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Abstract

In this work, we propose a depth estimation from a monocular thermal image for drones. The highest
flight speed of a drone is generally approximate 22.2 m/s, and long-distant depth information is crucial
for autonomous since if the long-distance information is unavailable, the drone flying at high speeds is
prone to collision. However, the sensors which can measure long-distance are too heavy to be equipped
on drones. Therefore, autonomous drones apply a depth estimation method from a monocular camera.
However, autonomous drones using the usual monocular camera depth estimation method do not operate
properly during nighttime flights. Therefore, we propose a depth estimation method using a thermal
camera, which is capable of capturing details even at night. Depth estimation based on thermal images
alone has the problem of accuracy degradation due to noise in the thermal images. Therefore, we propose
a method to improve accuracy by embedding optical flow, focusing on the fact that the drone is moving.
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1. Introduction

Drones have been popular in recent years since drones are expected to play many roles. Au-
tonomous drones are being used to maximize the convenience of drones. In terms of autonomous
flights of drones, collision avoidance has been indispensable and regarded as one of the crucial
issues. Typically, conventional solutions have employed distance sensors [1, 2, 3, 4, 5, 6]. How-
ever, such sensors with high performance are usually too heavy, and power-consuming to equip
on a drone. In contrast, low-performance depth sensors can hardly have long-distance vision
with high accuracy and would rather increase the risk of collisions with objects. Therefore,
these problems are solved by using a lightweight monocular camera to estimate long distances
(7, 8,9, 10]. However, these methods do not work well for nighttime estimation since they are
designed for daytime. Therefore, the use of a thermal camera, which is capable of capturing
details even in dark places such as at night, enables depth estimation compared to our previous

The 4th International Symposium on Advanced Technologies and Applications in the Internet of Things (ATAIT
2022), August 24-26, 2022, Ibaraki, Japan

“Corresponding author.

"These authors contributed equally.

@] tomoyasu.shimada@tomiyama-lab.org (T. Shimada); nishikawa.hiroki@ist.osaka-u.ac.jp (H. Nishikawa);
kong(@fc.ritsumei.ac.jp (X. Kong); ht@fc.ritsumei.ac.jp (H. Tomiyama)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0)

Lo == CEUR Workshop Proceedings (CEUR-WS.org)

43



methods [11]. However, since this method uses only the information from the thermal camera
for depth estimation, it is affected by noise and other factors that reduce its accuracy.

Based on the above, this paper proposes long-range thermal depth estimation using optical
flow for drones’ safe night flight. In addition, the proposed method is higher accuracy and lower
collision rate than a conventional method. Our contributions are the following three points.

« This paper is the first to propose a depth estimation method that embeds optical flow in
thermal images.

+ The proposed method using a thermal camera enables long-range estimation at night,
which could not be achieved with monocular images.

« In addition, The proposed method improves the accuracy of conventional thermal image
depth estimation, contributing to a reduction in drone collision rates.

The rest of this paper is organized as follows. Section 2 shows related work on autonomous
drone methods and depth estimation. Section 3 describes a proposed method. Section 4 shows
the experimental results and Section 6 concludes this paper.

2. Related Work

There has been a lot of work associated with autonomous drones for several decades. A great
deal of work has been devoted to flight safety, which is especially needed to prevent collisions
with objects. One of the collision avoidance methods is the vision-based method. Vision-based
collision avoidance methods use LiDAR images, time-of-flight (ToF) images, stereo images, and
monocular images. In [12, 1, 2], the authors propose collision avoidance methods for a drone by
using LiDAR. However, mounting a high-performance sensor such as LiDAR on a drone would
result in an increase in weight. Since drones fly on limited battery power, increased weight
increases power consumption, which can lead to problems such as not being able to fly long
distances or not being able to take off in the first place.

In order to tackle these issues, the approaches of [6, 4, 3] propose obstacle avoidance methods
for a safe flight using a lightweight and small depth camera or a stereo camera. The presented
methods make a drone possible to avoid obstacles on-the-fly by determining an optimum
waypoint on depth images. The work in [4], which is inspired by [3, 6], proposes a collision
avoidance algorithm. This algorithm divides the image from the depth camera into five hori-
zontal sections and determines the furthest section of the image as the direction of the drones.
However, depth cameras with relatively low weight such as Azure Kinect, which is measurable
only up to 10 m, released by Microsoft can hardly be installed on a drone since the drone is
forced to low-speed flight for safety [13]. In this context, depth estimation from a monocular
camera, which can overlook farther than a depth camera, has been attractive.

In the studies [7, 8], the authors present Support Vector Machine (SVM) based on depth
estimation methods. The systems estimate depth from manually created features each patch
divided from a monocular image. In these methods, features are obtained by a pre-trained SVM
classifier. However, the accuracy of these methods is low as a result of handheld training data.
In [14, 15, 16, 17], the authors present based on Convolutional Neural Networks (CNN). The
CNN-based methods improve the accuracy of depth estimation more than the SVM method in
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[7, 8]. However, the accuracy is still not sufficient enough since the network of these methods in
[14, 15, 16, 17] is too simple to estimate depth accurately. In [18], a transformer-based method
improves accuracy over CNN-based depth estimation methods. The transformer-based method
[18] is enough accurate for secure flight. However, the method has a so this method is seemingly
not suitable for the system for small devices like drones. In the study [10], we propose a method
to pre-process the input image by embedding optical flow information in the image using a
lightweight CNN. Our previous method [10] improves accuracy using a model with a small
computational load, Pix2Pix, and succeeds in reducing the drone collision rate. However, while
this method works during the daytime, the inability to acquire object edges at night significantly
reduces the accuracy of estimation in dark areas. Therefore, there is a need for a method to
estimate depth from thermal images, which can depict the edges of objects even in dark places
such as at night.

However, there is currently no publicly available dataset that pairs thermal and depth images.
In the study [19], the authors propose a method for depth estimation from thermal images using
self-supervised learning. However, it is concluded that this method can only estimate a distance
of 15 m to 20 m so this method is not suitable for a drone flight. In our previous work [11],
we created a dataset consisting of 8,000 pairs of thermal and depth images on AirSim [20] and
showed that depth estimation is possible with Pix2Pix [21]. We also conclude that the model
trained on the simulator can be used to estimate long-range depth with a real thermal camera.
However, the accuracy of this work [11] is not sufficient. In this paper, inspired by our previous
work [10], we propose a depth estimation method that improves accuracy and reduces collision
rate by pre-processing the input images using AirSim dataset.

3. Monocular Depth Estimation with Optical Flow Using AirSim

In this section, we present the depth estimation method from a monocular thermal camera. We
employ Pix2Pix [21], which is one of the image translation techniques, to generate a depth map
since it is a lightweight network and accurate more than other lightweight networks. Figure
1 shows the system overview of our proposed method. As shown in Figure 1, the proposed
method consists of three parts: In the first part, the system generates an optical flow map from
two serial frames. Second, the system embeds the generated optical flow map into a monocular
thermal image. Finally, the Pix2Pix-based model estimates a depth map from the optical flow
embedded image. In the following, we detail each part of the proposed method.

3.1. AirSim Dataset

In this work, to evaluate flight performance, we employ AirSim [20] to create the dataset
for training and testing. AirSim is the most visually and physically realistic drone simulator
available. AirSim uses UE4 as its virtual environment and can obtain various information
from each object’s mesh information. For example, the images obtained by a drone on AirSim
can include RGB images, depth information from object placement coordinates, semantic
segmentation images from object IDs, and thermal images from temperature information.
Figure 2a shows a thermal image in the AirSim environment. Figure 2b shows a depth image
in the AirSim environment. As shown in Figure 2, AirSim can obtain long-range depth and
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Figure 1: System overview of the proposed method [10].

(a)

Figure 2: AirSim [20] views:(a) Thermal image, (b) Depth map.

thermal images derived from mesh information at the same frame. In addition, since the drones
in AirSim are assumed to be shooting from the same point, there is no need to account for
parallax disparity due to sensor misalignment, which makes data set creation easy.

3.2. Optical Flow Generation and Embedding into Thermal Images

This method is inspired by the work [10]. We employ a general dense optical flow technique
called Farneback method [22]. There is a method to generate sparse optical flow, but the sparse
optical flow has lack information and cannot be effectively utilized.

We focused on the characteristics of the drone which is a mobile. In the drone view, close ob-
stacles move larger and distant obstacles move smaller. Therefore, the optical flow displacement
obtained from the drone viewpoint can be regarded as a simplified depth image. In the proposed
method, a simplified depth image is created from the luminance values since the luminance
values of the optical flow represent displacement. However, feature extraction is difficult to
estimate depth from this simplified depth image because the simplified depth image cannot
depict the edges of objects well.

In this work, we embed part of the pixel information of the simplified depth image into a
thermal image to complement object edges and to make effective use of simple depth images.
The concept of the proposed method is based on the atrous convolution in [23], which embeds
the information of the simplified depth image into the thermal image. The simplified depth
image is embedded at 5-pixel intervals so that the features of the original thermal image are
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Figure 3: A concept of embedding a simplified depth image into a thermal image [10].

not lost. Figure 3 shows an example that a simplified depth image is embedded into a thermal
image. Each pixel is embedded into the original thermal image. This embedding method is
expressed in Equation (1).

Egum) = Tin,m) (nmod5#0 u mmod5+#0 U Sy, =0) )
i Stnm) (nmod5=0 n mmod5=0 n  Sp,, #0)

E(, m) represents the pixel value of the simplified depth image at the pixel position of (n, m)
embedded in the thermal image. T, ) is the pixel value of the thermal image at the (n, m) pixel
position and S, ) is the pixel values of simplified depth image at the (n, m) pixel position. As
shown in Equation (1), a simplified depth image is embedded in the thermal image at regular
intervals, so the information in the simplified depth image without edges can be effectively
utilized.

3.3. Pix2Pix-based Depth Estimation

In this work, our proposed method is based on Pix2Pix to generate a depth image from a thermal
image [21]. Pix2Pix is a well-known image translation method based on CGAN [24]. CGAN
consists of two networks such as a generator and a discriminator. The generator is used to
generate images and The discriminator is used to identify real images and generated images. The
generator of Pix2Pix consists of 7 convolution layers and 7 deconvolution layers for the encoder
and decoder for a total of 14 layers. It also employs U-Net [25], which has skip connections
between the encoder and the decoder at the same layer to prevent the lack of information during
decoding.

The objective of the CGAN that we have employed is as shown in the following equation,
which is referred to [21].

Z64NG, D) = Eg gi|log D(E, gt)|+
E;[log(1 — D(E, G(E, n))]
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Here, E is an embedded image and Y is the ground truth. D(E,Y) is the probability of
identifying the ground truth as ground truth by the discriminator, and D(E, G(E,n)) is the
probability of identifying the depth estimation image as ground truth by the discriminator. As
shown in Equation (2), this loss function has the property that it gives large losses when the
performance of the discriminator exceeds the performance of the generator, and small losses
when the performance of the generator exceeds the performance of the discriminator. Therefore,
by providing this loss to the Generator during training, it is possible to generate a plausible
image. However, this loss depends on only two networks, so the accuracy of depth estimation
does not improve much. In order to solve this problem, it is effective to add the following L1
norm to the objective of CGAN.

Z11(G) = Egy olllY — G(E,n)l|;] 3)

The L1 norm gives the absolute error between the ground-truth and depth-estimated images
as a loss, allowing for absolute evaluation. The accuracy is expected to improve because the
depth-estimated image works against the ground-truth error. By combining these two loss
functions, the generator for depth estimation will be high accuracy. Therefore, the objective of
Pix2Pix is as follows. wy; is the weight of L1 norm. This parameter can be set during training.

G =arg Irgn max ZeoaN(G, D) + w1 Z11(G) (4)

The Discriminator learns to maximize this Equation (4), and the Generator learns to minimize
it. Therefore, the Generator needs not only to make the Discriminator decide that the image is
ground truth but also to generate an image that is closer to ground truth.

4. Experiments

In this section, we evaluate our method in terms of accuracy and performance to avoid collisions.

We use Intel Core 17-9700K (64 GB of main memory) and NVIDIA GeForce RTX 2070 SUPER.
Dataset, which is used for training, validation, and testing, is collected from four maps provided
in the AirSim environment; City Environment, Coastline, Neighborhood, and Soccer Field.

4.1. Comparison Accuracy between Proposed Method and Related Work

In order to evaluate the depth estimation error of models, we use rooted mean squared error
(RMSE) and absolute relative error (Rel.) metrics. Equation (5) shows RMSE.

1 N
= > -w?
Ni:l l

Here, vl-Y is ground truth value, v; is estimation value, and Nis number of data. RMSE is used to
measure how many outliers are in the depth estimation model. Equation (6) shows Rel..

RMSE = (5)

N LY
1« v =l

Rel.= = ) ——+ (6)
NH ViY
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Specifically, the accuracy metrics are defined as:

Y
Card ({v, : max(l;, v—i) < 1.25”})

Vi Y
Oy =

Card ({3:})
This metric is called threshold accuracy. The threshold accuracy is higher is better. In this
experiment, we will compare with the conventional method and evaluate the accuracy and
error when the weights of L1 (wy ;) are changed. Table 1 shows the result of the evaluation of

our proposed method and the comparison between the proposed method and a conventional
method [11].

(n=1,2,3) (7)

Table 1
Error and accuracy evaluation varying w;; and other methods.
Error (|) Accuracy (7)
Wri
RMSE Rel. 5 5 5,
Pix2Pix[11] 100 7.083 0.536 0.702 0.820 0.893
0 7.118 0.548 0.669 0.783 0.867
roposed 100 7.064 0.516 0.708 0.831 0.901
prop 200 6.986 0.528 0.710 0.832 0.901
300 6.906 0.418 0.720 0.832 0.908

The error is the lower, the better, and the accuracy is the higher, the better. As shown in
Table 1, when wy is zero, the error and the accuracy are the worst compared to other models.
Then the method without optical flow [11] is better than wy; is zero, and the method [11] is
worse than the other models. The results show that increasing wy; improves the accuracy and
error.

First, consider that the accuracy and error were worst when wy; was 0. The L1 norm calculates
the absolute error and back-propagates to the model. On the other hand, the GAN loss is back
propagated to the model using the results of the Discriminator, which quantifies plausibility, as
the error. Therefore, it is thought that accuracy is improved by prioritizing absolute error over
plausibility in depth estimation. Next, we discuss the superiority of the proposed method using
optical flow over a conventional method [11]. Essentially, embedding a pixel from a simple
depth image in a thermal image could result in an outlier in the accuracy of the corresponding
pixel. However, CNN improves accuracy because it can take into account the pixel in question
and surrounding pixels. Therefore, even if the pixel in question is an outlier, the accuracy of
the surrounding pixels will be better than with conventional methods.

The following subsection describes the performance of these models when used on drones.

4.2. Safe Flight Evaluation in AirSim Environment

In this section, we perform a drone flight simulation using AirSim to demonstrate that the
proposed method of depth estimation from thermal images can be a safe flight. In order to
achieve the safe flight of an autonomous drone, it is necessary to plan a path for the drone to
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Table 2
Comparison of collision rate.

Collision Rate (%)

Map
Pix2Pix[11] Proposed
City environment 57.83 51.81
Coastline 51.25 31.75
Neighborhood 1.00 0.50
Soccer Field 5.50 5.25
AVERAGE 19.25 12.50

avoid collision with an obstacle itself, based on the depth estimation results. In the experiments,
we use a state-of-the-art path planning method from depth map for autonomous drones, which
is developed in [6]. We compare the collision rates represented by the number of collisions
against the total number of flights. We define the collision rate as Equation (8)

No. of Collisions

Collision Rate =
outsion fate = . of Flights (i.e., 400 flights in total)

(8)

If the drone collides with an obstacle even once during a single flight, the number of collisions
is counted as one. In the experiments, we use Windows 10Pro OS with 64GB main memory,
Intel Core i7-9700K CPU, and NVIDIA GeForce RTX 2070 SUPER GPU. Depth estimation is
processed by the CPU, as it is not consistent with the real drone when done on the GPU
[10]. The flight simulation is conducted 400 times for each of the maps, which represent City,
Coastline, Neighborhood, and Soccer Field. We compare two methods. The first method is
the Pix2Pix-based method as a conventional method [11]. The second method is the proposed
method that wy; is 300. Table 2 shows the results of the collision rate in each map of AirSim.

As shown in Table 2, our proposed method makes it possible to obtain a lower collision rate
than the method presented in [11]. Although the processing time is longer due to the optical
flow processing, it is thought that the collision rate is reduced due to the highly improved
accuracy.

5. Conclusion

We have developed an effective method for embedding optical flow diagrams into depth estima-
tion using thermal images for dark environments such as nighttime. The collision rate of the
proposed method achieves lower results than related works. Even using a lightweight model
called Pix2Pix, we were able to improve the accuracy of thermal image depth estimation to a
practically feasible level by devising input images. Even when Pix2Pix with the optical flow
is used, the results show that there were few collisions. In order to implement the proposed
method on actual drones, it is necessary to install a small high-performance computer such as
the Jetson Xavier NX. Our future work is to study and develop a system of faster inference time
so that it can be used in actual drones. The ablation study of our proposed method is also a
future task. In addition, we will improve the network of depth estimation which can utilize
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simplified depth images and a thermal image in a real environment. Finally, we will experiment
to evaluate the effectiveness of the proposed method in a real environment with actual drones.
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