∈ 𝒮 , 𝑐 ∈
𝒞 and 𝜙 ∈ ℒ0 with 𝜙 ̸≡ ⊥. In this paper, we interpret
such triples as source 𝑖 reporting that 𝜙 is possible in
case 𝑐. An input sequence 𝜎 is a finite sequence of reports.

A method 𝐿 maps each input sequence 𝜎 to a set of
worlds 𝐿(𝜎) ⊆ 𝒲 , called the conjecture of 𝐿 on 𝜎.2 We
say 𝐿 implies 𝑆 ⊆ 𝒲 on the basis of 𝜎 if 𝐿(𝜎) ⊆ 𝑆. 𝐿
is consistent if 𝐿(𝜎) ̸= ∅ for all input sequences 𝜎.

2We depart from the original framework here by taking a semantic
view of belief change operators, with the output a set of worlds
instead of formulas.

3. Truth-Tracking
We adapt the framework for truth-tracking from [21,
12], which finds its roots in formal learning theory. In
this framework, a learning method receives increasing
initial segments of an infinite sequence – called a stream
– which enumerates all (and only) the true propositions
observable at the “actual” world. Truth-tracking requires
the method to eventually find the actual world (or some
property thereof), given any stream.

As mentioned in the introduction, in our setting we
cannot assume the sources themselves report only true
propositions. Instead, our streams will enumerate all the
sound reports. Thus, a stream may include false reports,
but such false reports only arise due to lack of expertise of
the corresponding source.3 Moreover, all sound reports
will eventually arise. Since S𝑖𝜙 means 𝜙 is possible from
the point of view of 𝑖’s expertise, we can view a stream
as each source sharing all that they consider possible for
each case 𝑐 ∈ 𝒞. In particular, a non-expert source may
report both 𝜙 and ¬𝜙 for the same case.

Definition 1. An infinite sequence of reports 𝜌 is a stream
for 𝑊 iff for all 𝑖, 𝑐, 𝜙:

⟨𝑖, 𝑐, 𝜙⟩ ∈ 𝜌 ⇐⇒ 𝑊, 𝑐 |= S𝑖𝜙.

We refer to the left-to-right implication as soundness
of 𝜌 for 𝑊 , and the right-to-left direction as complete-
ness. Note that every world 𝑊 has some stream: the set
{⟨𝑖, 𝑐, 𝜙⟩ |𝑊, 𝑐 |= S𝑖𝜙} is countable, so can be indexed
by N to form a stream. For 𝑛 ∈ N we let 𝜌𝑛 denote
the 𝑛-th report in 𝜌, and write 𝜌[𝑛] for the finite initial
segment of 𝜌 of length 𝑛.

Example 3. Consider 𝑊 from Fig. 1 and case 𝐴. From
the point of view of D’s expertise, the “actual” valuation
could be 𝑝𝑞, �̄�𝑞, 𝑝�̄�. Consequently, in a stream for 𝑊 , D
will report 𝑝, ¬𝑝, 𝑞, ¬𝑞, 𝑝 ∨ 𝑞, and so on. A report that D
will not give is ¬(𝑝 ∨ 𝑞), since D has expertise to know
this is false.

Note that 𝑣𝐴 and 𝑣𝐵 are indistinguishable to D, so the
reports of D in any stream will be the same for both cases.
In contrast, T can distinguish the two cases, and will report
¬𝑝 in case 𝐴 but not in 𝐵, and 𝑝 in case 𝐵 but not in 𝐴.

A question 𝑄 is a partition of 𝒲 . That is, a question
is a set of disjoint answers 𝐴 ∈ 𝑄, with each world 𝑊
appearing in a unique cell 𝑄[𝑊 ] – the correct answer at
𝑊 .

Example 4. We consider some example questions.

3Alternatively, we can consider statements of the form “𝜙 is sound
for 𝑖 in case 𝑐” as a higher-order “proposition”; a stream then
enumerates all true propositions of this kind.
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1. Any formula Φ ∈ ℒ and case 𝑐 defines a question
𝑄Φ,𝑐, whose two cells consist of the worlds satisfy-
ing Φ, respectively ¬Φ, in case 𝑐. Intuitively, this
question asks whether Φ is true or false in case 𝑐.

2. The finest question 𝑄⊥ = {{𝑊} | 𝑊 ∈ 𝒲}
asks: what is the “actual” world?

3. More generally, for any set 𝑋 and function 𝑓 :
𝒲 → 𝑋 , the equivalence relation given by𝑊 ≃𝑓

𝑊 ′ iff 𝑓(𝑊 ) = 𝑓(𝑊 ′) defines a question 𝑄𝑓 .

In this way any data associated with a world gives
rise to a question. For example, if 𝑓(𝑊 ) = {𝑖 ∈
𝒮 | Π𝑊

𝑖 [𝑝] = ‖𝑝‖} we ask for the set of sources
with expertise on 𝑝; if 𝑓(𝑊 ) = |{𝑐 ∈ 𝒞 |𝑊, 𝑐 |=
𝑝}| we ask for the number of cases where 𝑝 holds,
etc.

In fact, all questions are of this form: given 𝑄 we
may define 𝑓 : 𝒲 → 𝑄 by 𝑓(𝑊 ) = 𝑄[𝑊 ]; then
𝑄𝑓 = 𝑄.

A method solves 𝑄 if it eventually implies the correct
answer when given any stream.

Definition 2. A method 𝐿 solves a question 𝑄 if for all
worlds 𝑊 and all streams 𝜌 for 𝑊 , there is 𝑛 ∈ N such
that 𝐿(𝜌[𝑚]) ⊆ 𝑄[𝑊 ] for all 𝑚 ≥ 𝑛. A question 𝑄 is
solvable if there is some consistent method 𝐿 which solves
𝑄.

Note that we do not require 𝑊 ∈ 𝐿(𝜌[𝑚]). Since
we work in a finite framework, solvability can be also
expressed in terms of eliminating incorrect worlds.

Proposition 1. A method 𝐿 solves 𝑄 if and only if for
all 𝑊 , all streams 𝜌 for 𝑊 , and all 𝑊 ′ /∈ 𝑄[𝑊 ], there is
𝑛𝑊 ′ ∈ N such that 𝑊 ′ /∈ 𝐿(𝜌[𝑚]) for all 𝑚 ≥ 𝑛𝑊 ′ .

Proof. “if”: Taking 𝑛 = max{𝑛𝑊 ′ | 𝑊 ′ /∈ 𝑄[𝑊 ]},
which exists since 𝒲 is finite, 𝐿(𝜌[𝑚]) ⊆ 𝑄[𝑊 ] for
𝑚 ≥ 𝑛.

“only if”: Taking 𝑛 from the definition of 𝐿 solving 𝑄,
we may simply take 𝑛𝑊 ′ = 𝑛 for all 𝑊 ′ /∈ 𝑄[𝑊 ].

4. Characterising Solvable
Questions

In this section we explore solvability of questions, finding
that there is a unique “hardest” question which subsumes
all solvable questions. We show this is itself solvable, and
thus obtain a precise characterisation of solvability.

Questions are partially ordered by partition refinement:
𝑄 ⪯ 𝑄′ iff each 𝐴′ ∈ 𝑄′ can be written as a union of
answers from 𝑄. Equivalently, 𝑄[𝑊 ] ⊆ 𝑄′[𝑊 ] for all
𝑊 . This can be interpreted as a difficulty ordering: if
𝑄 ⪯ 𝑄′ then each answer of 𝑄′ is just a disjunction of

answers of 𝑄, and thus 𝑄′ is easier than 𝑄. Naturally, if
𝑄 is solvable then so too is any easier question.

Proposition 2. If 𝑄 is solvable and 𝑄 ⪯ 𝑄′, then 𝑄′ is
solvable.

Proof. The method which solves 𝑄 also solves 𝑄′.

Since question solving is based on streams of sound
reports, worlds satisfying the same soundness statements
cannot be distinguished by any solvable question. To
formalise this, define a preorder ⊑ on 𝒲 by

𝑊 ⊑𝑊 ′ ⇐⇒ ∀𝑖, 𝑐, 𝜙 : 𝑊, 𝑐 |= S𝑖𝜙 =⇒ 𝑊 ′, 𝑐 |= S𝑖𝜙.

Thus, 𝑊 ⊑𝑊 ′ iff any report sound for 𝑊 is also sound
for 𝑊 ′. We denote by ⊏ and ≈ the strict and symmetric
parts of ⊑, respectively.4

Lemma 1. 𝑊 ⊑ 𝑊 ′ if and only if for all 𝑖 ∈ 𝒮 and
𝑐 ∈ 𝒞, Π𝑊

𝑖 [𝑣𝑊𝑐 ] ⊆ Π𝑊 ′
𝑖 [𝑣𝑊

′
𝑐 ].

Proof. “if”: Suppose 𝑊, 𝑐 |= S𝑖𝜙. Then 𝑣𝑊𝑐 ∈ Π𝑊
𝑖 [𝜙],

so there is 𝑢 ∈ ‖𝜙‖ such that 𝑣𝑊𝑐 ∈ Π𝑊
𝑖 [𝑢]. Con-

sequently 𝑢 ∈ Π𝑊
𝑖 [𝑣𝑊𝑐 ] ⊆ Π𝑊 ′

𝑖 [𝑣𝑊
′

𝑐 ], which means
𝑣𝑊

′
𝑐 ∈ Π𝑊 ′

𝑖 [𝑢] ⊆ Π𝑊 ′
𝑖 [𝜙]. Hence 𝑊 ′, 𝑐 |= S𝑖𝜙. This

shows 𝑊 ⊑𝑊 ′.
“only if”: Let 𝑢 ∈ Π𝑊

𝑖 [𝑣𝑊𝑐 ]. Let 𝜙 be any formula
with ‖𝜙‖ = {𝑢}. Then 𝑊, 𝑐 |= S𝑖𝜙, so 𝑊 ⊑ 𝑊 ′ gives
𝑊 ′, 𝑐 |= S𝑖𝜙, i.e. 𝑣𝑊

′
𝑐 ∈ Π𝑊 ′

𝑖 [𝑢], so 𝑢 ∈ Π𝑊 ′
𝑖 [𝑣𝑊

′
𝑐 ].

Hence Π𝑊
𝑖 [𝑣𝑊𝑐 ] ⊆ Π𝑊 ′

𝑖 [𝑣𝑊
′

𝑐 ].

Note that Π𝑖[𝑣𝑐] is the set of valuations indistinguish-
able from the “actual” valuation in case 𝑐, for source 𝑖. In
light of Lemma 1, we can interpret 𝑊 ⊑ 𝑊 ′ as saying
that all sources are more knowledgeable in each case 𝑐 in
world 𝑊 than in 𝑊 ′. However, 𝑊 ⊑𝑊 ′ does not say
anything about the partition cells not containing some
𝑣𝑐.

Proposition 3. The following are equivalent.

1. 𝑊 and 𝑊 ′ have exactly the same streams.

2. 𝑊 ≈𝑊 ′.

3. For all 𝑖 ∈ 𝒮 and 𝑐 ∈ 𝒞, Π𝑊
𝑖 [𝑣𝑊𝑐 ] = Π𝑊 ′

𝑖 [𝑣𝑊
′

𝑐 ].

Proof. (2) and (3) are easily seen to be equivalent in light
of Lemma 1. To show (1) is equivalent to (2), first suppose
𝑊 and 𝑊 ′ have the same streams, and suppose 𝑊, 𝑐 |=
S𝑖𝜙. Taking an arbitrary stream 𝜌 for 𝑊 , completeness
gives ⟨𝑖, 𝑐, 𝜙⟩ ∈ 𝜌. But 𝜌 is a stream for 𝑊 ′ too, and

4Baltag et al. [21] explore topological interpretations of solvability
by considering the topology on the set of worlds generated by ob-
servable propositions. In our setting, this is the topology generated
by sets of the form {𝑊 | 𝑊, 𝑐 |= S𝑖𝜙}. In this topology, ⊑ is
the specialisation preorder.
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soundness gives 𝑊 ′, 𝑐 |= S𝑖𝜙. Hence 𝑊 ⊑ 𝑊 ′. A
symmetrical argument shows 𝑊 ′ ⊑𝑊 .

On the other hand, if𝑊 ≈𝑊 ′ then𝑊 and𝑊 ′ satisfy
exactly the same soundness statements, so it is clear that
any sequence 𝜌 is a stream for 𝑊 iff it is a stream for
𝑊 ′.

Since it will play a special role throughout, we denote
by𝑄* the question formed by the equivalence relation ≈.
Then 𝑄*[𝑊 ] is the set of 𝑊 ′ with 𝑊 ≈ 𝑊 ′. Since no
solvable question can distinguish ≈-equivalent worlds,
we have the following.

Lemma 2. If 𝑄 is solvable then 𝑄* ⪯ 𝑄.

Proof. Suppose 𝐿 is a consistent method solving 𝑄. We
show 𝑄*[𝑊 ] ⊆ 𝑄[𝑊 ] for all 𝑊 . Indeed, let 𝑊 ′ ∈
𝑄*[𝑊 ]. Then 𝑊 ′ ≈ 𝑊 . Taking any stream 𝜌 for 𝑊 ,
there is 𝑛 such that 𝐿(𝜌[𝑚]) ⊆ 𝑄[𝑊 ] for 𝑚 ≥ 𝑛. On
the other hand 𝜌 is also a stream for𝑊 ′ by Proposition 3,
so there is 𝑛′ such that 𝐿(𝜌[𝑚]) ⊆ 𝑄[𝑊 ′] for 𝑚 ≥ 𝑛′.
Setting 𝑚 = max{𝑛, 𝑛′} and using the fact that 𝐿 is
consistent, we find ∅ ⊂ 𝐿(𝜌[𝑚]) ⊆ 𝑄[𝑊 ] ∩ 𝑄[𝑊 ′].
Since 𝑄 is a partition, this means 𝑄[𝑊 ] = 𝑄[𝑊 ′], i.e.
𝑊 ′ ∈ 𝑄[𝑊 ].

So, any solvable question is coarser than 𝑄*. Fortu-
nately, 𝑄* itself is solvable since we work in a finite
framework. For a sequence 𝜎, write 𝒳 snd

𝜎 for the set of
worlds 𝑊 such that 𝑊, 𝑐 |= S𝑖𝜙 for all ⟨𝑖, 𝑐, 𝜙⟩ ∈ 𝜎. To
solve 𝑄* it suffices to conjecture the ⊑-minimal worlds
in 𝒳 snd

𝜎 .

Proposition 4. 𝑄* is solvable.

Proof. Set 𝐿(𝜎) = min⊑ 𝒳 snd
𝜎 if 𝒳 snd

𝜎 ̸= ∅, and 𝐿(𝜎) =
𝒲 otherwise (where 𝑊 ∈ min⊑ 𝒳 snd

𝜎 iff 𝑊 ∈ 𝒳 snd
𝜎

and there is no 𝑊 ′ ∈ 𝒳 snd
𝜎 with 𝑊 ′ ⊏ 𝑊 ). Note that

𝐿 is consistent since 𝒲 is finite and non-empty. We
show that 𝐿 solves 𝑄* by Proposition 1. Take any world
𝑊 and a stream 𝜌. First note that, by soundness of 𝜌,
𝑊 ∈ 𝒳 snd

𝜌[𝑛] for all 𝑛 ∈ N, so we are always in the first
case in the definition of 𝐿.

Take 𝑊 ′ /∈ 𝑄*[𝑊 ]. Then 𝑊 ̸≈ 𝑊 ′. Consider two
cases:

• Case 1: 𝑊 ̸⊑𝑊 ′. By definition, there are 𝑖, 𝑐, 𝜙
such that 𝑊, 𝑐 |= S𝑖𝜙 but 𝑊 ′, 𝑐 ̸|= S𝑖𝜙. By
completeness of 𝜌 for 𝑊 , there is 𝑛 such that
𝜌𝑛 = ⟨𝑖, 𝑐, 𝜙⟩. Consequently 𝑊 ′ /∈ 𝒳 snd

𝜌[𝑚] for
all 𝑚 ≥ 𝑛. Since 𝐿(𝜌[𝑚]) ⊆ 𝒳 snd

𝜌[𝑚], we have
𝑊 ′ /∈ 𝐿(𝜌[𝑚]) as required.

• Case 2: 𝑊 ⊏ 𝑊 ′. Since 𝑊 ∈ 𝒳 snd
𝜌[𝑛] for all 𝑛,

𝑊 ′ can never be ⊑-minimal. Thus𝑊 ′ /∈ 𝐿(𝜌[𝑛])
for all 𝑛.

Note that these cases are exhaustive since 𝑊 ̸≈ 𝑊 ′.
This completes the proof.

Putting Propositions 2 and 4 and Lemma 2 together
we obtain a characterisation of solvable questions.

Theorem 1. 𝑄 is solvable if and only if 𝑄* ⪯ 𝑄.

Given this result, 𝑄* is the only question that re-
ally matters: any other question is either unsolvable or
formed by coarsening 𝑄*. With this in mind, we make
the following definition.

Definition 3. A method is truth-tracking if it solves 𝑄*.

Example 5. We refer back to the questions of Example 4.

1. The question 𝑄𝜙,𝑐, for any propositional formula
𝜙 ∈ ℒ0, is solvable if and only if either 𝜙 is a
tautology or a contradiction. To see the “only if”
part, consider the contrapositive. For any contin-
gent formula 𝜙, take worlds 𝑊1,𝑊2 where no
source has any expertise (i.e. Π

𝑊𝑘
𝑖 = {𝒱}) but

where 𝑣𝑊1
𝑐 ⊩ 𝜙, 𝑣𝑊2

𝑐 ⊩ ¬𝜙. Then 𝑊1 ≈ 𝑊2

(e.g. by Proposition 3) but 𝑊1 /∈ 𝑄𝜙,𝑐[𝑊2].

Similarly, 𝑄E𝑖𝜙,𝑐 is solvable iff either 𝜙 is a tau-
tology or contradiction, when |Prop| ≥ 2.

2. The finest question 𝑄⊥ is not solvable, since there
are always distinct 𝑊,𝑊 ′ with 𝑊 ≈𝑊 ′.

3. In general, 𝑄𝑓 is solvable iff 𝑊 ≈ 𝑊 ′ implies
𝑓(𝑊 ) = 𝑓(𝑊 ′), i.e. iff 𝑓 takes a unique value on
each equivalence class of ≈.

5. What Information can be
Learned?

Solving a question 𝑄 has a global character: we must
find the correct answer 𝑄[𝑊 ] starting from any world
𝑊 . As we saw in Example 5, this rules out the possi-
bility of solving many interesting questions due to the
presence of “abnormal” worlds (e.g. those in which no
sources have any expertise). In this section we take a
more fine-grained approach by looking locally: given
some particular world 𝑊 , what can we learn about 𝑊
via truth-tracking methods? Concretely, what properties
of 𝑊 are uniquely defined across 𝑄*[𝑊 ]?

Clearly this depends on 𝑊 . If no sources have exper-
tise then source partitions are uniquely defined (since
all consistent formulas are sound, and only the trivial
partitions have this property), but any combination of
valuations is possible. On the other hand if all sources
have total expertise then valuations are uniquely defined,
but there may not be enough cases to uniquely identify
the source partitions. Of particular interest is the case
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where 𝑄*[𝑊 ] contains only 𝑊 ; starting in such a world,
truth-tracking methods are able to find the true world
exactly.

In what follows, say 𝑆 decides Φ in case 𝑐 iff either
𝑆, 𝑐 |= Φ or 𝑆, 𝑐 |= ¬Φ. That is, the truth value of Φ in
case 𝑐 is unambiguously defined across 𝑆. If Φ does not
depend on the case (e.g. if Φ = E𝑖𝜙) we simply say 𝑆
decides Φ.

5.1. Valuations
We start by considering when 𝑄*[𝑊 ] decides a proposi-
tional formula 𝜙 in case 𝑐, i.e. when truth-tracking meth-
ods are guaranteed to successfully determine whether
or not 𝜙 holds in the “actual” world. This leads to a pre-
cise characterisation of when 𝑄*[𝑊 ] contains a unique
valuation in case 𝑐, so that 𝑣𝑊𝑐 can be found exactly.

We need a notion of group expertise. For 𝒮 ′ ⊆ 𝒮 and
Γ ⊆ ℒ0, write 𝑊 |= E𝒮′Γ if for each 𝜓 ∈ Γ there is
𝑖 ∈ 𝒮 ′ such that 𝑊 |= E𝑖𝜓. Then the group 𝒮 ′ have
expertise on Γ in a collective sense, even if no single
source has expertise on all formulas in Γ. We have that
𝜙 is decided if 𝒮 have group expertise on a set of true
formulas Γ ⊆ ℒ0 such that either Γ ⊩ 𝜙 or Γ ⊩ ¬𝜙.

Theorem 2. 𝑄*[𝑊 ] decides 𝜙 ∈ ℒ0 in case 𝑐 if and only
if there is Γ ⊆ ℒ0 such that (i) 𝑊, 𝑐 |= Γ; (ii) 𝑊 |= E𝒮Γ;
and (iii) either Γ ⊩ 𝜙 or Γ ⊩ ¬𝜙.

𝑄*[𝑊 ] decides all propositional formulas – and thus
determines the 𝑐-valuation 𝑣𝑊𝑐 exactly – iff 𝒮 have group
expertise on a maximally consistent set of true formulas.
For 𝑆 ⊆ 𝒲 and 𝑐 ∈ 𝒞, write 𝒱𝑆

𝑐 = {𝑣𝑊𝑐 | 𝑊 ∈ 𝑆} for
the 𝑐-valuations appearing in 𝑆.

Theorem 3. The following are equivalent.

1. 𝒱𝑄*[𝑊 ]
𝑐 = {𝑣𝑊𝑐 }.

2. 𝑄*[𝑊 ] decides 𝜙 in case 𝑐, for all 𝜙 ∈ ℒ0.

3. There is Γ ⊆ ℒ0 such that (i) 𝑊, 𝑐 |= Γ;
(ii) 𝑊 |= E𝒮Γ; and (iii) Cn0 (Γ) is a maximally
consistent set.

We illustrate Theorem 3 with an example.

Example 6. Consider 𝑊 from Fig. 1. Then one can show
𝒱𝑄*[𝑊 ]
𝐴 = {�̄�𝑞} = {𝑣𝑊𝐴 }, and 𝒱𝑄*[𝑊 ]

𝐵 = {𝑝𝑞, 𝑝�̄�} ≠
{𝑣𝑊𝐵 }. That is, 𝑊 ’s 𝐴 valuation is uniquely determined
by truth-tracking methods, but its𝐵 valuation is not: there
is some world 𝑊 ′ ≈ 𝑊 whose 𝐵-valuation differs from
𝑊 ’s. This matches the informal reasoning in Example 1,
in which patient𝐴 could be successfully diagnosed on both
𝑝 and 𝑞 but 𝐵 could not.

Formally, take Γ = {𝑝 ∨ 𝑞,¬𝑝}. Then 𝑊,𝐴 |= Γ,
𝑊 |= E𝒮Γ (since D has expertise on 𝑝 ∨ 𝑞 and T has
expertise on ¬𝑝), and Cn0 (Γ) = Cn0 (¬𝑝 ∧ 𝑞), which is

maximally consistent. This example shows how the exper-
tise of multiple sources can be combined to find valuations
uniquely, but that this is not necessarily possible in all
cases.

The remainder of this section proves Theorems 2 and 3.

Lemma 3. For 𝑊 ≈𝑊 ′, 𝑖 ∈ 𝒮 and 𝜙 ∈ ℒ0,

𝑊, 𝑐 |= 𝜙 ∧ E𝑖𝜙 =⇒ 𝑊 ′, 𝑐 |= 𝜙.

Proof. From 𝑊, 𝑐 |= 𝜙 we have 𝑣𝑊𝑐 ∈ ‖𝜙‖, so
Π𝑊

𝑖 [𝑣𝑊𝑐 ] ⊆ Π𝑊
𝑖 [𝜙]. But 𝑊, 𝑐 |= E𝑖𝜙 means Π𝑊

𝑖 [𝜙] =
‖𝜙‖, so in fact Π𝑊

𝑖 [𝑣𝑊𝑐 ] ⊆ ‖𝜙‖. Now using 𝑊 ≈ 𝑊 ′,
we find 𝑣𝑊

′
𝑐 ∈ Π𝑊 ′

𝑖 [𝑣𝑊
′

𝑐 ] = Π𝑊
𝑖 [𝑣𝑊𝑐 ] ⊆ ‖𝜙‖. Hence

𝑊 ′, 𝑐 |= 𝜙.

Lemma 4. 𝒱𝑄*[𝑊 ]
𝑐 =

⋂︀
𝑖∈𝒮 Π𝑊

𝑖 [𝑣𝑊𝑐 ].

Proof. “⊆”: Suppose 𝑢 ∈ 𝒱𝑄*[𝑊 ]
𝑐 . Then there is

𝑊 ′ ≈ 𝑊 such that 𝑢 = 𝑣𝑊
′

𝑐 . Let 𝑖 ∈ 𝒮 . Then
𝑢 ∈ Π𝑊 ′

𝑖 [𝑣𝑊
′

𝑐 ] = Π𝑊
𝑖 [𝑣𝑊𝑐 ] by Proposition 3, as re-

quired.
“⊇”: Suppose 𝑢 ∈

⋂︀
𝑖∈𝒮 Π𝑊

𝑖 [𝑣𝑊𝑐 ]. Let 𝑊 ′ be the
world obtained from 𝑊 by setting the 𝑐-valuation to 𝑢,
keeping partitions and other valuations the same. We
need to show 𝑊 ′ ≈𝑊 . We do so via Proposition 3, by
showing condition (3). Take any 𝑖 ∈ 𝒮 and 𝑑 ∈ 𝒞. If 𝑑 ̸=
𝑐 then 𝑣𝑊

′
𝑑 = 𝑣𝑊𝑑 ; since partitions are the same in 𝑊 ′

as in 𝑊 we get Π𝑊
𝑖 [𝑣𝑊𝑑 ] = Π𝑊 ′

𝑖 [𝑣𝑊
′

𝑑 ]. For 𝑐 = 𝑑, note
Π𝑊 ′

𝑖 [𝑣𝑊
′

𝑐 ] = Π𝑊
𝑖 [𝑢]. By assumption 𝑢 ∈ Π𝑊

𝑖 [𝑣𝑊𝑐 ], so
Π𝑊

𝑖 [𝑢] = Π𝑊
𝑖 [𝑣𝑊𝑐 ]. Hence Π𝑊 ′

𝑖 [𝑣𝑊
′

𝑐 ] = Π𝑊
𝑖 [𝑣𝑊𝑐 ] as

required.

Proof of Theorem 2. “if”: Take 𝑊 ′ ∈ 𝑄*[𝑊 ]. Note that
since 𝑊, 𝑐 |= Γ and 𝑊, 𝑐 |= E𝒮Γ, we may apply
Lemma 3 to each formula in Γ in turn to find 𝑊 ′, 𝑐 |= Γ.
Now, if 𝑊, 𝑐 |= 𝜙 then we must have Γ ⊩ 𝜙, so
𝑊 ′, 𝑐 |= 𝜙 too. Otherwise 𝑊, 𝑐 ̸|= 𝜙, so we must have
Γ ⊩ ¬𝜙 and 𝑊 ′, 𝑐 ̸|= 𝜙. This shows 𝑊 ′, 𝑐 |= 𝜙 if and
only if 𝑊, 𝑐 |= 𝜙. Since 𝑊 ′ ∈ 𝑄*[𝑊 ] was arbitrary,
𝑄*[𝑊 ] decides 𝜙 in case 𝑐.

“only if”: Suppose𝑄*[𝑊 ] decides 𝜙 in case 𝑐. For each
𝑖 ∈ 𝒮 , take some 𝜓𝑖 ∈ ℒ0 such that ‖𝜓𝑖‖ = Π𝑊

𝑖 [𝑣𝑊𝑐 ].
Then 𝑊 |= E𝑖𝜓𝑖. Set Γ = {𝜓𝑖}𝑖∈𝒮 . Clearly 𝑊, 𝑐 |= Γ
and 𝑊 |= E𝒮Γ. Now, take any 𝑢 ∈ ‖Γ‖. By Lemma 4,
‖Γ‖ =

⋂︀
𝑖∈𝒮 Π𝑊

𝑖 [𝑣𝑊𝑐 ] = 𝒱𝑄*[𝑊 ]
𝑐 . Hence there is some

𝑊 ′ ∈ 𝑄*[𝑊 ] such that 𝑢 = 𝑣𝑊
′

𝑐 . But 𝑄*[𝑊 ] decides
𝜙 in case 𝑐, so 𝑊 ′, 𝑐 |= 𝜙 iff 𝑊, 𝑐 |= 𝜙. Thus 𝑢 ⊩ 𝜙 iff
𝑊, 𝑐 |= 𝜙. Since 𝑢 ∈ ‖Γ‖ was arbitrary, we have Γ ⊩ 𝜙
if 𝑊, 𝑐 |= 𝜙, and Γ ⊩ ¬𝜙 otherwise.

Proof of Theorem 3. (1) implies (2): If𝑊 ′ ∈ 𝑄*[𝑊 ] then
𝑊 and 𝑊 ′ share the same 𝑐-valuation by (1), so clearly
𝑊, 𝑐 |= 𝜙 iff𝑊 ′, 𝑐 |= 𝜙, for any𝜙. Hene𝑄*[𝑊 ] decides
𝜙 in case 𝑐.
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Figure 2: World 𝑊 from Example 7. Note that for brevity
we do not label the valuations.

(2) implies (1): Clearly 𝑣𝑊𝑐 ∈ 𝒱𝑄*[𝑊 ]
𝑐 . Suppose 𝑢 ∈

𝒱𝑄*[𝑊 ]
𝑐 . Then there is 𝑊 ′ ∈ 𝑄*[𝑊 ] such that 𝑢 =

𝑣𝑊
′

𝑐 . Let 𝑝 ∈ Prop. Since 𝑊,𝑊 ′ ∈ 𝑄*[𝑊 ] and 𝑄*[𝑊 ]
decides 𝑝 in case 𝑐, we have 𝑢 ⊩ 𝑝 iff 𝑣𝑊𝑐 ⊩ 𝑝. Since 𝑝
was arbitrary, 𝑢 = 𝑣𝑊𝑐 .

(2) implies (3): Applying Theorem 2 to each 𝜙 ∈
ℒ0, there is a set Γ𝜙 ⊆ ℒ0 such that 𝑊, 𝑐 |= Γ𝜙,
𝑊 |= E𝒮Γ𝜙, and either Γ𝜙 ⊩ 𝜙 or Γ𝜙 ⊩ ¬𝜙. Set
Γ =

⋃︀
𝜙∈ℒ0

Γ𝜙. Clearly 𝑊, 𝑐 |= Γ – so Γ is con-
sistent – and 𝑊 |= E𝒮Γ. To show Cn0 (Γ) is maxi-
mally consistent, suppose 𝜙 /∈ Cn0 (Γ). From mono-
tonicity of classical consequence and Γ𝜙 ⊆ Γ, we get
𝜙 /∈ Cn0 (Γ𝜙). Hence Γ𝜙 ⊩ ¬𝜙, and Γ ⊩ ¬𝜙 too. This
means Cn0 (Γ) ∪ {𝜙} is inconsistent, and we are done.

(3) implies (2): Take 𝜙 ∈ ℒ0. Then we may apply
Theorem 2 with Γ from (3) – noting that the maximal
consistency property ensure either Γ ⊩ 𝜙 or Γ |= ¬𝜙 –
to see that 𝑄*[𝑊 ] decides 𝜙 in case 𝑐.

5.2. Source Partitions
We now apply the analysis of the previous section to
the set of source partitions {Π𝑊

𝑖 }𝑖∈𝒮 . For 𝑆 ⊆ 𝒲 and
𝑖 ∈ 𝒮 , write 𝒫𝑆

𝑖 = {Π𝑊
𝑖 | 𝑆 ∈𝑊} for the 𝑖-partitions

appearing in 𝑆. When 𝑆 = 𝑄*[𝑊 ], these are exactly
those partitions which agree with Π𝑊

𝑖 at each valuation
𝑣𝑊𝑐 .

Lemma 5. Π ∈ 𝒫𝑄*[𝑊 ]
𝑖 if and only if {Π𝑊

𝑖 [𝑣𝑊𝑐 ]}𝑐∈𝒞 ⊆
Π.

Proof. “if”: Suppose {Π𝑊
𝑖 [𝑣𝑊𝑐 ]}𝑐∈𝒞 ⊆ Π. Let 𝑊 ′ be

obtained from 𝑊 by setting 𝑖’s partition to Π, keeping
valuations and other source partitions the same. We
claim 𝑊 ′ ≈ 𝑊 . Indeed, take any 𝑗 ∈ 𝒮 and 𝑐 ∈ 𝒞.
If 𝑗 ̸= 𝑖 then Π𝑊 ′

𝑗 = Π𝑊
𝑖 ; since valuations are the

same we get Π𝑊
𝑗 [𝑣𝑊𝑐 ] = Π𝑊 ′

𝑗 [𝑣𝑊
′

𝑐 ]. For 𝑗 = 𝑖, note
that since Π𝑊

𝑖 [𝑣𝑊𝑐 ] ∈ Π by assumption, and 𝑣𝑊𝑐 ∈
Π𝑊

𝑖 [𝑣𝑊𝑐 ], we have Π[𝑣𝑊𝑐 ] = Π𝑊
𝑖 [𝑣𝑊𝑐 ]. By construction

of 𝑊 ′, this means Π𝑊
𝑖 [𝑣𝑊𝑐 ] = Π[𝑣𝑊

′
𝑐 ] = Π𝑊 ′

𝑖 [𝑣𝑊
′

𝑐 ].
By Proposition 3, 𝑊 ′ ≈𝑊 . Hence Π ∈ 𝒫𝑄*[𝑊 ]

𝑖 .
“only if”: This is clear from Proposition 3.

Example 7. Suppose |Prop| = 3, 𝒞 = {𝑐1, 𝑐2} and
𝑖 ∈ 𝒮 . Consider a world 𝑊 whose 𝑖-partition is shown
in Fig. 2. By Lemma 5, a partition Π appears as Π𝑊 ′

𝑖

for some 𝑊 ′ ≈ 𝑊 if and only if it contains the leftmost
and bottommost sets. Any such Π consists of these cells
together with a partition of the shaded area. Since there
are 5 possible partitions of a 3-element set, it follows that
|𝒫𝑄*[𝑊 ]

𝑖 | = 5.

Example 7 hints that if the cells containing the val-
uations 𝑣𝑊𝑐 cover the whole space of valuations 𝒱 , or
just omit a single valuation, then 𝑖’s partition is uniquely
defined in 𝑄*[𝑊 ]. That is, truth-tracking methods can
determine the full extent of 𝑖’s expertise if the “actual”
world is 𝑊 . Indeed, we have the following analogue of
Theorem 3 for partitions.

Theorem 4. The following are equivalent.

1. 𝒫𝑄*[𝑊 ]
𝑖 = {Π𝑊

𝑖 }.

2. 𝑄*[𝑊 ] decides E𝑖𝜙 for all 𝜙 ∈ ℒ0.

3. |𝒱 ∖𝑅| ≤ 1, where 𝑅 =
⋃︀

𝑐∈𝒞 Π𝑊
𝑖 [𝑣𝑊𝑐 ].

Note that 𝑅 =
⋃︀

𝑐∈𝒞 Π𝑊
𝑖 [𝑣𝑊𝑐 ] is the set of valuations

indistinguishable from the actual state at some case 𝑐.
Theorem 4 (3) says this set needs to essentially cover
the whole space 𝒱 , omitting at most a single point. In
this sense, it is easier to find Π𝑊

𝑖 uniquely when 𝑖 has
less expertise, since the cells Π𝑊

𝑖 [𝑣𝑊𝑐 ] will be larger. In
the extreme case where 𝑖 has total expertise, i.e. Π𝑊

𝑖 =
{{𝑣} | 𝑣 ∈ 𝒱}, we need at least 2|Prop| − 1 cases with
distinct valuations in order to find Π𝑊

𝑖 exactly.

Example 8. In Example 7 we have already seen an ex-
ample of a world 𝑊 for which 𝒫𝑄*[𝑊 ]

𝑖 does not contain a
unique partition. For a positive example, consider the world
𝑊 from Fig. 1. Then 𝒱 ∖𝑅D = {�̄��̄�} and 𝒱 ∖𝑅T = ∅, so
both the partitions of D and T can be found uniquely by
truth-tracking methods.

The remainder of this section proves Theorem 4.

Lemma 6. Let 𝑖 ∈ 𝒮 and 𝑈 ⊆ 𝒱 . Then 𝑈 ⊆⋃︀
𝑐∈𝒞 Π𝑊

𝑖 [𝑣𝑊𝑐 ] and 𝑊 ≈ 𝑊 ′ implies Π𝑊
𝑖 [𝑈 ] =

Π𝑊 ′
𝑖 [𝑈 ].

Proof. It suffices to show that for all 𝑢 ∈ 𝑈 we
have Π𝑊

𝑖 [𝑢] = Π𝑊 ′
𝑖 [𝑢], since by definition Π[𝑈 ] =⋃︀

𝑢∈𝑈 Π[𝑢]. Let 𝑢 ∈ 𝑈 . Then there is 𝑐 ∈ 𝒞 such that
𝑢 ∈ Π𝑊

𝑖 [𝑣𝑊𝑐 ]. Hence Π𝑊
𝑖 [𝑢] = Π𝑊

𝑖 [𝑣𝑊𝑐 ]. But since
𝑊 ≈ 𝑊 ′, Π𝑊

𝑖 [𝑣𝑊𝑐 ] = Π𝑊 ′
𝑖 [𝑣𝑊

′
𝑐 ]. This means 𝑢 ∈

Π𝑊 ′
𝑖 [𝑣𝑊

′
𝑐 ], so Π𝑊 ′

𝑖 [𝑢] = Π𝑊 ′
𝑖 [𝑣𝑊

′
𝑐 ] = Π𝑊

𝑖 [𝑣𝑊𝑐 ] =
Π𝑊

𝑖 [𝑢], as required,
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Lemma 7. 𝑄*[𝑊 ] decidesE𝑖𝜙 if and only if, writing𝑅 =⋃︀
𝑐∈𝒞 Π𝑊

𝑖 [𝑣𝑊𝑐 ], either (i) ‖𝜙‖ ⊆ 𝑅; (ii) ‖¬𝜙‖ ⊆ 𝑅; or
(iii) there is some 𝑐 ∈ 𝒞 such that Π𝑊

𝑖 [𝑣𝑊𝑐 ] intersects with
both ‖𝜙‖ and ‖¬𝜙‖.

Proof. “if”: First suppose (i) holds. Take 𝑊 ′ ∈ 𝑄*[𝑊 ].
From ‖𝜙‖ ⊆ 𝑅, 𝑊 ≈ 𝑊 ′ and Lemma 6 we get
Π𝑊

𝑖 [𝜙] = Π𝑊 ′
𝑖 [𝜙]. Consequently, 𝑊 ′ |= E𝑖𝜙 iff

𝑊 |= E𝑖𝜙. Since 𝑊 ′ was arbitrary, either all worlds
in 𝑄*[𝑊 ] satisfy E𝑖𝜙, or all do not. Hence 𝑄*[𝑊 ] de-
cides E𝑖𝜙.

If (ii) holds, a similar argument shows that 𝑄*[𝑊 ]
decides E𝑖¬𝜙. But it is easily checked that E𝑖𝜙 ≡ E𝑖¬𝜙,
so 𝑄*[𝑊 ] also decides E𝑖𝜙.

Finally, suppose (iii) holds. Then there is 𝑐 ∈ 𝒞 and
𝑢 ∈ ‖𝜙‖, 𝑣 ∈ ‖¬𝜙‖ such that 𝑢, 𝑣 ∈ Π𝑊

𝑖 [𝑣𝑊𝑐 ]. We
claim 𝑄*[𝑊 ] |= ¬E𝑖𝜙. Indeed, take 𝑊 ′ ∈ 𝑄*[𝑊 ].
Then Π𝑊

𝑖 [𝑣𝑊𝑐 ] = Π𝑊 ′
𝑖 [𝑣𝑊

′
𝑐 ], so 𝑢, 𝑣 ∈ Π𝑊 ′

𝑖 [𝑣𝑊
′

𝑐 ]. In
particular, 𝑢 and 𝑣 differ on 𝜙 but are contained in the
same cell in Π𝑊 ′

𝑖 . Hence 𝑊 ′ |= ¬E𝑖𝜙.
“only if”: We show the contrapositive. Suppose none

of (i), (ii), (iii) hold. Then there is 𝑢 ∈ ‖𝜙‖ ∖ 𝑅 and
𝑣 ∈ ‖¬𝜙‖ ∖ 𝑅. Let us define two worlds 𝑊1, 𝑊2 from
𝑊 by modifying 𝑖’s partition:

Π𝑊1
𝑖 = {Π𝑊

𝑖 [𝑣𝑊𝑐 ]}𝑐∈𝒞 ∪ {𝒱 ∖𝑅},

Π𝑊2
𝑖 = {Π𝑊

𝑖 [𝑣𝑊𝑐 ]}𝑐∈𝒞 ∪ {{𝑤} | 𝑤 ∈ 𝒱 ∖𝑅}.

Then 𝑊1,𝑊2 ∈ 𝑄*[𝑊 ] by Lemma 5. We claim that
𝑊1 |= ¬E𝑖𝜙 but 𝑊2 |= E𝑖𝜙, which will show 𝑄*[𝑊 ]
does not decide E𝑖𝜙.

First, note that since 𝑢, 𝑣 /∈ 𝑅, we have Π𝑊1
𝑖 [𝑢] =

Π𝑊1
𝑖 [𝑣] = 𝒱 ∖𝑅. Since 𝑢 and 𝑣 differ on 𝜙 but share the

same partition cell, 𝑊1 |= ¬E𝑖𝜙.
To show 𝑊2 |= E𝑖𝜙, take 𝑤 ∈ ‖𝜙‖. If 𝑤 /∈ 𝑅 then

Π𝑊2
𝑖 [𝑤] = {𝑤} ⊆ ‖𝜙‖. Otherwise there is 𝑐 ∈ 𝒞 such

that 𝑤 ∈ Π𝑊
𝑖 [𝑣𝑊𝑐 ]. Thus Π𝑊

𝑖 [𝑣𝑊𝑐 ] intersects with ‖𝜙‖.
Since (iii) does not hold, this in fact implies Π𝑊

𝑖 [𝑣𝑊𝑐 ] ⊆
‖𝜙‖, and consequently Π𝑊2

𝑖 [𝑤] = Π𝑊
𝑖 [𝑣𝑊𝑐 ] ⊆ ‖𝜙‖.

Since𝑤 ∈ ‖𝜙‖ was arbitrary, we have shown Π𝑊2
𝑖 [𝜙] =⋃︀

𝑤∈‖𝜙‖ Π
𝑊2
𝑖 [𝑤] ⊆ ‖𝜙‖. Since the reverse inclusion

always holds, this shows 𝑊2 |= E𝑖𝜙, and we are done.

Proof of Theorem 4. The implication (1) to (2) is clear
since if 𝑊 ′ ∈ 𝑄*[𝑊 ] then Π𝑊 ′

𝑖 = Π𝑊
𝑖 by (1), so

𝑊 ′ |= E𝑖𝜙 iff 𝑊 |= E𝑖𝜙, and thus 𝑄*[𝑊 ] decides E𝑖𝜙.
To show (2) implies (3) we show the contrapositive.

Suppose |𝒱∖𝑅| > 1. Then there are distinct 𝑢, 𝑣 ∈ 𝒱∖𝑅.
Let 𝜙 be any propositional formula with ‖𝜙‖ = {𝑢}.
We show by Lemma 7 that 𝑄*[𝑊 ] does not decide E𝑖𝜙.
Indeed, all three conditions fail: ‖𝜙‖ ̸⊆ 𝑅 (since 𝑢 /∈ 𝑅),
‖¬𝜙‖ ̸⊆ 𝑅 (since 𝑣 ∈ ‖¬𝜙‖ ∖ 𝑅) and no Π𝑊

𝑖 [𝑣𝑊𝑐 ]
intersects with ‖𝜙‖ (otherwise 𝑢 ∈ Π𝑊

𝑖 [𝑣𝑊𝑐 ] ⊆ 𝑅).

Finally, for (3) implies (1) we also show the contra-
positive. Suppose there is Π ∈ 𝒫𝑄*[𝑊 ]

𝑖 ∖ {Π𝑊
𝑖 }. Write

ℛ = {Π𝑊
𝑖 [𝑣𝑊𝑐 ]}𝑐∈𝒞 , so that ℛ is a partition of 𝑅. By

Lemma 5, ℛ ⊆ Π. Note that ℛ ⊆ Π𝑊
𝑖 too. Since

Π ̸= Π𝑊
𝑖 , we in fact have ℛ ⊂ Π and ℛ ⊂ Π𝑊

𝑖 . Hence
Π∖ℛ and Π𝑊

𝑖 ∖ℛ are distinct partitions of 𝒱 ∖𝑅. Since
a one-element set has a unique partition, 𝒱 ∖ 𝑅 must
contain at least two elements.

5.3. Learning the Actual World Exactly
Putting Theorems 3 and 4, we obtain a precise characteri-
sation of when𝑊 can be found exactly by truth-tracking
methods, i.e when 𝑄*[𝑊 ] = {𝑊}.

Corollary 1. 𝑄*[𝑊 ] = {𝑊} if and only if

1. There is a collection {Γ𝑐}𝑐∈𝒞 ⊆ ℒ𝒞
0 such that

for each 𝑐, (i) 𝑊, 𝑐 |= Γ𝑐; (ii) 𝑊 |= E𝒮Γ𝑐;
(iii) Cn0 (Γ𝑐) is maximally consistent; and

2. For each each 𝑖 ∈ 𝒮 , |𝒱 ∖
⋃︀

𝑐∈𝒞 Π𝑊
𝑖 [𝑣𝑊𝑐 ]| ≤ 1.

6. Truth-Tracking Methods
So far we have focussed on solvable questions, and the
extent to which they reveal information about the actual
world. We now turn to the methods which solve them.
We give a general characterisation of truth-tracking meth-
ods under mild assumptions, before discussing the family
of conditioning methods from Singleton and Booth [1].

6.1. A General Characterisation
For sequences 𝜎, 𝛿, write 𝜎 ≡ 𝛿 iff 𝛿 is obtained from 𝜎
by replacing each report ⟨𝑖, 𝑐, 𝜙⟩ with ⟨𝑖, 𝑐, 𝜓⟩, for some
𝜓 ≡ 𝜙. For 𝑘 ∈ N, let 𝜎𝑘 denote the 𝑘-fold repetition of
𝜎. Consider the following properties which may hold of
a learning method 𝐿.

Equivalence If 𝜎 ≡ 𝛿 then 𝐿(𝜎) = 𝐿(𝛿).

Repetition 𝐿(𝜎𝑘) = 𝐿(𝜎).

Soundness 𝐿(𝜎) ⊆ 𝒳 snd
𝜎 .

Equivalence says that 𝐿 should not care about the syn-
tactic form of the input. Repetition says that the output
from 𝐿 should not change if each source repeats their
reports 𝑘 times. Soundness says that all reports in 𝜎 are
conjectured to be sound.

For methods satisfying these properties, we have a pre-
cise characterisation of truth-tracking, i.e. necessary and
sufficient conditions for 𝐿 to solve 𝑄*. First, some new
notation is required. Write 𝛿 ⪯ 𝜎 iff for each ⟨𝑖, 𝑐, 𝜙⟩ ∈ 𝛿
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there is𝜓 ≡ 𝜙 such that ⟨𝑖, 𝑐, 𝜓⟩ ∈ 𝜎. That is, 𝜎 contains
everything 𝛿 does, up to logical equivalence. Set

𝑇𝜎 = 𝒳 snd
𝜎 ∖

⋃︁{︁
𝒳 snd

𝛿 | 𝛿 ̸⪯ 𝜎
}︁
⊆ 𝒲.

Then 𝑊 ∈ 𝑇𝜎 iff 𝜎 is sound for 𝑊 and any 𝛿 sound for
𝑊 has 𝛿 ⪯ 𝜎. In this sense 𝜎 contains all soundness
statements for𝑊 – up to equivalence – so can be seen as
a finite version of a stream. Let us call 𝜎 a pseudo-stream
for 𝑊 whenever 𝑊 ∈ 𝑇𝜎 .

Theorem 5. A method 𝐿 satisfying Equivalence, Rep-
etition and Soundness is truth-tracking if and only if it
satisfies the following property.

Credulity 𝑇𝜎, 𝑐 ̸|= S𝑖𝜙 =⇒ 𝐿(𝜎), 𝑐 |= ¬S𝑖𝜙.

Before the proof, we comment on our interpretation
of Credulity. It says that whenever ¬S𝑖𝜙 is consistent
with 𝑇𝜎 – those 𝑊 for which 𝜎 is a pseudo-stream –
𝐿(𝜎) should imply ¬S𝑖𝜙. Since the number of sound
statements decreases with increasing expertise, this is a
principle of maximal trust: we should believe 𝑖 has the ex-
pertise to rule out 𝜙 in case 𝑐, whenever this is consistent
with 𝑇𝜎 . That is, some amount of credulity is required
to find the truth. Our assumption that learning methods
receive complete streams ensures that, if a source in fact
lacks this expertise, they will eventually report𝜙 and this
belief can be be retracted. A stronger version of Credulity
spells this out explicitly in terms of expertise:

∀𝜎, 𝑖, 𝑐, 𝜙 : 𝑇𝜎, 𝑐 ̸|= ¬E𝑖𝜙 =⇒ 𝐿(𝜎), 𝑐 |= E𝑖𝜙. (1)

(1) implies Credulity in the presence of Soundness, and is
thus a sufficient condition for truth-tracking (when also
taken with Equivalence and Repetition).5

Theorem 5 also shows truth-tracking cannot be per-
formed deductively: the method 𝐿(𝜎) = 𝒳 snd

𝜎 , which
does not go beyond the mere information that each re-
port is sound, fails Credulity. Some amount of inductive
or non-monotonic reasoning, as captured by Credulity, is
necessary.

The rest of this section works towards the proof of
Theorem 5. We collect some useful properties of pseudo-
streams. First, pseudo-streams provide a way of accessing
𝑄* via a finite sequence: 𝑇𝜎 is a cell in 𝑄* whenever it
is non-empty.

Lemma 8. If𝑊 ∈ 𝑇𝜎 , then (i) 𝑊 ′ ∈ 𝒳 snd
𝜎 iff𝑊 ⊑𝑊 ′;

and (ii) 𝑇𝜎 = 𝑄*[𝑊 ].

Proof. Suppose 𝑊 ∈ 𝑇𝜎 . For (i), first suppose 𝑊 ′ ∈
𝒳 snd

𝜎 and 𝑊, 𝑐 |= S𝑖𝜙. Considering the singleton se-
quence 𝛿 = ⟨𝑖, 𝑐, 𝜙⟩ we have 𝑊 ∈ 𝒳 snd

𝛿 . From 𝑊 ∈ 𝑇𝜎

we get 𝛿 ⪯ 𝜎, i.e. there is 𝜓 ≡ 𝜙 such that ⟨𝑖, 𝑐, 𝜓⟩ ∈ 𝜎.

5We conjecture (1) is strictly stronger than Credulity.

From 𝑊 ′ ∈ 𝒳 snd
𝜎 and S𝑖𝜙 ≡ S𝑖𝜓 we get 𝑊 ′, 𝑐 |= S𝑖𝜙.

This shows 𝑊 ⊑𝑊 ′.
Now suppose 𝑊 ⊑ 𝑊 ′ and let ⟨𝑖, 𝑐, 𝜙⟩ ∈ 𝜎. Then

since 𝑊 ∈ 𝑇𝜎 ⊆ 𝒳 snd
𝜎 we have 𝑊, 𝑐 |= S𝑖𝜙, and 𝑊 ⊑

𝑊 ′ gives 𝑊 ′, 𝑐 |= S𝑖𝜙. Consequently 𝑊 ′ ∈ 𝒳 snd
𝜎 .

Now for (ii), first suppose 𝑊 ′ ∈ 𝑄*[𝑊 ]. Then 𝑊 and
𝑊 ′ satisfy exactly the same soundness statements, so
𝑊 ′ ∈ 𝑇𝜎 also. Conversely, suppose 𝑊 ′ ∈ 𝑇𝜎 . Then
𝑊 ′ ∈ 𝒳 snd

𝜎 , so (i) gives 𝑊 ⊑ 𝑊 ′. But we also have
𝑊 ′ ∈ 𝑇𝜎 and 𝑊 ∈ 𝒳 snd

𝜎 , so (i) again gives 𝑊 ′ ⊑ 𝑊 .
Hence 𝑊 ≈𝑊 ′, i.e. 𝑊 ′ ∈ 𝑄*[𝑊 ].

The next two results show that initial segments of
streams are (eventually) pseudo-streams, and that any
pseudo-stream gives rise to a stream.

Lemma 9. If 𝜌 is a stream for 𝑊 , there is 𝑛 such that
𝑊 ∈ 𝑇𝜌[𝑚] for all 𝑚 ≥ 𝑛.

Proof. Let̂︀· be a function which selects a representative
formula for each equivalence class of ℒ0/≡, so that 𝜙 ≡̂︀𝜙 and 𝜙 ≡ 𝜓 implies ̂︀𝜙 is equal to ̂︀𝜓. Note that since
Prop is finite, and since 𝒮 and 𝒞 are also finite, there
are only finitely many reports of the form ⟨𝑖, 𝑐, ̂︀𝜙⟩. By
completeness of 𝜌 for 𝑊 , we may take 𝑛 sufficiently
large so that 𝑊, 𝑐 |= S𝑖 ̂︀𝜙 implies ⟨𝑖, 𝑐, ̂︀𝜙⟩ ∈ 𝜌[𝑛], for all
𝑖, 𝑐, 𝜙. Now, take 𝑚 ≥ 𝑛. We need to show 𝑊 ∈ 𝑇𝜌[𝑚].
Clearly 𝑊 ∈ 𝒳 snd

𝜌[𝑚], since 𝜌 is sound for 𝑊 . Suppose
𝑊 ∈ 𝒳 snd

𝛿 . We need to show 𝛿 ⪯ 𝜌[𝑚]. Indeed, take
⟨𝑖, 𝑐, 𝜙⟩ ∈ 𝛿. Then 𝑊, 𝑐 |= S𝑖𝜙. Since S𝑖𝜙 ≡ S𝑖 ̂︀𝜙,
we have 𝑊, 𝑐 |= S𝑖 ̂︀𝜙. Hence ⟨𝑖, 𝑐, ̂︀𝜙⟩ appears in 𝜌[𝑛],
and consequently in 𝜌[𝑚] too. Since 𝜙 ≡ ̂︀𝜙, this shows
𝛿 ⪯ 𝜌[𝑚].

Lemma 10. If 𝑊 ∈ 𝑇𝜎 and 𝑁 = |𝜎|, there is a stream
𝜌 for 𝑊 such that 𝜌[𝑁𝑘] ≡ 𝜎𝑘 for all 𝑘 ∈ N.

Proof. First note that 𝑊 ∈ 𝑇𝜎 implies 𝜎 ̸= ∅, so 𝑁 >
0. Since ℒ0 is countable, we may index the set of ℒ0

formulas equivalent to 𝜙 ∈ ℒ0 as {𝜙𝑛}𝑛∈N. Let 𝜎𝑛

be obtained from 𝜎 by replacing each report ⟨𝑖, 𝑐, 𝜙⟩
with ⟨𝑖, 𝑐, 𝜙𝑛⟩. Then 𝜎 ≡ 𝜎𝑛. Let 𝜌 be the sequence
obtained as the infinite concatenation 𝜎1 ∘ 𝜎2 ∘ 𝜎3 ∘ · · ·
(this is possible since 𝜎 is of positive finite length). Then
𝜌[𝑁𝑘] = 𝜎1 ∘ · · · ∘ 𝜎𝑘 , and consequently 𝜌[𝑁𝑘] ≡ 𝜎𝑘 .

It remains to show 𝜌 is a stream for 𝑊 . Soundness
of 𝜌 follows from 𝑊 ∈ 𝑇𝜎 ⊆ 𝒳 snd

𝜎 , since every report
in 𝜌 is equivalent to some report in 𝜎 by construction.
For completeness, suppose 𝑊, 𝑐 |= S𝑖𝜙. As in the proof
of Lemma 8, considering the singleton sequence 𝛿 =
⟨𝑖, 𝑐, 𝜙⟩, we get from 𝑊 ∈ 𝑇𝜎 that there is 𝜓 ≡ 𝜙
such that ⟨𝑖, 𝑐, 𝜓⟩ ∈ 𝜎. Hence there is 𝑛 ∈ N such that
𝜙 = 𝜓𝑛, so ⟨𝑖, 𝑐, 𝜙⟩ ∈ 𝜎𝑛, and thus ⟨𝑖, 𝑐, 𝜙⟩ ∈ 𝜌.
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Next we obtain an equivalent formulation of Credulity
which is less transparent as a postulate for learning meth-
ods, but easier to work with.

Lemma 11. Suppose 𝐿 satisfies Soundness. Then 𝐿 sat-
isfies Credulity if and only if 𝐿(𝜎) ⊆ 𝑇𝜎 for all 𝜎 with
𝑇𝜎 ̸= ∅.

Proof. “if”: Suppose 𝑇𝜎, 𝑐 ̸|= S𝑖𝜙. Then there is 𝑊 ∈
𝑇𝜎 such that 𝑊, 𝑐 ̸|= S𝑖𝜙. By our assumption and
Lemma 8, 𝐿(𝜎) ⊆ 𝑇𝜎 = 𝑄*[𝑊 ]. Thus every world
in 𝐿(𝜎) agrees with 𝑊 on soundness statements, so
𝐿(𝜎), 𝑐 |= ¬S𝑖𝜙.

“only if”: Suppose there is some 𝑊 ∈ 𝑇𝜎 , and
take 𝑊 ′ ∈ 𝐿(𝜎). We need to show 𝑊 ′ ∈ 𝑇𝜎 ; by
Lemma 8, this is equivalent to 𝑊 ≈ 𝑊 ′. First suppose
𝑊, 𝑐 |= S𝑖𝜙. Then 𝑊 ∈ 𝑇𝜎 implies there is 𝜓 ≡ 𝜙
such that ⟨𝑖, 𝑐, 𝜓⟩ ∈ 𝜎. By Soundness for 𝐿, we have
𝑊 ′ ∈ 𝐿(𝜎) ⊆ 𝒳 snd

𝜎 . Consequently 𝑊 ′, 𝑐 |= S𝑖𝜓 and
thus 𝑊 ′, 𝑐 |= S𝑖𝜙. This shows 𝑊 ⊑ 𝑊 ′. Now sup-
pose 𝑊, 𝑐 ̸|= S𝑖𝜙. Then 𝑇𝜎, 𝑐 ̸|= S𝑖𝜙. By Credulity,
𝐿(𝜎), 𝑐 |= ¬S𝑖𝜙. Hence 𝑊 ′, 𝑐 ̸|= S𝑖𝜙. This shows
𝑊 ′ ⊑𝑊 . Thus 𝑊 ≈𝑊 ′ as required.

Finally, we prove the characterisation of truth-
tracking.

Proof of Theorem 5. Suppose 𝐿 satisfies Equivalence,
Repetition and Soundness.

“if”: Suppose Credulity holds. We show 𝐿 solves 𝑄*.
Take any world 𝑊 and stream 𝜌 for 𝑊 . By Lemma 9,
there is 𝑛 such that 𝑊 ∈ 𝑇𝜌[𝑚] for all 𝑚 ≥ 𝑛. By
Lemma 8, 𝑇𝜌[𝑚] = 𝑄*[𝑊 ] for such 𝑚. In particu-
lar, 𝑇𝜌[𝑚] ̸= ∅. By Credulity and Lemma 11, we get
𝐿(𝜌[𝑚]) ⊆ 𝑇𝜌[𝑚] = 𝑄*[𝑊 ].

“only if”: Suppose 𝐿 solves 𝑄*. We show Credulity
via Lemma 11. Suppose there is some 𝑊 ∈ 𝑇𝜎 , and
write 𝑁 = |𝜎| > 0. By Lemma 10, there is a stream
𝜌 for 𝑊 such that 𝜌[𝑁𝑘] ≡ 𝜎𝑘 for all 𝑘 ∈ N. By Rep-
etition and Equivalence, 𝐿(𝜎) = 𝐿(𝜎𝑘) = 𝐿(𝜌[𝑁𝑘]).
But 𝐿 solves 𝑄*, so for 𝑘 sufficiently large we have
𝐿(𝜌[𝑁𝑘]) ⊆ 𝑄*[𝑊 ] = 𝑇𝜎 . Hence, going via some
large 𝑘, we obtain 𝐿(𝜎) ⊆ 𝑇𝜎 as required.

6.2. Conditioning Methods
In this section we turn to the family of conditioning meth-
ods, proposed in [1] and inspired by similar methods in
the belief change literature [22]. While our interpreta-
tion of input sequences is different – we read ⟨𝑖, 𝑐, 𝜙⟩ as
𝑖 reporting 𝜙 is possible in case 𝑐, whereas Singleton and
Booth [1] read this as 𝑖 believes 𝜙 – this class of methods
can still be applied in our setting.

Conditioning methods operate by successively restrict-
ing a fixed plausibility total preorder6 to the information
6A total preorder is a reflexive, transitive and total relation.

corresponding to each new report ⟨𝑖, 𝑐, 𝜙⟩. In this pa-
per, we take a report ⟨𝑖, 𝑐, 𝜙⟩ to correspond to the fact
that S𝑖𝜙 holds in case 𝑐; this fits with our assumption
throughout that sources only report sound statements.7

Thus, the worlds under consideration given a sequence
𝜎 are exactly those satisfying all soundness statements
in 𝜎, i.e. 𝒳 snd

𝜎 . Note that 𝒳 snd
𝜎 represents the indefeasible

knowledge given by 𝜎: worlds outside 𝒳 snd
𝜎 are elimi-

nated and cannot be recovered with further reports, since
𝒳 snd

𝜎∘𝛿 ⊆ 𝒳 snd
𝜎 . The plausibility order allows us to rep-

resent defeasible beliefs about the most plausible worlds
within 𝒳 snd

𝜎 .

Definition 4. For a total preorder ≤ on 𝒲 , the condi-
tioning method 𝐿≤ is given by 𝐿≤(𝜎) = min≤ 𝒳 snd

𝜎 .

Note that since 𝒳 snd
𝜎 ̸= ∅ for all 𝜎8 and 𝒲 is finite,

𝐿≤ is consistent. Moreover, 𝐿≤ satisfies Equivalence,
Repetition and Soundness.

Example 9. We recall two concrete choices of ≤ from
Singleton and Booth [1].

1. Set 𝑊 ≤𝑊 ′ iff 𝑟(𝑊 ) ≤ 𝑟(𝑊 ′), where

𝑟(𝑊 ) = −
∑︁
𝑖∈𝒮

|{𝑝 ∈ Prop | Π𝑊
𝑖 [𝑝] = ‖𝑝‖}|.

The most plausible worlds in this order are those in
which source have as much expertise on the propo-
sitional variables as possible, on aggregate. We
denote the corresponding conditioning method by
𝐿vbc, standing for variable-based conditioning.

2. Set 𝑊 ≤𝑊 ′ iff 𝑟(𝑊 ) ≤ 𝑟(𝑊 ′), where

𝑟(𝑊 ) = −
∑︁
𝑖∈𝒮

|Π𝑊
𝑖 |.

This order aims to maximise the number of cells
in each source’s partitions, thereby maximising the
number of propositions on which they have exper-
tise. Note that the propositional variables play no
special role. We denote the corresponding condi-
tioning operator by 𝐿pbc, for partition-based con-
ditioning.

A straightforward property of ≤ characterises truth-
tracking for conditioning methods. For a generic total
preorder ≤, let < denote its strict part.

Theorem 6. 𝐿≤ is truth-tracking if and only if

𝑊 ⊏𝑊 ′ =⇒ ∃𝑊 ′′ ≈𝑊 such that 𝑊 ′′ < 𝑊 ′. (2)

7Singleton and Booth [1] consider more general conditioning meth-
ods in which this choice is not fixed.

8For example, if Π𝑊
𝑖 = {𝒱} for all 𝑖 then 𝑊 ∈ 𝒳 snd

𝜎 for all 𝜎.
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Figure 3: Worlds which demonstrate 𝐿vbc is not truth-
tracking.

Like Credulity, (2) is a principle of maximising trust in
sources. Recall from that Lemma 1 that 𝑊 ⊏𝑊 ′ means
all sources are more knowledgeable in each case in 𝑊
than in 𝑊 ′, and there is at least one source and case
for which this holds strictly. If we aim to trust sources
as much as possible, we might impose 𝑊 < 𝑊 ′ here;
then 𝑊 ′ is strictly less plausible and will be ruled out
in favour of 𝑊 . This yields a sufficient condition for
truth-tracking, but to obtain a necessary condition we
need to allow a “surrogate” world 𝑊 ′′ ≈𝑊 to take the
place of 𝑊 .

Proof of Theorem 6. Write 𝐿 = 𝐿≤. Since 𝐿 satisfies
Equivalence, Repetition and Soundness, we may use The-
orem 5. Furthermore, it is sufficient by Lemma 11 to
show that (2) holds if and only if 𝐿(𝜎) ⊆ 𝑇𝜎 , whenever
𝑇𝜎 ̸= ∅.

“if”: Suppose 𝑊 ⊏ 𝑊 ′. Let 𝜎 be some pseudo-
stream for 𝑊 , so that 𝑊 ∈ 𝑇𝜎 .9 Note that since
𝑊 ∈ 𝑇𝜎 ⊆ 𝒳 snd

𝜎 and 𝑊 ⊏ 𝑊 ′, we have 𝑊 ′ ∈ 𝒳 snd
𝜎

also. By assumption, 𝐿(𝜎) ⊆ 𝑇𝜎 = 𝑄*[𝑊 ]. Since
𝑊 ̸≈ 𝑊 ′, this means 𝑊 ′ ∈ 𝒳 snd

𝜎 ∖ 𝐿(𝜎). That is, 𝑊 ′

lies in 𝒳 snd
𝜎 but is not ≤-minimal. Consequently there

is 𝑊 ′′ ∈ 𝒳 snd
𝜎 such that 𝑊 ′′ < 𝑊 ′. Since 𝐿 is con-

sistent, we may assume without loss of generality that
𝑊 ′′ ∈ 𝐿(𝜎). Hence 𝑊 ′′ ∈ 𝑄*[𝑊 ], so 𝑊 ′′ ≈𝑊 .

“only if”: Suppose there is some 𝑊 ∈ 𝑇𝜎 , and let
𝑊 ′ ∈ 𝐿(𝜎). We need to show 𝑊 ′ ∈ 𝑇𝜎 = 𝑄*[𝑊 ], i.e.
𝑊 ≈ 𝑊 ′. Since 𝑊 ′ ∈ 𝐿(𝜎) ⊆ 𝒳 snd

𝜎 , Lemma 8 gives
𝑊 ⊑ 𝑊 ′. Suppose for contradiction that 𝑊 ̸≈ 𝑊 ′.
Then 𝑊 ⊏ 𝑊 ′. By (2), there is 𝑊 ′′ ≈ 𝑊 such that
𝑊 ′′ < 𝑊 ′. But 𝑊 ′ is ≤-minimal in 𝒳 snd

𝜎 , so this must
mean 𝑊 ′′ /∈ 𝒳 snd

𝜎 . On the other hand, 𝑊 ′′ ∈ 𝑄*[𝑊 ] =
𝑇𝜎 ⊆ 𝒳 snd

𝜎 : contradiction.

Example 10. We revisit the methods of Example 9.

1. The variable-based conditioning method 𝐿vbc is
not truth-tracking. Indeed, consider the worlds

9For example, pick some stream 𝜌 and apply Lemma 9 to obtain a
pseudo-stream.

𝑊 and 𝑊 ′ shown in Fig. 3, where we assume
Prop = {𝑝, 𝑞}, 𝒮 = {𝑖} and 𝒞 = {𝑐}. Then
𝑊 ⊏𝑊 ′ (e.g. by Lemma 1). Note that 𝑖 does not
have expertise on 𝑝 or 𝑞 in both 𝑊 and 𝑊 ′, so
𝑟(𝑊 ) = 𝑟(𝑊 ′) = 0. Moreover, 𝑖’s partition is
uniquely determined in 𝑄*[𝑊 ] by Theorem 4, so
if 𝑊 ′′ ≈𝑊 then 𝑟(𝑊 ′′) = 0 also. That is, there
is no 𝑊 ′′ ≈ 𝑊 such that 𝑊 ′′ < 𝑊 ′. Hence (2)
fails, and𝐿vbc is not truth-tracking. Intuitively, the
problem here is that since 𝑖’s expertise is not split
along the lines of the propositional variables when
𝑊 is the actual world, 𝐿vbc will always maintain
𝑊 ′ as a possibility.

2. The partition-based conditioning method 𝐿pbc is
truth-tracking. Indeed, if 𝑊 ⊏ 𝑊 ′ we may
construct 𝑊 ′′ from 𝑊 by modifying the parti-
tion of each source 𝑖 so that all valuations out-
side of

⋃︀
𝑐∈𝒞 Π𝑊

𝑖 [𝑣𝑊𝑐 ] lie in their own cell. Then
𝑊 ≈𝑊 ′′. One can show that Π𝑊 ′′

𝑖 refines Π𝑊 ′
𝑖

for all 𝑖 ∈ 𝒮 , and there is some 𝑖 for which the
refinement is strict. Hence the partitions in 𝑊 ′′

contain strictly more cells, so 𝑊 ′′ < 𝑊 ′.

7. Conclusion
Summary. In this paper we studied truth-tracking in
the presence of non-expert sources. The model assumes
sources report everything true up to their lack of exper-
tise, i.e. all that they consider possible. We obtained
precise characterisations of when truth-tracking meth-
ods can uniquely find the valuations and partitions of a
world 𝑊 . We then gave a postulational characterisation
of truth-tracking methods under mild assumptions, be-
fore looking specifically at the conditioning methods of
Singleton and Booth [1].

Limitations and future work. Conceptually, the as-
sumption that streams are complete is very strong. As
seen in Example 3, completeness requires sources to
give jointly inconsistent reports whenever Π𝑖[𝑣𝑐] con-
tains more than just 𝑣𝑐. Such reports provide informa-
tion about the source’s expertise: if 𝑖 reports both 𝜙
and ¬𝜙 we know ¬E𝑖𝜙. To provide all sound reports
sources must also have negative introspection over their
own knowledge, i.e. they know when they do not know
something. Indeed, our use of partitions makes expertise
closely related to S5 knowledge [1, 20], which has been
criticised in the philosophical literature as too strong. In
reality, non-expert sources may have beliefs about the
world, and may prefer to report only that which they
believe. A source may even believe a sound report 𝜙 is
false, since soundness only says the source does not know
¬𝜙. For example, in Example 1 the doctor D may think it
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is more likely that𝐴 suffers from 𝑝 than 𝑞, but we cannot
express this in our framework.

On the technical side, our results on solvability of 𝑄*

and the characterisation of Theorem 5 rely on the fact that
we only consider finitely many worlds. In a sense this
trivialises the problem of induction as studied by Kelly
et al. [11], Baltag et al. [21], among others. In future work
it would be interesting to see which results can be carried
over to the case where Prop is infinite.
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