CEUR-WS.org/Vol-3124/paper5.pdf

Gestural Inputs as Control Interaction for Generative
Human-Al Co-Creation
John Joon Young Chung’, Minsuk Chang? and Eytan Adar’

"University of Michigan, Ann Arbor, MI
2Naver AI Lab, Seongnam, Republic of Korea

Abstract

While Al-powered generative systems offer new avenues for art-making, directing these algorithms remains a central
challenge. Current methods for steering have focused on conventional interaction techniques (widgets, examples, etc.). This
position paper argues that the intersection of user needs in creative contexts and algorithmic capabilities requires re-thinking
our interactions with generative AI. We propose that rough gestural inputs, such as hand gestures or sketching, can enhance
the experience of human-AlI co-creation—even for text. First, the undetermined and ambiguous nature of gestural inputs
corresponds to the purpose and the capabilities of generative systems. Second, rough gestural can be intuitive and expressive,
facilitating iterative co-creation. We discuss design dimensions for inputs of artifact-creating systems, then characterize
existing and proposed input interactions with those dimensions. We highlight how gestural inputs can expand the control
interaction for generative systems by analyzing existing tools and describing speculative input designs. Our hope is that
gestural inputs become actively studied and adopted to support user intentions and maximize the perceived efficacy of

generative algorithms.

Keywords

generation, controllability, gestural input

1. Introduction

Technologies such as Generative adversarial network
(GAN) [1], and pretrained language models (PLM) [2]
have the potential to enable human-AI co-creation. These
algorithms are attractive in creative contexts as the Al can
generate novel creations—something the human hadn’t
considered. However, this process can backfire when
novelty and surprise misalign with the user’s intention
and preference. Most commonly, produced text can sud-
denly turn from what the author wants. Users often have
to re-run the algorithm and iterate until they get the de-
sired results. Without control, users can only hope that
the next generation will be better than the last. Thus,
controllability becomes key to effective iteration. The
best controls go beyond steering the behavior of the al-
gorithm. They also manage the user’s expectations of
what the algorithm will produce. There are many conven-
tional ways to provide interactive control but without ad-
dressing these goals effectively. This paper proposes that
rough gestural ‘sketches’ coupled with abstract represen-
tations of content (i.e., information visualizations) can
facilitate control interaction for generative algorithms.
Our proposal is strongly motivated by limitations in

Joint Proceedings of the ACM IUI Workshops 2022, March 2022,
Helsinki, Finland

Q jiyc@umich.edu (J.J. Y. Chung); minsuk.chang@navercorp.com
(M. Chang); eadar@umich.edu (E. Adar)

&} https://johnr0.github.io/ (J.J. Y. Chung);
https://minsukchang.com/ (M. Chang); http://cond.org/ (E. Adar)
i Comman s ko 0 erond CC I 40,

=== CEUR Workshop Proceedings (CEUR-WS.org)

existing control interactions for generative algorithms.
Current control interactions range from inputting a a
simple number (e.g., have a violin play with the maxi-
mum amount of vibrato, by setting the parameter value of
1.0 [3]) to using natural language prompts (e.g., produce
an image of a dragon sitting on a castle [4]) to providing
examples (e.g., make this photograph look like this exam-
ple from Picasso [5]). We argue that these approaches
are limited in different ways, particularly in co-creative
tasks. For example, numerical inputs imply an ‘exact’
level of control. This over-promises and sets a very high
expectation for the user: the system will produce ex-
actly what was specified. Unfortunately, this does not
often match algorithmic capabilities. Natural language
prompts and example-driven interfaces are problematic
for other reasons. Creative work often requires itera-
tion and experimentation with alternatives. Prompts and
examples do not readily support this iteration. Users
may not understand why the algorithm did what it did,
how the results can be corrected, or may simply be chal-
lenged to find or create new examples or prompts. The
cost of iterative practice may make generative algorithms
unappealing in practice.

In answer to many challenges for generative tools, we
propose that rough gestural inputs, such as sketching, can
be a sweet spot for human-AI co-creation. First, gestural
input conveys imprecise and ambiguous intentions [6,
7], which corresponds to the nondeterministic nature of
generative algorithms. Second, because impreciseness is
allowed (e.g., simple brush strokes [8]), the interaction of
specification would be easier. With easier interactions,


mailto:jjyc@umich.edu
mailto:minsuk.chang@navercorp.com
mailto:eadar@umich.edu
https://johnr0.github.io/
https://minsukchang.com/
http://cond.org/
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Joint Proceedings of the ACM IUI Workshops 2022, March 2022, Helsinki, Finland

>Mike is a jazz guitarist who has great
ambitions and devotion to music.

>Mike recently thought about expanding his
expertise to heavy metal, thinking that

‘mixing it with jazz would be interesting

>Mike is a jazz guitarist who has great
ambitions and devotion to music.

>Mike recently thought about expanding his
expertise to heavy metal, thinking that

mbing it jcz would be resing. V4

st from s koo \\ //
. j/

>He experimented with creating a band

using instruments like the piano and bass

>However, Mike didn't enjoy the results and
had to abandon the project due to low

morale levels among the band members.

>However, Mike isn't ready for failure or

success in music making again.

>Instead of continuing this project, Mike

prefers going back into bed instead because

he needs sleep badly.

>Eventually everyone calmed down and felt (m]

full of energy after coming together once

more as a successful musical group!

mm that hard work they finally became

4444444 ful after years of hard work!

Figure 1: TaleBrush facilitate human-Al story co-creation by allowing users to intuitively control and sensemake story
generation with a line sketching interaction. Specifically, users can control the protagonist’s fortune with line sketching.
In TaleBrush, the writer can write a portion of a story (A1) and sketch the change of the protagonist’s fortune as a control
input (A2, green shaded area). In the sketched line, the x and y positions stand for the chronological story position and
the protagonist’s fortune, respectively. For the protagonist’s fortune, the higher the position, the better the fortune. In the
sketch, the width shows the possible variance in the fortune of the generated sentences. With the given line sketch, TaleBrush
generates story sentences (B1, indicated with blue). These sentences are then visualized upon the original sketch (B2, the blue

line and dots).

the end-user may not need to think carefully about the
examples or prompts they generate, thus allowing for
more rapid iteration.

The idea of gestural or sketching inputs in the context
of generation has some history. For example, low fidelity
sketches created by the end-users can guide the genera-
tion of photorealistic images [9]. Here the sketch is the
input and is in the same modality as the output (e.g., take
the visual dragon I scribbled and make a visual photo-
realistic version). The input indicates “what generation
should be done” Control is implemented through more
standard interactive approaches (e.g., by adjusting this
slider, I am indicating how to bias color selection for the
dragon). This is not to imply a clear separation between
input and control, as they are often inexorably connected
as mechanisms to have a system produce the desired out-
put. However, our specific suggestion is that the input
interactions—and sketching and gesture, in particular—
can be expanded to also control “how the generation
should be done”

One example of a‘sketch-as-control’ interaction is our
controllable story generation system, TaleBrush (Fig-
ure 1). Here, TaleBrush leverages abstract visual rep-
resentation of the character’s fortune to control the story
generation. The canvas is a 2D plane that allows for the
specification of the protagonist’s fortune (y-axis) and the
story’s progression (x-axis). In this interface, the control
interaction is as simple as a single stroke of a line. This
approach has several benefits. First, it is easier to interact
with than alternatives (e.g., having multiple sliders for
different story parts). Most importantly, the ambiguous

and imprecise nature of sketching corresponds to the
user’s ambiguous intentions and the algorithm’s uncer-
tainty. This example also demonstrates how one input
modality and representation (i.e., visual) can be used to
guide a different output modality (i.e., textual).

In this paper, we expand on this idea. We first intro-
duce the design dimensions for inputs of artifact-creation
systems. These include the types of support one wants
with an Al tool, considerations of algorithmic uncertainty,
the precision of input, and ease of iteration on algorithms
and inputs. Using design dimensions, we characterize
different existing input types for generative human-Al
co-creation. We specifically discuss how our example sys-
tem, TaleBrush [10], adopts sketched inputs to facilitate
iterative human-AlI co-creation in story writing. Con-
sidering sketching and gestural inputs for control will
enable new ways to support human-AlI co-creation.

2. Design Dimensions of
Artifact-Creation Support

We first consider possible dimensions for designing con-
trol interactions for creation support. We scope “creation
support” to systems that help creatives directly imple-
ment artifacts. We exclude those tools that serve a more
indirect role, such as critiquing the created artifact. This
boundary is something we have previously considered
in surveying the range of tools in the creative space [11].
We propose a focus on three aspects: 1) type of support,
2) algorithm, and 3) input (summarized in Figure 2).



Joint Proceedings of the ACM IUI Workshops 2022, March 2022, Helsinki, Finland

Type of Support Transfer Generation

Augmentation

Algorithm

Types: Algorithmic Uncertainty Deterministic Non-deterministic

Characteristics: Ease of

Algorithmic Iteration Latency Scope of iteration
Input
Types: Input Directness Direct m

Easy to

iterate (1)

Widgets/
Numerical

Characteristics:
Ease of Input Iteration
and Input Precision

Ease of Input Gesture

Iteration

Language

Imprecise

Hard to
iterate (1)

Input Precise

Precision

Figure 2: Summary of the design dimensions of artifact-
creation support in relation to designing generative co-
creation tools. Orange items (transfer and generation) are two
supports provided with generative co-creation tools. Items in
green (non-deterministic, direct, and indirect) are design ele-
ments for generative co-creation tools (our focus is on indirect
inputs). In indirect input design, the requirements for genera-
tive co-creation tools include: 1) easy and fast iteration and
2) algorithmic uncertainty matching the user’s expectation.
These align with gestural inputs, in considering the ease of
interaction and their ability to express the user’s ambiguous
intentions. Note that the two-dimensional diagram in charac-
teristics of input is drawn based on the qualitative analysis of
different input approaches.

2.1. Type of Support

CSTs are an extremely diverse and broad category, even
when restricted to direct influence [11]. Within this cate-
gory we see tools that can augment, transfer, or generate.
Though the last two categories are most relevant to our
proposal, augmentation is also worth considering.

CSTs that provide augmentation support often enhance
a task the creative is already doing through computa-
tional means. Many direct manipulation tools fall into
this category. The least ‘intelligent’ of these replicate
existing tools in a digital format. For example, a digi-
tal painting canvas has various types of digital brushes.
Other augmentation tools provide some limited automa-
tion. For example, a bucket tool will flood-fill a closed
area in a sketch. Most augmentation tools are highly
deterministic. They are “predictable” and more naturally
correspond to the user’s mental model of what the sys-
tem will do. When using augmentation-focused tools,
the user is firmly in control over both the idea and style
of the final artifact.

The second and third types of support, transfer and

generation, use variants of generative algorithms. In con-
trast to the augmentation category, the end-user is ceding
some creative control to the tool. Though, of course, the
human maintains ultimate control over what makes it
into the final artifact.

Transfer tools turn one artifact into another. A com-
mon feature is that they receive some ‘original’ artifact
(e.g., a picture, a piece of text, a sketch, etc.) as input. The
tool will then act on this input to generate a variant—-often
some alteration of the original input. A wide range of
tools fall into this category, and they are often modality-
specific. For example, in the visual design/art space, we
see systems that transfer one visual art piece’s style to an-
other image [5]. Other tools in the space will transform
rough sketches into photorealistic images [9]. As with
image-based style transfer, we find similar approaches
for text where the software can transform the written
input to the style of a particular author [12]. Though tar-
get styles are commonly required, not all transfer tools
need them. In music, for example, there are tools that
transform some input piece of music by adding effects
like delay or compression [13].

Finally, we observe tools focused on generation. With
these, the algorithm generates content from incomplete
inputs or those of a different modality. For example, an
input might be some previous part of the music, story,
or some portion of drawings. The algorithm’s purpose
is not to change this initial input, but rather to add to
them. In music and text, these algorithms continue the
from the user-provided ‘start’ or ‘infill’ when given some
start and end states [14, 15, 16, 17]. In visual arts, we
most often find this type of algorithm in systems that can
fill empty spaces in an image [18, 19]. Note that many
tools sit somewhere between transfer and generation
and may depend on how the underlying task is defined.
For example, we might have a tool that automatically
colors a part of an image. From the perspective of the
whole image, this may be transfer (especially if the input
is some color palette or color model). However, because
we are also generating new colors, we might treat the
colorization task as generative.

Different types of tools will require different types of
controls. However, there are similarities in user needs
and expectations (e.g., surprise and novelty but also a
willingness to cede some creative control to the software).
This is in contrast to non-creative applications (e.g., pre-
dictive form filling) where ambiguity and surprise and
undesirable. As we argue below, gestural and sketched
inputs hold promise here.



Joint Proceedings of the ACM IUI Workshops 2022, March 2022, Helsinki, Finland

2.2. Algorithm
2.2.1. Type: Algorithmic Uncertainty

A tool’s algorithmic pipeline can differ depending on
how certain we are of the pipeline’s output. Deterministic
algorithms are one extreme in that users can predict the
result when using these algorithms. Direct manipulation
implementations are, naturally, one example. When a
box is dragged with a mouse cursor, the end-user knows
where it will end up. Automated algorithms with clear
rules are also deterministic. For example, with flood-
fill (e.g., a bucket tool), the user knows the system will
fill closed areas. If something goes wrong, the user can
quickly isolate the problem.

On the other extreme are non-deterministic algorithms
which represent many machine learning (ML) algorithms.
Though powerful, the inferences made by these algo-
rithms lead to increased uncertainty and failures. For
example, in comic colorization, ‘flatting’ is the process of
automatically creating colored polygons under different
parts of the linear art (e.g., one for the face, one for the
shirt, etc.). The algorithm for automated flatting makes
inferences about shapes even when they are not ‘closed’
in an expected way. For example, creases in a drawing
for a shirt may lead a poorly designed algorithm to make
too many polygons or not connect them appropriately.
Ideally, the system will produce one polygon that en-
capsulates the entire shirt. However, current flatting
software is imperfect and can make the wrong inference.
The algorithm’s uncertainty in what makes up the object
can lead to unexpected bleeding [20]-a failure case.

However, in the creative setting, and specifically for
generative algorithms, uncertainty can be a feature (rather
than a failure). Or, more precisely, the line between a
novel, desirable result, and an error are not necessarily
clear cut. There is rarely a single gold standard for what
should be generated, and the user might subjectively
decide whether the output fits their goal.

2.2.2. Characteristics: Ease of Algorithmic
Iteration

Iterative design is important in creating artifacts. This
is mainly due to the explorative nature of the task. How
easy it is to iterate depends on the algorithm’s properties.
First among these is latency—the time taken by the algo-
rithm for each cycle. The lower the latency, the easier
the iteration. For example, when moving a box with a
mouse cursor, the iteration is real-time as the box’s posi-
tion instantly updates with the user’s movement. On the
other hand, many generative algorithms take significant
time to generate artifacts, significantly slowing down
iteration.

A second algorithmic aspect that impacts iteration is
scope. Here, we define scope as relating to what parts of

the artifact are iterated on. For example, with the direct
manipulation of the box, only the position is changing,
but not the color or size. Style transfer algorithms [21] are
at the other extreme. With every run of these algorithms,
the entire image (or many parts of it) will change.

Iteration naturally connects back to algorithmic un-
certainty. If the user better understands the algorithm’s
behavior (e.g., what the transfer algorithm changes and
how), iteration may become easier. With high uncer-
tainty, the user may need to iterate many times to get
the effect or artifact they want.

2.3. Input
2.3.1. Type: Input Directness

An input method targets the artifact directly or indi-
rectly [11]. With direct input, the end-user indicates
the artifact or subject ‘target. Because of this directness,
inputs are usually in the same medium as the target arti-
fact. In some situations, a portion of the artifact can also
be used as a direct input. For example, we can select a
portion of the image or the story. At the other extreme
are those inputs that do not directly impact the artifact
but may give broad instructions on how the tool should
implement something. The simplest example might be a
slider control for some parameters. The user isn’t touch-
ing the artifact directly (i.e., the story or image) but the
change in the slider guides the tool. The modality of
indirect input can be far from the medium (e.g., visual
arts as artifacts and numbers as inputs). As with our
introductory example, abstract visual encodings can also
be used for indirect inputs. In that example, the end-user
drew the character’s fortune to produce text.

2.3.2. Characteristics: Input Precision

While there are numerous input approaches for artifact-
creation systems, they vary on the spectrum of precision.
These varying levels are helpful in different contexts. The
most traditional type of widgets receives one specific
value. Examples include a number in the slider or a
category in a dropdown box. With this precise control,
users will expect the output to react precisely.

Not all inputs need to be precise. Natural language
prompt is one example and can handle a wider range of in-
put precision [22, 23]. Roughly specified language would
be imprecise, but at the same time, allow a high degree
of freedom in how it can be interpreted. For example,
asking for a “rough texture” can mean many things—
anything from Jackson Pollock’s chaotic style to Van
Gogh’s impressionism. However, language can support
finer control. For example, if we say “move the selected
square 3 pixels left) this does not leave much room for
misinterpretation.



Joint Proceedings of the ACM IUI Workshops 2022, March 2022, Helsinki, Finland

At the imprecise end, we often find Examples as in-
puts [24, 21]. While they are often used as direct material
for transfer (e.g., source of style in visual style transfer),
it is up to the algorithm to determine, if it can, which
aspects of the input should be followed closely and which
are only suggestions. For example, when transferring
the style of Van Gogh’s The Starry Night, it may not be
clear whether the user wants the colors or textures to
be transferred. Adding more examples might make the
target clearer. However, it may be hard for the user to de-
termine which attributes overlap between the examples
and which are ambiguous. The interaction with uncer-
tain algorithms makes this problem even more complex
as it is not obvious if the issue is with the input or the
inherent ambiguity of the system.

As with language prompts, Gestural inputs, such as
sketches or hand gestures, can also have a wide range of
precision. For example, gestural inputs for direct manip-
ulation require outputs to follow the given input exactly.
When resizing a box in graphics editors, users expect
the box to follow the cursor they are moving. However,
sketches can be used for low-precision input. For exam-
ple, sketches can express flexible and lightweight ideas
with their roughness, ambiguity, and uncertainty [7, 6].
Similarly, hand gestures have been used to provide im-
precise but intuitive and flexible inputs, such as serving
as rough scaffolds in 3D modeling [25]. As we see in
these examples, gestural inputs can be designed to pro-
vide high intuitiveness and flexibility and be traded off
against precision.

We note that input precision is often related to input
difficulty. As we know from psychophysical properties
such as Fitts’s Law [26], certain input precision comes at
the cost of time or difficulty. Lower precision interactions,
such as gestures, can often lower interaction difficulty.

2.3.3. Characteristics: Ease of Input Iteration

Just as we consider the iterative cost at the algorithmic
level, it is worth considering it at the input level as well.
Though these two might be tied, a tool might have rela-
tively small back-end iterative costs but widely diverging
front-end costs. For example, the algorithm itself might
run quickly but generating good example inputs may
take a long time. Thus, different input approaches vary
in how well they support iteration.

Traditional input widgets, such as numerical values
on sliders, are relatively easy. With a single slider, the
control options given to the user are tightly restricted,
and a change in value does not require much effort. How-
ever, even with simple slider widgets, the user needs to
decide if a control should be changed and then make the
actual change to the correct value. As the number of
input controls grows, so does iteration cost.

Other types of inputs, such as natural language prompts

or examples, can increase iterative costs. This is mainly
due to the vast space of options for these modalities. For
natural language prompts, the user needs to come up with
better wordings or more specific details on the prompts.
This can be tricky if the user is to express differences in
degree (e.g., how would one use language to express the
level of roughness of the texture in a painting?). Simi-
larly, iterating with examples is difficult because the user
needs to search for more or better examples. If such an
example can’t be easily found or created, the user will
struggle to iterate.

Gestural or sketch inputs can help with iteration. While
these input modalities come at the cost of precision, ges-
tural input is flexible, intuitive with lowered cognitive
demands. These properties can reduce iteration time. For
example, the user can erase and redraw a portion of the
sketches to quickly change the specifications.

3. Designing Generative
Co-Creation Tools

The design dimensions above represent a large design
space. However, we can begin to consider points in the
space that are either required, or are more suitable, for
co-creation tools.

3.1. Requirements for Generative
Co-creation Tools

As we argued above, generative algorithms are usually
used to support transfer or generation. Additionally,
these systems have increasingly leaned towards machine-
learning-based approaches. Thus, we are largely working
in the non-deterministic algorithmic space and this im-
plies a couple of key requirements for tools.

First, iteration should be easy and fast. In cre-
ative tasks, iteration and exploration are necessary as
they expose the artist to more options and, eventually,
a concretization of ‘direction’ [27, 28]. Thus, users of
creative tools often want to be able to iterate, which is
well-aligned with the reality that to use non-deterministic
tools, they need to iterate. Unfortunately, sometimes the
cost of iteration becomes high. Thus, tools should either
act to speed up the number of iterations and, if that is
not possible, to reduce them. In both situations, reducing
the iteration cost is critical.

Second, algorithmic uncertainty should match the
user’s expectations. With standard algorithms, we
would only need to worry about the user’s expectations
in how their input and deterministic output relate. For
example, dragging an icon into the trash would lead to
it being deleted. However, with non-deterministic algo-
rithms, instead of a specific output, they would need to



Joint Proceedings of the ACM IUI Workshops 2022, March 2022, Helsinki, Finland

model a range of possible outputs. Without this under-
standing, end-users are likely to be dissatisfied with the
results. They will also find it difficult to model how their
input choices will lead to a better, or more certain, output.
Our advantage in creative tools is that some degree of
uncertainty is actually a desired property. Our goal is
not necessarily to make the tool appear deterministic as
creativity often requires ‘surprise.” Thus, users both want
and expect some level of (controlled) uncertainty. A user
may be willing to make a rough specification. At the
same time, they would understand and expect that the
tool will have some degrees of freedom within that space.
Note that none of this is to say that we need to force
the algorithms to match the user’s expectations. In some
cases, users might not have well-defined expectations. In
other cases, we may change their expectations.

3.2. Algorithmic Design

There are various ways to approach the iteration and
uncertainty problems on the algorithmic side. For exam-
ple, by adding extensive controllability features, we can
provide the user with fine-grained controls for steering
the behavior of the generative algorithms. However, this
requires building algorithms that can actually accept all
these controls.

On the positive side, detailed control may reduce the
number of iterations, at least from the algorithmic per-
spective. That is, fine-grained controls would reduce the
ambiguity of the input and enable the generative system
to produce a more targeted response. Detailed controls
also work to ‘teach’ the end-user how to model and direct
the underlying algorithm. Their expectations of system
capabilities would come to be more in alignment with
reality with fewer iterations. Of course, reducing the
latency of the algorithm would also facilitate the ease of
iteration. Clever designs, such as using smaller models
before executing more costly larger ones may help here.

However, shifting the responsibility of satisfying our
requirements to the algorithmic side exclusively is not
realistic. Regardless of the algorithm, many bottlenecks
for iteration are from the interaction side. Increasing
the number of controls may be cognitively costly for the
end-user. This is not to say that fewer controls or simpler
inputs, such as examples or prompts, reduce cognitive
cost. The cognitive cost of figuring out how to change
or create an example can be equally bad. When coupled
with the specific demands of creative applications—that
we want some iteration and some surprise—achieving
a ‘sweet-spot’ through algorithmic means alone seems
implausible. Put another way, simply changing the algo-
rithm can’t solve our problem if the interface costs are
high or the user’s requirements for a creative tool are
unmet.

3.3. Input Design

To achieve our requirements, we argue that interaction is
a critical factor. We focus on possible input approaches.
These will naturally range based on the type of input
directness.

3.3.1. Direct Inputs: A Small Space of Design

Direct inputs are usually made in the same medium as the
artifact. For example, we might use low-fidelity sketches
on the drawing surface when the target artifact is visual.
These sketches will then be transferred to high-fidelity
images on (essentially) the same surface/encoding [9]. In
other cases, the algorithm may simply append elements
to the sketch [18]. This type of input serves as the ‘mate-
rial’ for the generation—where the transfer is applied or
what the generative algorithms build upon.

While direct inputs may depend on the application
domain, their specific type may be largely constrained
to a small design space. This is largely because the repre-
sentation depends on the target artifact’s medium (e.g.,
a drawing canvas). Additionally, the interactions are
constrained by the underlying algorithm. For example,
we may train an algorithm to produce a photo-realistic
image given a low-resolution sketch. Such datasets are
more readily available and easier to produce. The user-
facing input modality and form are thus constrained to
something that looks like the training data. Finally, di-
rect inputs create a set of expectations for the end-user
that need to be maintained in the interactive controls.
Because of these constraints, which may limit our design
space options, we move to consider indirect inputs.

3.3.2. Indirect Inputs: Approaches and Their
Limitations

Indirect inputs serve as instructions for both what and
how to generate. Unlike direct inputs, they are not depen-
dent on the artifact’s medium. One can work in abstract
spaces or through abstract representations. Thus, there
is often more freedom to design with indirect inputs. The
consequence of freeing ourselves from the constraints of
the domain also enables us to consider additional algo-
rithm types. This flexibility further affords a better abil-
ity to match the end user’s high-level intentions rather
than forcing them to work within their algorithm and
interface constraints. However, this is not to say that all
indirect inputs are good ones. A novel indirect interac-
tion might be further from the target artifact’s modality
and thus might be harder to master when the mapping
is complex. A poorly designed indirect interaction can
also increase cognitive costs and reduce the ability to
iterate. All together, indirect inputs open up a vast space
of possibilities but introduce various pitfalls.



Joint Proceedings of the ACM IUI Workshops 2022, March 2022, Helsinki, Finland

To better understand which aspects may help or hin-
der, we focus on three types of inputs: traditional input
widgets, natural language prompts, and gestural inputs.
Traditional input widgets, such as sliders for numerical
inputs, represent the simplest option. If we are able to use
these in the interface, it often means that we can directly
map the user’s expectation to the actual behavior of the
system. In reality, this depends on how the end-user un-
derstands the construct represented with the widget. If
the label on the slider is ambiguous (e.g., this will control
the ‘brightness’ of the text) or novel (e.g., this will control
the ‘certitudeness’ of the text), the user may struggle with
the control. Clearly, increased experience with the tool
will improve as the user calibrates to the system. More
critical, however, are situations where a user only has a
rough idea of what they want to generate. Here, a stan-
dard input widget may be insufficient. As critically, the
algorithms themselves may not deliver on the precision
of the input. Thus, the interface is over-promising. The
ease of iteration with input widgets largely depends on
the complexity of the interface. A single slider is simple,
but many controls and interactions will naturally become
more challenging.

Recent generative co-creation systems have enabled
indirect natural language prompts as input. For exam-
ple, natural language prompts can steer vision-language
models to generate visual images [22, 23]. As these ap-
proaches can be used with imprecision or ambiguity, they
are useful for giving high-level specifications on gener-
ations. However, they would be difficult to iterate with
due to the vast space of inputs.

Surprisingly, few human-AI co-creation tools have
used gestural or sketch interactions for indirect control.
We argue that this is a missed opportunity as there are
several benefits to this approach. In the next section, we
expand on this possibility and why it may be appropri-
ate.

4. Gestural Indirect Inputs for
Generative Co-Creation

We propose that gestural or sketch-based interfaces for
indirect specification satisfy our requirements for co-
generation tools. At the very least, this approach may
complement other input controls. First, simple gestural
interactions (e.g., producing a rough sketch) are easy to
iterate with. This characteristic can complement more
effortful controls such as prompts or examples. More-
over, the multi-dimensional characteristics of sketches
and gestures can reduce the effort to interact with multi-
ple attributes simultaneously. For example, 2D sketching
coupled with pressure and speed recognition can be used
to encode multiple parameters simultaneously. This flex-
ibility also means that we can work in abstract visual

encodings. Finally, as we have argued before, gestural
inputs convey the sense of being rough and flexible. This
strongly aligns with the non-determinism of the algo-
rithm and the ambiguity of the user’s intent. Moreover,
it can convey the ‘unfinished’ nature of the generative
process.

As a demonstration of the feasibility of this approach
we describe our system TaleBrush [10] (Figure 1). Tale-
Brush is a human-AlI story co-creation tool that gener-
ates story sentences according to the specifications of the
protagonist’s fortune. For example, if we were describ-
ing Cinderella’s fortune, we might say that: her fortune
started low (with he stepmother and sisters), improved
greatly as she went to the ball, collapsed as she was forced
to flee, and then improved again when the prince found
her.

TaleBrush allows the user first to input a portion of the
story (direct input) in the text box (Figure 1A1). Then,
they can sketch out the protagonist’s fortune in a 2-
dimensional line sketch as in Figure 1A2. This is roughly
a standard time series with the x and y axes standing for
sequence position and fortune levels, respectively. Us-
ing this sketched line (which is actually represented as a
sketch rendering), TaleBrush will generate a story (Fig-
ure 1B1). Because the underlying algorithm is ambiguous
and may not precisely match the desired fortune sketch,
the best matching generation is also displayed in the vi-
sualization (Figure 1B2). Technically, this sketch-based
control is powered by steering a big pretrained language
model with a smaller language model that receives sketch
position as control code. More details can be found in
the Chung et al. [10]

With TaleBrush, the benefits of gestural inputs hold.
First, iteration on the generation is easy. The user only
needs to redraw parts of the sketch. Additionally, a single
drawn line expresses two dimensions simultaneously: (1)
where in the story and (2) at what fortune level should the
sentence be. Notably, the first (position) is a direct input,
whereas the fortune level represents an indirect one. In
reality, we also use the speed at which the sketched line is
drawn to indicate how much ambiguity the user will tol-
erate in the generated result. This is visually represented
in the thickness of the line. A thinner line indicates the
user wants a better match. Internally, this is implemented
by regenerating the sentences multiple times and find-
ing the one that best matches that desired fortune level.
This visualized boundary further emphasizes the ambi-
guity and non-determinism of the algorithm. Note that
a ‘sketch’ does not necessarily mean a ‘sketchy appear-
ance. However, we have opted to use this rendering
aesthetic to further lower the user’s expectations that the
algorithm should be precise [7, 6].



Joint Proceedings of the ACM IUI Workshops 2022, March 2022, Helsinki, Finland

4.1. Design Approaches for Gestural
Indirect Inputs

Implementing TaleBrush has given us some insight about
what may work well (and poorly) for indirect gestural
inputs.

4.1.1. Ease of Iteration on Input

Combine direct and indirect input if possible For
some generation tools, indirect inputs may be sufficient.
For example, if the tool generates any character biogra-
phies based on the good-evil nature of the character, then
it might not require direct inputs. However, as with Tale-
Brush, certain tasks require control with direct input.
The user needs to be able to indicate, “where the genera-
tion should be done” (e.g., where in the story a certain
fortune level should exist or what does the start of the
story look like?). In some cases, as we did with TaleBrush,
the indirect and direct controls can be combined into a
single gestural sketch. That is, with a single brushstroke,
the sequential position (x position-the ‘where’) and the
level of the protagonist’s fortune (y position-the ‘how’)
are both specified.

Complement hard-to-iterate control inputs (lan-
guage, examples) Spatial positions by themselves do
not necessarily convey meaning. They are meaningful
when combined with semantic structures that can be put
on a continuous scale. For example, TaleBrush takes a
restricted set of numerical semantics: whether the char-
acter’s fortune is good or ill. However, this design can be
extended to receive qualitative inputs as the endpoints
of the axes. For example, the user can give natural lan-
guage prompts or examples on each end and explore the
confined space with gestural inputs. This complements
the limitations and features of different input approaches.
Language prompts and examples lack the ease of iter-
ation, which is the strength of gestural inputs. On the
other hand, gestural inputs lack semantics, which lan-
guage prompts and examples can convey.

4.1.2. Matching Input Precision with Algorithmic
Uncertainty

Match the algorithmic precision with the input pre-
cision To have better expectations of how the algo-
rithm will behave, the user should ideally be aware of
the precision of the algorithm. Gestural inputs can be
designed to convey this information. For example, in
TaleBrush, this level of precision is reflected in the width
of the sketched line. This was designed to match the
median error from the test dataset we used during devel-
opment. Thus, the interaction and representation can be
used in ways that reduce ambiguity and help to match
(and manage) expectations.

Controlling the precision When using gestural in-
puts, the user’s intention regarding the precision might
vary. For example, in TaleBrush, the user might have
wanted the algorithm to follow the generation more
tightly when they draw the line with more care. The
system can be designed to leverage other input dimen-
sions to control the precision to reflect these intentions
better. In TaleBrush, the sketching speed was used to
decide how tightly generation should be done. That is,
if the user drew slowly, we assumed this indicated that
they wanted a better fit (represented as a thinner error
envelope). In this way, gestural interactions and rep-
resentations can be used to align input precision with
system capabilities.

5. Conclusion

In this position paper, we have explored where generative
algorithms sit in the overall design space of co-creative
tools. We have further isolated those properties that are
desirable and potentially required for supporting human-
Al co-creation. Our focus was on how inputs (both the
‘what’ and the ‘how’) can interact with underlying algo-
rithms. Our focus on enabling iteration and managing
expectations allowed us to consider the pros and cons of
different input types. Ultimately, we argued that gestu-
ral and sketch-based interactions would work well for
the control of generative algorithms. We showcased the
benefits of this approach with TaleBrush. We believe
that there are significant possibilities opened up by using
abstract visual representations when coupled with novel
interaction types.

Acknowledgments

We thank our reviewers for providing helpful feedback
on this work.

References

[1] I. Goodfellow, J. Pouget-Abadie, M. Mirza,
B. Xu, D. Warde-Farley, S. Ozair, A. Courville,
Y. Bengio, Generative adversarial nets, in:
Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence,
K. Q. Weinberger (Eds.), Advances in Neu-
ral Information Processing Systems, vol-
ume 27, Curran Associates, Inc., 2014. URL:
https://proceedings.neurips.cc/paper/2014/file/
5ca3e9b122f61f8f06494c97blafccf3-Paper.pdf.

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D.
Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss,
G. Krueger, T. Henighan, R. Child, A. Ramesh,

(2]


https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

Joint Proceedings of the ACM IUI Workshops 2022, March 2022, Helsinki, Finland

(3]

(4]

(6]

(7]

D. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen,
E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark,
C. Berner, S. McCandlish, A. Radford, I. Sutskever,
D. Amodei, Language models are few-shot learn-
ers, in: H. Larochelle, M. Ranzato, R. Hadsell,
M. F. Balcan, H. Lin (Eds.), Advances in Neu-
ral Information Processing Systems, volume 33,
Curran Associates, Inc., 2020, pp. 1877-1901.
URL: https://proceedings.neurips.cc/paper/2020/
file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.
Y. Wu, E. Manilow, Y. Deng, R. Swavely, K. Kast-
ner, T. Cooijmans, A. Courville, C.-Z. A. Huang,
J. Engel, Midi-ddsp: Detailed control of musi-
cal performance via hierarchical modeling, 2021.
arXiv:2112.09312.

A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss,
A. Radford, M. Chen, I. Sutskever, Zero-shot text-
to-image generation, in: M. Meila, T. Zhang
(Eds.), Proceedings of the 38th International Con-
ference on Machine Learning, volume 139 of Pro-
ceedings of Machine Learning Research, PMLR, 2021,
pp- 8821-8831. URL: https://proceedings.mlr.press/
v139/ramesh21a.html.

L. A. Gatys, A. S. Ecker, M. Bethge, Image style
transfer using convolutional neural networks, in:
2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), IEEE, USA, 2016, pp.
2414-2423. doi:10.1109/CVPR. 2016. 265.

M. D. Gross, E. Y. Do, Ambiguous intentions: A
paper-like interface for creative design, in: ACM
Symposium on User Interface Software and Tech-
nology, ACM, 1996, pp. 183-192.

J. Landay, B. Myers, Sketching interfaces: toward
more human interface design, Computer 34 (2001)
56—64. d0i:10.1109/2.910894.

M. Eitz, J. Hays, M. Alexa, How do humans sketch
objects?, ACM Trans. Graph. (Proc. SIGGRAPH) 31
(2012) 44:1-44:10.

S.-Y. Chen, W. Su, L. Gao, S. Xia, H. Fu, Deep-
FaceDrawing: Deep generation of face images from
sketches, ACM Transactions on Graphics (Proceed-
ings of ACM SIGGRAPH 2020) 39 (2020) 72:1-72:16.
J.J. Y. Chung, W. Kim, K. M. Yoo, H. Lee, E. Adar,
M. Chang, TaleBrush: Sketching Stories with Gen-
erative Pretrained Language Models, Association
for Computing Machinery, New York, NY, USA,
2022.

J.J. Y. Chung, S. He, E. Adar, The intersection of
users, roles, interactions, and technologies in cre-
ativity support tools, in: Conference on Designing
Interactive Systems, ACM, 2021, pp. 1817-1833.

B. Syed, G. Verma, B. V. Srinivasan, A. Natara-
jan, V. Varma, Adapting language models for
non-parallel author-stylized rewriting, 2020.
arXiv:1909.09962.

(13]

(14]

(18]

(19]

[21]

[22]

(23]

C. J. Steinmetz, ]J. D. Reiss, Steerable discovery of
neural audio effects, 2021. arXiv:2112.02926.

R. Louie, A. Coenen, C. Z. Huang, M. Terry, C. J.
Cai, Novice-ai music co-creation via ai-steering
tools for deep generative models, in: Proceedings
of the 2020 CHI Conference on Human Factors in
Computing Systems, CHI 20, Association for Com-
puting Machinery, New York, NY, USA, 2020, p.
1-13. URL: https://doi.org/10.1145/3313831.3376739.
doi:10.1145/3313831.3376739.

C.-J. Chang, C.-Y. Lee, Y.-H. Yang, Variable-length
music score infilling via xInet and musically special-
ized positional encoding, 2021. arXiv:2108.05064.
P. Ammanabrolu, W. Cheung, W. Broniec, M. O.
Riedl, Automated storytelling via causal, common-
sense plot ordering, CoRR abs/2009.00829 (2020).
URL: https://arxiv.org/abs/2009.00829.

A. Fan, M. Lewis, Y. Dauphin, Strategies for
structuring story generation, in: Proceedings of
the 57th Annual Meeting of the Association for
Computational Linguistics, Association for Com-
putational Linguistics, Florence, Italy, 2019, pp.
2650-2660. URL: https://aclanthology.org/P19-1254.
doi:10.18653/v1/P19-1254.

J. E. Fan, M. Dinculescu, D. Ha, Collabdraw: An
environment for collaborative sketching with an
artificial agent, in: Proceedings of the 2019 on
Creativity and Cognition, C&C 19, Association for
Computing Machinery, New York, NY, USA, 2019,
p. 556-561. URL: https://doi.org/10.1145/3325480.
3326578. doi:10.1145/3325480.3326578.

Y. Lin, J. Guo, Y. Chen, C. Yao, F. Ying, It is your
turn: Collaborative ideation with a co-creative
robot through sketch, in: Proceedings of the
2020 CHI Conference on Human Factors in Com-
puting Systems, CHI ’20, Association for Com-
puting Machinery, New York, NY, USA, 2020, p.
1-14. URL: https://doi.org/10.1145/3313831.3376258.
doi:10.1145/3313831.3376258.

C.Yan, J. J. Y. Chung, K. Yoon, Y. Gingold, E. Adar,
S. R. Hong, FlatMagic: Improving Flat Colorization
through Al-driven Design for DigitalComic Pro-
fessionals, Association for Computing Machinery,
New York, NY, USA, 2022.

L. Sheng, Z. Lin, J. Shao, X. Wang, Avatar-net:
Multi-scale zero-shot style transfer by feature dec-
oration, in: Computer Vision and Pattern Recog-
nition (CVPR), 2018 IEEE Conference on, 2018, pp.
1-9.

A. Nichol, P. Dhariwal, A. Ramesh, P. Shyam,
P. Mishkin, B. McGrew, 1. Sutskever, M. Chen,
Glide: Towards photorealistic image generation
and editing with text-guided diffusion models, 2021.
arXiv:2112.10741.

F. Huang, J. F. Canny, Sketchforme: Composing


https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
http://arxiv.org/abs/2112.09312
https://proceedings.mlr.press/v139/ramesh21a.html
https://proceedings.mlr.press/v139/ramesh21a.html
http://dx.doi.org/10.1109/CVPR.2016.265
http://dx.doi.org/10.1109/2.910894
http://arxiv.org/abs/1909.09962
http://arxiv.org/abs/2112.02926
https://doi.org/10.1145/3313831.3376739
http://dx.doi.org/10.1145/3313831.3376739
http://arxiv.org/abs/2108.05064
https://arxiv.org/abs/2009.00829
https://aclanthology.org/P19-1254
http://dx.doi.org/10.18653/v1/P19-1254
https://doi.org/10.1145/3325480.3326578
https://doi.org/10.1145/3325480.3326578
http://dx.doi.org/10.1145/3325480.3326578
https://doi.org/10.1145/3313831.3376258
http://dx.doi.org/10.1145/3313831.3376258
http://arxiv.org/abs/2112.10741

Joint Proceedings of the ACM IUI Workshops 2022, March 2022, Helsinki, Finland

[24]

(25]

sketched scenes from text descriptions for inter-
active applications, in: Proceedings of the 32nd
Annual ACM Symposium on User Interface Soft-
ware and Technology, UIST ’19, Association for
Computing Machinery, New York, NY, USA, 2019,
p. 209-220. URL: https://doi.org/10.1145/3332165.
3347878. d0i:10.1145/3332165.3347878.

E. Frid, C. Gomes, Z. Jin, Music creation by exam-
ple, in: Proceedings of the 2020 CHI Conference on
Human Factors in Computing Systems, CHI "20, As-
sociation for Computing Machinery, New York, NY,
USA, 2020, p. 1-13. URL: https://doi.org/10.1145/
3313831.3376514. doi:10.1145/3313831.3376514.
Y. Kim, S.-G. An, J. H. Lee, S.-H. Bae, Agile
3D Sketching with Air Scaffolding, Association
for Computing Machinery, New York, NY, USA,
2018, p. 1-12. URL: https://doi.org/10.1145/3173574.
3173812.

I. S. MacKenzie, Fitts’ law as a research and de-
sign tool in human-computer interaction, Hum.-
Comput. Interact. 7 (1992) 91-139. URL: https://
doi.org/10.1207/s15327051hci0701_3. doi:10.1207/
$15327051hci0701_3.

T. M. Amabile, The social psychology of creativ-
ity: A componential conceptualization., Journal of
personality and social psychology 45 (1983) 357.
T. M. Amabile, Componential theory of creativity
(2012).


https://doi.org/10.1145/3332165.3347878
https://doi.org/10.1145/3332165.3347878
http://dx.doi.org/10.1145/3332165.3347878
https://doi.org/10.1145/3313831.3376514
https://doi.org/10.1145/3313831.3376514
http://dx.doi.org/10.1145/3313831.3376514
https://doi.org/10.1145/3173574.3173812
https://doi.org/10.1145/3173574.3173812
https://doi.org/10.1207/s15327051hci0701_3
https://doi.org/10.1207/s15327051hci0701_3
http://dx.doi.org/10.1207/s15327051hci0701_3
http://dx.doi.org/10.1207/s15327051hci0701_3

	1 Introduction
	2 Design Dimensions of Artifact-Creation Support
	2.1 Type of Support
	2.2 Algorithm
	2.2.1 Type: Algorithmic Uncertainty
	2.2.2 Characteristics: Ease of Algorithmic Iteration

	2.3 Input
	2.3.1 Type: Input Directness
	2.3.2 Characteristics: Input Precision
	2.3.3 Characteristics: Ease of Input Iteration


	3 Designing Generative Co-Creation Tools
	3.1 Requirements for Generative Co-creation Tools
	3.2 Algorithmic Design
	3.3 Input Design
	3.3.1 Direct Inputs: A Small Space of Design
	3.3.2 Indirect Inputs: Approaches and Their Limitations


	4 Gestural Indirect Inputs for Generative Co-Creation
	4.1 Design Approaches for Gestural Indirect Inputs
	4.1.1 Ease of Iteration on Input
	4.1.2 Matching Input Precision with Algorithmic Uncertainty


	5 Conclusion

