
A Heuristic Scheduling Algorithm with Variable-Cycle 
Approximate Functional Units in High-Level Synthesis 

Koyu Ohata1 Hiroki Nishikawa2 Xiangbo Kong1 Hiroyuki Tomiyama1

1 Graduate School of Science and Engineering, Ritsumeikan University, Shiga, Japan
2 Graduate School of Information Science and Technology, Osaka University, Osaka, Japan

Abstract 
Computational approximation is a promising paradigm to exploit hardware capabilities or 
mitigate computational demands, taking advantage of inherent tolerance to errors in 
applications. For several decades, a variety of works for approximate computing have been 
extensively studied. In particular, accuracy-controllable approximate functional units have 
been developed to be configurable to control the accuracy at runtime. To satisfy the 
requirement of performance, hardware cost and accuracy, the techniques for design space 
exploration are important since the excessive use of approximate circuits results in loss of 
accuracy, while that of accurate circuits can hardly meet time constraints. This paper proposes 
a list scheduling algorithm in the high-level synthesis of accuracy-controllable approximate 
functional units with variable latency. The experiments demonstrate that our proposed 
scheduling method can efficiently explore the trade-offs between performance, hardware cost, 
and accuracy in a practical time, compared to the state-of-the-art methods. 

Keywords  1 
High-level synthesis, approximate computing, scheduling, approximate multiplication, list 
scheduling

1. Introduction

Approximate computing is attracting attention to rapidly designing high-performance, low-cost and
low-power circuits for error-tolerant applications such as image processing and machine learning. 
Design techniques for approximate arithmetic circuits have been studied at various design levels, from 
the transistor to the architecture level [1-2]. The quality requirements of an error-tolerant application 
using approximate computing may vary significantly at runtime. There have appeared several works 
[3-5] on approximate functional units that can dynamically change accuracy at runtime. A carry-
maskable adder [3] was proposed to enable dynamically selecting the length of the carry propagation 
to satisfy the quality requirements. Also, an accuracy-controllable multiplier [4] was proposed where 
the last stage is generated by a carry-maskable adder. The approximate multiplier has an additional 
input, and it is utilized to control the error at the output. If the error is large, the latency and power of 
the circuit will be small. On the other hand, if the error is reduced, the latency and power of the circuit 
will be large. Thus, the trade-off between error, power, and latency can be optimized at runtime by 
using a functional unit with variable accuracy. Further on, the work in [5] proposed an approximate 
multiplier that can dynamically change its accuracy by using a digital signal processor (DSP) with an 
embedded field-programmable gate array (FPGA). These studies show that the more inaccurate the 
computation, the faster it becomes.

There is a large amount of literature on high-level synthesis (HLS) of approximate computing 
circuits such as [6-8]. Unfortunately, most of the works previously mentioned have paid little attention 
to allocation, scheduling, and binding algorithms, which are the crucial techniques in HLS. Regarding 
HLS techniques aware of accuracy-controllable approximate functional units, there is the work [9]. The 

The 4th International Symposium on Advanced Technologies and Applications in the Internet of Things (ATAIT 2022), August 24-26, 2022, 
Ibaraki, Japan
EMAIL: koyu.ohata@tomiyama-lab.org (K. Ohata); nishikawa.hiroki@ist.osaka-u.ac.jp (H. Nishikawa); kong@fc.ritsumei.ac.jp (X. Kong); 
ht@fc.ritsumei.ac.jp (H. Tomiyama)

2022 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0). 

CEUR Workshop Proceedings (CEUR-WS.org) 



work in [9] focused on accuracy-controllable functional units that can take variable cycles and proposed 
a scheduling scheme that takes into account the difference in delays between accurate and approximate 
computations in order to efficiently use accuracy-controllable approximate functional units. Their 
experiments show that it realized the tradeoffs between the errors, the resource, and the time constraints. 
However, the scheduling technique was based on integer linear programming (ILP) and the runtime for 
scheduling becomes exponentially longer as increasing the problem sizes. In order to solve the issue 
above, this paper presents a heuristic scheduling algorithm in HLS. Our proposal is based on a resource-
constrained list scheduling algorithm and aims to minimize the output error by switching approximate 
functional units that cause large errors in the output values to accurately with satisfying the resource 
and time constraints. 

The remainder of the paper is organized as follows: Section II shows scheduling with variable-cycle 
functional units in HLS, and we propose a heuristic scheduling algorithm to solve this scheduling 
problem in polynomial time. Section III evaluates our proposed algorithm by comparing it to existing 
work. Finally, we conclude this paper in Section IV.

2. Variable-Cycle Scheduling in High-Level Synthesis

2.1. Variable-Cycle Scheduling 

This section presents algorithm [9] for scheduling variable-cycle approximate functional units. In 
the following section, for simplicity, we have an assumption that there are two types of functional units 
in the scheduling problem: accuracy-controllable multiplier and arithmetic logic unit (ALU). An 
accuracy-controllable multiplier, which has been developed in [5], is capable of dual operation modes. 
One is called accurate mode that the multiplication takes two cycles and does not produce the error. 
The other is called approximate mode that takes a single cycle and allows the error. A function other 
than multiplication is assumed to use an ALU that takes a cycle. Variable-cycle scheduling determines 
not only a schedule of operations in control states but also the accuracy mode for each multiplication 
simultaneously, with the goal of error minimization at the output under a given resource and time
constraint. It should be noted that our proposed algorithm can be easily extended to consider another 
specific functional unit, not ALU, and to enable its functional unit to take several execution modes as 
well as the accuracy-controllable multiplier. The number of cycles for each function is not limited to 
the assumption above. Although this work is targeted at multipliers [5] that can dynamically change 
their computational accuracy, it can extend to other approximate adders [10, 11] and multipliers [12,
13].

An example of variable cycle scheduling is shown in Figure 1. We are given a data flow graph 
(DFG) as a directed acyclic graph. Each node represents an operation and each edge represents 
precedence dependency between the operations. The DFG in this example consists of two accuracy-
controllable multipliers and two ALUs. The notation labeled as means a control state. For instance, 

1 is the first state and is the second state. Figure 1 (a) shows that the multiplications are 
approximated (determined to take one cycle), and it results in the shortest cycles (three cycles) but the 

Figure 1: An example of variable-cycle scheduling 



largest error due to the approximation at the 
same time. In contrast, the multiplications in 
Figure 1 (b) are determined to execute in the 
accurate mode so that the operations can 
achieve the smallest error at the expense of the 
performance (four cycles). Figure 1 (c) shows 
variable-cycle scheduling. Unlike Figure 1 (b), 
the multiplication in the middle is 
approximated, and the generated circuit 
achieves shorter cycles than that of Figure 1
(b). In addition, multicycling the rightmost 
multiplication realizes a circuit with an 
accuracy higher than that of Figure 1 (a).

2.2. Proposed List Scheduling 
Algorithm 

We propose a heuristic algorithm for the 
variable-cycle scheduling problem and show a 
pseudo code in Algorithm 1. Our scheduling 
algorithm is based on a typical resource-
constrained list scheduling. Given a DFG 

, our algorithm determines a schedule 
of operations in control states and the accuracy 
mode for each multiplication simultaneously. 
Let denote a set of operations and E denote 
precedence dependency between the 
operations. Recall that the operations are 
classified into two types: the multiplication 
with accurate and approximate modes and the 
ALU-based operations. Let M denote a set of 
multiplications and A denote a set of ALU-
based operations. In the set M, a subset called 

is denoted, and indicates a set of 
approximate multiplications. Therefore, the 
relationships are always held as follows; 
V=M A and Apx M. The number of cycles 
for each operation is given in advance. The 
multiplication takes either cycles for
accurate mode and cycles for
approximate mode and the ALU-based 
operations take cycles.  In addition, we
denote and as a resource
constraint and denote as a time
constraint.

The first process in the algorithm conducts 
as-late-as-possible (ALAP) scheduling for the 
DFG where all the multiplications assume to 
be approximate mode and obtains the schedule 

for each operation (Lines 2-4). Then,
for each operation in the schedule, the 
produced error is derived from the accurate
and approximate outputs with considering the 

Algorithm 1. Proposed list scheduling algorithm 
1 ListScheduling (G(V,E)) begin
2 for do
3 ALAP_schedule

4 endfor
5 for do
6
7 endfor
8 for n in 1..|M|+1 do
9 for do

10 if do
11
12 else endif

13 endfor
14 = 0,
15 while do 
16
17 for do
18 for do
19 if do
20
21 if do
22 ,

23
24      endif
25 endif
26 if do
27
28 if do 
29 , ,

30
31 endif
32      endif
33 endfor
34 if do

35 ,
36 if do

37 ,

38      
39 elif do

40 ,
41 else , endif
42 endif
43 if do
44 ,
45 if do
46 ,

47
48 else , endif
49 endif
50      endfor
51 endwhile
52 if do

53 ,

54
55 else
56      
57 endif
58
59 endfor
60 end



error propagation from predecessor operations due to approximation (Lines 5-7). In this step, it is not 
possible to use error models such as [14, 15] for post-design analysis. Therefore, we adopt the error 
propagation model presented in [16] and [17]. Consider a typical multiplication and let the 
errors from the inputs and denote and respectively. Let the errors of the multiplication and its
product be denoted as and . The error is derived as Formula (1):

Accuracy is evaluated by the magnitude of the error. In other words, the smaller the error, the higher 
the accuracy of the circuit.

At the same time, the priority for each operation, is created, based on (Lines 9-13).
Next, the algorithm relaxes the schedule by multicycling the multiplication, where the multiplication 
with the highest priority is selected, to reduce the error at the output. The algorithm iteratively conducts 
its process while the time constraint is satisfied (Lines 15-50). Here, we introduce three sets of states as 
, , and . Let denote a set of operations that are ready to execute, denote a set of operations during 

execution, and denote a set of operations that are already finished. Initially, and are set to empty. 
Let and denote the number of available multipliers and ALUs, respectively. The resources

and are released after the execution of multiplication and an operation by ALU, respectively.
represents the remaining cycles for each operation i. and represent the control states of start

and finish or each operation i, respectively. If an operation i takes a single cycle, and indicate
the same state. In Lines 18-34, functional units are ready to be executed and come to a set of ready 
operations under the resource constraint. If an operation in is finished, the operation is removed 
from and the resource is released. Then the operation becomes a member of . In order of priority, the 
operations are started the execution (Lines 34-50). If the time constraint is missed, the schedule with 
multicycling the selected multiplication is infeasible and the multiplication is returned to approximate 
mode. Otherwise, the schedule is feasible and determined to be executed in accurate mode (Lines 52-
57). The processes are repeatedly conducted until all the multiplication has tried to switch accurate 
mode from approximate mode. In the end, we obtain a feasible schedule such that the error is reduced 
under resource and time constraints. The computational complexity of our algorithm is O(N2 log N) for 
the number of multiplications N at a worst case.

2.3. Proposed Algorithm Example 

Our proposed method aims to minimize the error by accurately performing only those 
multiplications that cause large errors in the output. For the operation from step 8 to step 59 of 
Algorithm 1, an example problem in DFG with three multiplications and two additions is shown in 
Figure 2. We assume one cycle for approximate multiplications, two cycles for exact multiplications,
and one cycle for additions. The resource constraint is list scheduling as two accuracy-controllable
approximate multipliers and one adder. The time constraint is four cycles. Figure 2 (a) is the DFG given, 
and the number at the bottom left of the multiplication is assumed to be the magnitude of the influence 
of the error on the output value obtained in step 6 of Algorithm 1. First, as shown in Figure 2 (b), all 
the multiplications are approximate multiplications, and resource constraint-based list scheduling is 
performed. Next, the list scheduling is performed again with the multiplications with the largest errors 
made exactly. At this time, since all the operations can be performed within the time constraint of four 
cycles, the multiplication that was made exact in Figure 2 (c) is kept exact for the next scheduling. Next, 
as shown in Figure 2 (d), the multiplication with the second-largest error is made exact and list 
scheduling is performed. However, in Figure 2 (d) the time constraint of four cycles has been exceeded, 
so the upper left multiplication is returned to approximation. Next, the multiplication with the smallest 
error is made exact and list scheduling is performed. The result of Figure 2 (e) satisfies the time
constraint, so we keep the multiplication as exact. Finally, since all the multiplications have been done 
correctly, the result of Figure 2 (e), which will have the smallest error so far, is output as the final 
solution as shown in Figure 2 (f). In this example, we have shown 1-2 cycles for simplicity, but our 
proposed method can be applied to operations with more than 3 cycles.

 (1)



3. Experiments

3.1. Setup 

In the experiments, we have compared our heuristic algorithm to an existing ILP-based technique 
[9], which uses CPLEX 12.10 as a solver on a PC with an AMD Ryzen 7 PRO 4750G CPU and 64GB 
of main memory. We utilize MediaBench [18] for the benchmark programs. In the experiments, we are 
given resource and time constraints exhaustively to observe trade-offs. Note that the number of 
accuracy-controllable multipliers is restricted as a resource constraint but that of ALUs is ignored since 
sharing of ALUs largely incurs an overhead. The runtime for evaluation is limited to up to an hour in
wall-clock time. If an optimal solution is not found within an hour, the best solutions at that time is 
employed to compare.

3.2. Results 

The experimental results are shown in Table 1 and Figure 3. Table 1 shows the comparison between 
our proposed algorithm and the ILP-based technique [9]. In the table, Nodes represent the total number 
of operations for each benchmark. Mult means the number of multiplications among them. Designs
indicate the number of design problems for a variety of resource and time constraints. Wins, Losses, 
and Draws are the number of designs that our proposed algorithm that outperforms the ILP-based 
technique in accuracy even for just a bit, the ILP-based technique outperforms our proposed algorithm, 
and they find the same solutions, respectively. Figure 3 shows, on the other hand, the relationship 
between the output error, resource constraint, and time constraint in the cases of Motion Vectors 
Detector and Matrix Inversion. The abscissa axis represents the resource constraint, the ordinate axis 
represents the time constraint, and the applicate axis represents the error at the output. Note that the 
output error is expressed as the relative value of the error contained in the output to the accurate 
computation result, and the applicate axis is scaled in logarithm in Figure 3 (b).

The results in Table 1 indicate that our proposed algorithm finds almost the same errors as the ILP-
based technique in the cases where the number of operations is less than a hundred. In addition, the 
cases have enabled the ILP-based technique to find optimal solutions; therefore, our algorithm explicitly 

(a) The given DFG (b) Approximate all multiplications (c) Exact multiplication with the highest error

(d) Exact multiplication with the
second highest error

(e) Exact multiplication with the 
smallest error

(f) Final output that satisfies resource and
time constraints

Figure 2: An example of proposed list scheduling algorithm 

+

+

a b c d e f

x

2

3

1



obtains an optimal solution in many cases. In Motion Vectors Detector, our algorithm produces larger 
errors than the ILP-based technique in 15 designs. According to the results in Figure 3 (a), however, 
the output errors look slightly larger but almost the same since the output errors by each technique are 
negligibly small.

Over a hundred of the nodes, the ILP-based technique can hardly find an optimal solution within the 
runtime. In especially Matrix Inversion, Figure 3 (b) implies the ILP-based technique fails to find good 
solutions in many designs. In contrast, we demonstrate the effectiveness of our proposed algorithm 
since it can obtain flexible solutions under a variety of resource and time constraints. Table 2 shows the 
results of runtime evaluation between the ILP-based technique and our proposed algorithm. Max, Min,
and Mean indicate the maximum, minimum, and average runtime of scheduling among the various 
constraints, respectively. In the cases where the number of operations is less than a hundred, the runtime 
to find optimal solutions is almost the same. However, in a large benchmark with hundreds of operations, 
our proposed algorithm is successfully finding a feasible solution in a shorter time than the ILP-based 
technique.

Table 1. COMPARISON BETWEEN OUR PROPOSED ALGORITHM AND ILP [9]
Benchmarks [18] Nodes (Mult) Designs Wins Losses Draws ILP [9] exceeds an hour
HAL 11 (6) 14 0 0 14 0
FIR filter 21 (11) 19 0 0 19 0
Auto Regression Filter 28 (16) 36 0 0 36 0
Motion Vectors Decoder 32 (14) 37 0 15 22 0
Elliptic Wave Filter 34 (8) 16 0 3 13 0
Cosine 42 (14) 52 0 1 51 0
Feedback Points 53 (17) 43 0 10 33 1
Matrix Multiplication 109 (40) 129 1 20 108 4
Smooth Triangle 197 (69) 257 35 63 159 55
Matrix Inversion 333 (140) 516 235 104 177 257

(a) Motion Vectors Decoder (b) Matrix Inversion

Figure 3: The output error in Motion Vectors Decoder and Matrix Inversion with exhaustive 
constraints of resource and time

Table 2. RUNTIME EVALUATION BETWEEN ILP [9] AND OUR PROPOSED ALGORITHM (SEC.)
Benchmarks [18] ILP [9] Our algorithm

Max Min Mean Max Min Mean
HAL 0.130 0.010 0.083 0.006 0.005 0.006
FIR filter 0.860 0.080 0.214 0.020 0.013 0.017
Auto Regression Filter 8.730 0.080 0.899 0.049 0.023 0.037
Motion Vectors Decoder 35.380 0.080 1.269 0.050 0.024 0.036
Elliptic Wave Filter 0.220 0.050 0.127 0.033 0.029 0.031
Cosine 2387 0.050 46.490 0.087 0.039 0.058
Feedback Points >3600 0.080 85.617 0.138 0.066 0.100
Matrix Multiplication >3600 0.200 149.748 2.044 0.527 1.092
Smooth Triangle >3600 0.300 1155 15.804 2.865 7.204
Matrix Inversion >3600 1.020 2116 170.288 16.217 70.913



4. Conclusions

We proposed a heuristic scheduling algorithm with variable-cycle approximate functional units in 
HLS. The proposed algorithm is polynomial, and we have demonstrated that it finds better solutions 
than existing techniques in a short time. Therefore, our algorithm is expected to be adopted in deep 
learning-based and image processing applications.

In the future, we plan to extend our algorithm to combine with other optimization techniques such 
as chaining, pipelining, and bit-width reduction. In addition, we are going to conduct a case study by 
the implementation of our algorithm into general HLS tools.

Acknowledgments 
This work is supported partly by KAKENHI 20H00590, 20H04160, and 21K19776.

References 
[1] ACM Computing Surveys, vol. 48, no.

4, 2016.
[2] IEEE Design & Test, vol.

33, no. 1, 2016.
[3] A low-

International Symposium on Quality Electronic Design, 2018.
[4] -power high-speed accuracy-controllable approximate

Asia and South Pacific Design Automation Conference, 2018.
[5] -bit accuracy-

International SoC Design Conference, 2021.
[6] K. Nepal, Y. Li, R. I. Bahar, and S. R

Design, Automation & Test in Europe Conference & Exhibition,
2014.

[7] -level synthesis of approximate hardware under joint
Design, Automation & Test in Europe Conference & Exhibition, 2017.

[8] -
level synthesis of approximate accelerators using app
International Conference On Computer Aided Design, 2020

[9] -cycle
approximate functional units in high- International SoC Design Conference, 2021.

[10] -oriented approximate adder
International Conference on Computer-Aided Design, 2013.

[11] V. Camus, J. Schlachter, and C. Enz -power carry cut-back approximate adder with fixed-point
implementation and floating- Design Automation Conference, 2016.

[12] -power, high-performance approximate multiplier with
configurable part Design, Automation & Test in Europe Conference & Exhibition,
2014.

[13] International
Conference on Computer Design, 2013.

[14] R. Venkatesan, A. Agarwal, K.
International Conference on Computer Aided Design, 2011.

[15]
International Conference on Computer Design,

2013.
[16] -driven error analysis for

Design, Automation & Test in Europe Conference & Exhibition,
2018.

[17] -level synthesis for
Design Automation Conference, 2015.

[18] C. Lee, M. Potkonjak, and W. H. M. Smi
International Symposium on Microarchitecture, 1997.


