
Opportunities for Generative AI in UX Modernization
Stephanie Houde1,5, Steven I. Ross1,5, Michael Muller1,5, Mayank Agarwal1,
Fernando Martinez4, John Richards2, Kartik Talamadupula3 and Justin D. Weisz2

1IBM Research AI, Cambridge, MA, USA
2IBM Research AI, Yorktown Heights, NY, USA
3IBM Research AI, Seattle, WA, USA
4IBM Argentina, La Plata, Buenos Aires, AR
5Authors contributed equally to the work

Abstract
The process of application modernization consumes the effort of software development teams charged with upgrading legacy
applications to modern technology, architecture, and design. While some tools exist to aid in these efforts, the modernization
of an application’s user experience is an arduous and primarily manual undertaking. Through a process of user research
and design exploration, we investigate how generative AI models might be used to assist software development teams in
modernizing the user experience of legacy applications. Our goal is to identify opportunities for further research to aid teams
involved in user experience modernization efforts.

Keywords
application modernization, user experience, generative AI models, software development, design

1. Introduction
Software development has been an ongoing human activ-
ity for over 70 years [1]. While new applications continue
to be created, software development teams are now of-
ten faced with the task of modernizing existing or legacy
applications [2, 3, 4]. These applications may continue to
have large and dedicated user bases, but the technology
that they were based upon and the languages and tools
that were used to construct them may now be obsolete,
and the user interfaces that they present may be old-
fashioned and out-dated [5]. Attempting to bring these
applications up to modern standards is further hampered
by inadequate or missing documentation and the loss
of institutional memory that results from employee at-
trition and retirement [6, 7]. While all aspects of the
application modernization effort present challenges, the
task of modernizing the user experience (UX) is particu-
larly daunting [7] – but also particularly necessary for
customer satisfaction [8, 9] – and requires a great deal of

Joint Proceedings of the ACM IUI Workshops 2022, March 2022,
Helsinki, Finland
$ Stephanie.Houde@ibm.com (S. Houde);
steven_ross@us.ibm.com (S. I. Ross); michael_muller@us.ibm.com
(M. Muller); Mayank.Agarwal@ibm.com (M. Agarwal);
martferc@ar.ibm.com (F. Martinez); ajtr@us.ibm.com (J. Richards);
krtalamad@us.ibm.com (K. Talamadupula); jweisz@us.ibm.com
(J. D. Weisz)
� 0000-0002-0246-2183 (S. Houde); 0000-0002-2533-9946
(S. I. Ross); 0000-0001-7860-163X (M. Muller); 0000-0002-8442-2651
(M. Agarwal); 0000-0001-7172-4805 (F. Martinez);
0000-0001-8489-2170 (J. Richards); 0000-0002-4628-3785
(K. Talamadupula); 0000-0003-2228-2398 (J. D. Weisz)

© 2022 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

effort involving multiple roles [10].
As part of a broader evaluation of potential uses of gen-

erative AI, in this paper we report on user research and
design inspiration that explores how generative AI mod-
els might assist software engineers, product managers,
and user experience designers engaged in modernizing
the UX of legacy products. In this kind of modernization
effort, the design and implementation of a user inter-
face must undergo a simultaneous transformation: UX
designs need to be transformed to fit a modern design
system1, and UX code implementations need to be trans-
formed to utilize a modern UI framework2. Our aim is
to inspire development of new machine learning tech-
niques that enable software engineers and designers to
work across a multitude of UX representations, including
screenshots, design mock-ups, and user interface imple-
mentations.

We have identified UX modernization as a unique op-
portunity area through our deliberate effort to identify
technological challenges through user research. We de-
scribe the process we used to identify specific pain points
and unmet needs in UX modernization in Section 4.1 and
our overall observation is that it has a broad scope with
many different constituent tasks and sub-tasks. We de-
scribe the as-is state of UX modernization in Section 4.2
and show a high-level overview of the process in Figure 4.

1A design system is a set of visual and interactive layout, UI
component, color and other standards designed to create consistent
UX often across multiple displays such as web pages and mobile
application screens. Examples of popular design systems include
Material [11] and Carbon [12]

2A UI framework is a library of code that facilitates front-end
web and mobile application development. Popular UI frameworks
include Bootstrap [13] and React [14]

mailto:Stephanie.Houde@ibm.com
mailto:steven\protect \char 95\relax ross@us.ibm.com
mailto:michael\protect \char 95\relax muller@us.ibm.com
mailto:Mayank.Agarwal@ibm.com
mailto:martferc@ar.ibm.com
mailto:ajtr@us.ibm.com
mailto:krtalamad@us.ibm.com
mailto:jweisz@us.ibm.com
https://orcid.org/0000-0002-0246-2183
https://orcid.org/0000-0002-2533-9946
https://orcid.org/0000-0001-7860-163X
https://orcid.org/0000-0002-8442-2651
https://orcid.org/0000-0001-7172-4805
https://orcid.org/0000-0001-8489-2170
https://orcid.org/0000-0002-4628-3785
https://orcid.org/0000-0003-2228-2398
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

We also provide detail on the many unmet needs we have
learned about in Table 1.

Next, we begin crafting a vision for how generative
AI technologies can address some of the unmet needs in
Section 5.1, and map those onto specific kinds of genera-
tive models that could be trained to support these needs
in Section 5.2.

We begin to identify opportunities to develop new
kinds of generative models, based on feasibility (e.g. the
accessing specific data) and potential for impact (e.g.
meeting critical needs). Our philosophy is to decompose
the large, generally-specified tasks within UX modern-
ization into a suite of purpose-built generative models
that can be used by designers and software engineers to
accomplish specific key tasks.

2. Background
UX modernization involves both the redesign of user fac-
ing elements of a legacy application and the underlying
architecture and technology that supports it. The goal is
to provide users with an improved experience in terms of
efficiency, productivity, responsiveness, ease of use, and
enjoyment [15]. The task is complicated and constrained
by the user habits and expectations that result from their
experience with earlier versions of the application.

Recent work has applied a variety of generative AI and
machine learning techniques to a number of software
development tasks, such as code completion [16, 17, 18,
19], documentation and test generation [20, 21, 22, 23],
and computer language translation [24]. Allamanis et al.
[25] provide a comprehensive review of the use of AI
and machine learning within software engineering. In
the realm of application modernization, a variety of tools
have been developed that help in the analysis and re-
architecture of legacy systems [26, 27, 3]. Tools to address
the modernization of the user experience, however, are
notably lacking.

Since application user interfaces typically have a vi-
sual component to them, recent work in image analysis,
generation, and style transfer [28, 29, 30, 31, 32] establish
a baseline of capabilities that may be adapted to the UX
modernization domain.

Finally, since UX modernization activities will typi-
cally involve much iteration, work on Human-AI Collab-
oration with generative models [33, 34, 35, 36] and the
types of interaction made possible by the emergence of
generative AI techniques for natural language, such as
GPT-2 [37] and GPT-3 [38] may also prove to be relevant.

3. Method
We interviewed 12 product managers, architects, and
design leads who are currently working on legacy appli-

cation modernization projects. For topical completeness
and consistency, we guided each informant through a
series of open-ended questions. We balanced these inten-
tional topics with ample opportunity for informants to
introduce their own concerns, and to educate us about
the complexities of their work.

Each interview took place online, and lasted approxi-
mately 60 minutes. Informants were invited to show as
well as tell, by sharing their screen to illustrate the materi-
als of their practices (e.g., screenshots from applications)
and the ways that they worked with those materials (e.g.,
their own notes and proposals for further work).Each
interview was led by the same researcher, and at least
one other researcher attended as note-taker. In addition
to the manual notes, we recorded all interviews (with
informants’ permission), and we used the e-meeting soft-
ware to generate a speech-to-text transcript. We used the
transcript as a guide to what the informants had said, and
we referred back to the recordings as necessary when
the transcripts may have contained speech-recognition
errors.

The majority of those we spoke to were members of
a Data integration application, a Facility management
application, and Asset management application product
teams who are currently engaged in large modernization
projects. These informants gave us a high degree of ac-
cess to other project stakeholders and the content of their
modernization projects, which helped us gain a more con-
crete understanding of the people, processes, tools, and
artifacts involved in modernization. By forming a deep
understanding of their work practices, we were able to
identify pain points that AI technologies could help alle-
viate, as well as new opportunities for which generative
AI technologies could be a useful technological approach.

4. Results

4.1. Identifying UX Modernization as a
particular challenge

One area in which all three of these product groups are
currently making massive, multi-year investments is in
the modernization of the UX. In some of our first inter-
views we learned that the UX transformation part of the
modernization process was particularly difficult and time
consuming, and it did not seem to provide many opportu-
nities for salvaging or re-use of legacy UI designs or code.
One informant who is an architect called their effort “a
complete re-write,” indicating that nearly all of the legacy
code driving the UI had to be re-written to match a com-
pletely re-designed UX. A Program Director for the Data
Integration tool volunteered that modernizing the UI is
“the biggest pain point” in building their next generation
application because it requires a full UX design team and

UI re-architecture, which would take as much time as
designing a whole new application from scratch. This
observation piqued our interest because it seemed that
a legacy product’s UX ought to provide a starting point
for creating a modern re-design, rather than designing
and building a new UX from scratch.

In subsequent interviews, we confirmed that these
large-scale UX modernization projects require high ef-
fort, large teams, and multiple years to complete. Some
of the major challenges are similar to those faced when
modernizing back-end systems: a lack of access to people
who created the original product3; a lack of product doc-
umentation, and a lack of functional specifications (e.g.
validation logic of input fields). There are also additional
challenges due to the visual and interactive nature of
the front-end: a lack of malleable design assets makes it
difficult to conduct re-design work; a lack of user stories
makes it difficult to understand core functionality; a lack
of flow diagrams makes it difficult to understand the in-
teraction design; a lack of a UI catalog makes it difficult
to understand how UI components are used across the
entirety of the UX; and the requirements to use modern,
web-based, front-end UI frameworks makes it difficult to
understand how to re-write legacy code (e.g. porting a
native Windows application to a Web application).

4.2. As-Is: Current Process for UX
Modernization

The Data Integration, Facility Management, and Asset
Management application modernization projects we stud-
ied are each briefly introduced in Figures 1, 2, and 3.
Although each project has its own unique goals and tech-
nical and design challenges, we found that the phases of
work required across all of them shared some common
traits. We show a high-level overview of this process in
Figure 4.

The start of each modernization project is character-
ized by an initial period of discovery in which product
managers, designers and software architects learn about
the functionality of the legacy product (Step 1). This
process can be difficult due to a lack of product knowl-
edge on the team and a lack of comprehensive product
documentation. Much of this learning happens through
trial-and-error usage of the product, as well as conduct-
ing Internet searches and watching online video tutorials
(e.g. YouTube video demonstrations of the product).

The next phase involves planning which existing func-
tionality will be moved into the next generation product
(Step 2). Next, small functional units are specified (Step
3), designed (Step 4), and implemented (Step 5) in an iter-
ative fashion with integrated functional and user testing

3For some of the products we examined, their original design
dates back 20+ years.

as needed, until the modernization process is complete.
Overall, this process is highly manual and incurs tremen-

dous coordination costs across designers, architects, soft-
ware engineers, and product managers. All tasks – large
or small – require human attention and manual work.
Very little legacy code or design artifacts are reused, if
they are even present. In some cases, design artifacts
for the legacy application need to be created before arti-
facts for the transformed application can be created, due
to the need to catalog and preserve the functionality of
the legacy application. Then, once modernized design
specification mockups have been created4 the process of
implementing them in code is also completely manual,
even though certain aspects of the UX, such as layout
and UI component usage, have been precisely specified
in the design files. Hence, the overall UX modernization
process for an enterprise application is time consuming:
each of the 3 UX modernization projects we studied has
a 1-3 year roadmap for completion.

In speaking with our informants about their as-is pro-
cess for conducing UX modernization, we identified a
large number of opportunities where AI technologies (not
just generative) could provide support. After compiling
this list, we filtered it through the lens of generative tech-
niques (as consistent with our broader research question
of potential uses of generative AI) to focus on new areas
and directions for generative machine learning research.
At a high level, we find UX modernization to be inter-
esting from a machine learning perspective because of
the need to simultaneously co-transform multiple media
types to conform to a desired state: the legacy UX design
(as represented by images or design files) and the legacy
UX implementation (as represented by code) need to be
transformed into modernized UX design and modernized
UX implementation.

We enumerate the subset of unmet needs we learned
about in our user research that might be supported by
generative AI innovations in Table 1, organized by the
phases of the modernization process. We identify how
those unmet needs may be addressed by motivating new
generative AI model development.

5. Discussion

5.1. AI-Supported UX Modernization
After gaining insight into the characteristics and un-
met needs of the existing UX modernization process, we
sought to re-envision a new, AI-supported UX moderniza-
tion process. Our aim is to apply generative technologies
in an assistive or augmentative fashion, turning UX mod-
ernization into a co-creative process in which human

4Visual specification mockups are often created in applications
such as Sketch [39] and Figma [40].

Figure 1: Data integration application UX Modernization project. The legacy version of the data integration application
we studied was originally written 25 years ago. It offers a direct manipulation solution for defining Extract/Transfer/Load
(ETL) data processing jobs. A team is currently working to build a next generation version of the product while, in parallel,
continuing to support the still widely used legacy product. UX modernization plans (now partially implemented) include
changing from a desktop Windows application framework to the web-based React framework [14] with the Carbon design
system [12]. The team also seeks to identify pre-built platform components that can replace existing functionality in the
Windows application. This project is estimated to take 1-2 years.

Figure 2: Facility management application UX modernization project. The legacy version of the facility management
product we studied was originally written 20 years ago. A team is currently working to modernize its web UI while making as
few functional changes as possible. The legacy web UI was implemented as Java Server Pages (JSP) with a legacy web design
system.The team is working to re-implement it using the React framework and the Carbon design system. This work will be
done incrementally on the live product, transforming the existing product while it is still in use. Incremental implementation
has already begun and this project is estimated to be completed in 2-3 years.

Figure 3: Asset management application UX modernization project. The legacy version of the enterprise facility
management product we studied is used heavily as a mobile application for equipment maintenance in the field. The focus
of their UX modernization efforts are on re-designing and re-implementing their legacy mobile applications as a new web
applications using the mobile version of the Carbon design system. New features and improved navigation will also be added.
The modernization process is being executed on one major feature at a time. In the UI re-implementation, the architecture of
front-end code is being dramatically changed to adopt a new XML-based declarative system.

Legacy UX
Discovery

Product architect works
to understand the legacy
application both inside
and out.

Product architect,
engineering architect,
design leads and multiple
stakeholders work to
define a general strategy
for how the old
functionality should be
mapped to the new UX,
and in what order given
the next gen
requirements.

Product architect does a
detailed review of the
legacy system next in line
for modernization,
documents existing
functionality, modifies to
remove and add features
according to next gen
plans, and develops a
user story to describe
these capabilities in work
items for design and
development.

UX Designers define the
next gen UI given the
user and functional
requirements. The legacy
UI may be used as a
visual reference during
this work as they create
next gen mockups that
restyle but also replicate
some of the existing
functionality and
evaluate them with
users.

Software engineers
implement the next gen
user experience given the
specifications and
requirements. The legacy
code base is used as a
reference while
functionality is
reimplemented in the
next gen framework.

Modernization
Planning

Functional
Specification

Design
Specification

Next Gen UX
Implementation

executed in multiple waves

1 2 3 4 5

Figure 4: A high level view of the UXmodernization process. All three projects first required discovering and inventorying
the user-facing capabilities presented in the legacy product (Step 1). Next, strategic plans are made (Step 2) to choose the
highest impact feature(s) to modernize first, choose the functional group to modernize first, or figure out how old functionality
can be replaced by a new application suite context. Once the priorities have been established, functional specifications (Step
3), design specifications (Step 4), and UX implementations (Step 5) occur in an iterative fashion, akin to traditional product
development. We learned the common steps of this process from our informants. It is also documented similarly and in more
technical detail in Tritchew [26].

attention is focused on work requiring creativity and
judgement, and generative models are used to automate
tedious and manual work (e.g., [41]). Settu and Raj de-
scribe the challenges in automating modernization, and
propose guidelines for practical cases [9]. In their thesis,
Nilsson explored rationales for modernization and factors
to consider when planning a modernization project [42].
Examples of modernization and automation approaches
appear in [4, 43, 27].

We also desire to increase the reuse of legacy assets.
Already, designers and architects need to capture and
preserve details of the legacy applications in order to gen-
erate functional specifications, but aspects of this work
are highly automatable, such as crawling UI screens and
cataloging the use of UI elements, and separating busi-
ness logic from presentation logic. An important aspect
of this work is to transform legacy assets into the kinds
of malleable intermediate representations used by design-
ers and architects in the redesign process. For example,
rather than having designers re-create representations of
the legacy UI in a drawing tool such as Sketch to prepare
it for transformation, generative models might transform
screenshots or legacy UI code into a “first cut” repre-
sentation a designer can then work with [44, 45]. Or,
generative models might perform transformative opera-
tions between representations, such as converting design

mockups or textual descriptions into implemented code
(e.g., [25, 46]), or vice versa (e.g., [47]).

5.2. Generative Models to explore for UX
Modernization

In Table 1, we identified the subset of unmet needs that
we felt could be addressed by new generative models. We
expand on these ideas below by describing how we might
implement such models to support those unmet needs.
Our observation is that UX modernization involves a
large number of diverse “micro-tasks” that may or may
not be needed, depending on the availability of informa-
tion or documentation of the legacy product5. Thus, we
assert that a single UX modernization assistive tool will
not be sufficient for addressing the myriad of challenges
faced by practitioners. Rather, we take an approach mo-
tivated by Unix philosophy [48]: build small tools that
do one task well, and enable users to chain these tools
together to achieve greater behaviors. We demonstrate
how an AI-supported designer might work in this new
fashion in Figure 5.

5For example, if a UI catalog exists for the legacy product, then
cataloging the UI is not necessary.

Activity Unmet Need Solution Idea Model Idea

Modernization
Planning

It takes a long time and special design
and implementation skills to visualize
the modernized UX for stakeholder
evaluation.

Provide tools that convert legacy UX
representations into a modern design
system (e.g. transform UX screen-
shots to look like Carbon). This func-
tionality may be especially useful in
cases in which a minimal amount of
layout and functional changes are
planned, or where a quick what-if
view would help the planning pro-
cess.

UI-Style-Transfer,
UI-Framework-
Translation

Design
Specification

All controls in the legacy application
have to be redrawn in a design tool
to produce an editable version of the
UX.

Provide tools that transform legacy
screens into editable representations
in UX (e.g. as Sketch or Figma design
files).

Screen-to-Mockup

Design
Specification

Different products have different UI
style and layout conventions. It
requires a lot of manual effort to
transform legacy styles & layouts to
product-specific modernized styles &
layouts.

Provide tools that can be used to
restyle UI elements and layouts to
fit the style of a specified design sys-
tem and usage pattern. Note that de-
sign systems are generic, but layout
and usage conventions are specific to
product standards, and these should
be a part of the transformation tar-
get.

UI-Style-Transfer

Next Gen UX
Implementation

Even though design specifications
are pixel-perfect, software engineers
need to implement them from
scratch in code.

Provide tools that generate UI code
that match the intended design to
save time by offering a starting point
for further editing.

Mockup-to-
Implementation

Next Gen UX
Implementation

It’s difficult to re-purpose or re-use
UI code written in a legacy UI frame-
work.

Provide tools that can translate de-
sign systems from one framework to
another as a starting point for further
editing.

UI-Framework-
Translation

Next Gen UX
Implementation

It’s difficult to re-purpose or re-use
UI code written in a legacy UI frame-
work, when code for the UI is mixed
with code that implements business
logic.

Provide tools that can disentangle
code that manages the UI from code
that manages business logic.

UI-Code-
Disentanglement

Table 1
Unmet needs discovered through our interviews with UX modernization practitioners. Each unmet need is mapped
to a potential solution, which may (or may not) involve an application of AI. For some unmet needs, there are clear mappings
to potential generative models (shown in bold italic); these are extracted and discussed in further detail in section 5.2.

5.2.1. Screen-to-Mockup

A Screen-to-Mockup model would use a screenshot of
a UI as input and generate an editable UX mock-up rep-
resentation as output (e.g. Sketch file). Where available,
it would be helpful to include legacy source code to im-
prove the quality of the transformation. The Screen2Vec
research by Li et al. [32] as well as the wireframe gener-
ation research by Gajjar et al. [49] suggests this goal is
feasible.

5.2.2. UI-Style-Transfer

A UI-Style-Transfer model would be able to take a screen-
shot of a visual UI mockup as input and transform the
styling of UI components to match a particular design
system. For example, renderings using a legacy design
system could be transformed to use a next generation
design system. Additionally, any detailed mockup could
be rendered as low fidelity style wireframes to facilitate
discussions of functionality when UI detail is not a useful
focus. Existing style transfer mechanisms (e.g. Style-
GAN [50]) may be able to accomplish this task through

fine tuning. Layout optimization capabilities such as
those described by Rahman et al. [45] would be required
for style transforms that include layout practices. Gener-
ative GUI design creation capabilities are also explored
in research by Zhao et al. [51].

5.2.3. Mockup-to-Implementation

Given a UI design representation (e.g. Sketch file) as in-
put, a Mockup-to-Implementation model would be able
to generate UI code as output (e.g. React). Existing rule-
based systems have shown this is desirable functional-
ity [52]; we hypothesize that generative models may be
able to improve the transformation process by incorporat-
ing transformed UI logic (e.g. form validation code) from
legacy code. The pix2code research by Beltramelli [47]
as well as the SynZ research by Sermuga Pandian et al.
[53] show that deep learning models can be leveraged
for this purpose as well.

5.2.4. UI-Framework-Translation

A UI-Framework-Translation model would take legacy
UI code as input (e.g. Java Swing, JSP) and transform
it to a new UI framework as output (e.g. React, Swif-
tUI). Existing state-of-the-art generative code models
(e.g. [54, 55, 24]) demonstrate how to translate source
code between languages, but provide very limited sup-
port for translation at the level of packages and libraries.

5.2.5. UI-Code-Disentanglement

A UI-Code-Disentanglement model would take legacy UI
code as input (e.g. PHP) and transform it into two mod-
ules: code that drives display & presentation logic (e.g.
the Controller in a Model-View-Controller architecture)
and code that drives business logic (e.g. the Model in a
Model-View-Controller architecture).

6. Conclusion
We conducted user research that enabled us to under-
stand goals, challenges, and work practices of teams en-
gaged in application modernization work exemplified by

the three projects described in section 4.2. Within the
scope of these projects, we identified UX modernization
as a challenging and time consuming part of the over-
all modernization process that requires a lot of manual
steps by multiple modernization team members includ-
ing project managers, UX designers, and software engi-
neers as illustrated in Figure 4. Current approaches to
modernization [3, 2, 3, 4, 8, 56, 57, 58] revealed that UX
modernization is not as well addressed as other modern-
ization tasks such as transforming core code into micro-
services [43, 27, 3], and potentially holds promise as a
good area to consider generative AI technology help. We
identified a number of pain points within the UX mod-
ernization process observed that could potentially be
addressed by new generative AI technology in the form
of a set of generative AI models (described in Table 1 and
in Section 5.2). Finally, in Figure 5, we used a scenario
to visualize what the future of UX modernization work
might be like if we were able to create and deploy those
models.

Our contributions are as follows:

• Discovery of a previously undescribed pain-point
and opportunity for application modernization,
in the difficulty of UX modernization. This aspect
of our work extends previous analyses of legacy
application modernization [3, 2, 3, 4, 56, 57, 58],
supplementing previous generative AI work in
other aspects of software engineering [16, 19, 20,
21, 22, 23, 24].

• Documentation of three UX modernization use-
cases, which require significant amounts of time
and human effort.

• Proposals for new tooling that can apply contem-
porary AI approaches [17, 18, 19, 21, 22, 24] to
UX modernization.

In future work we will evaluate the desirability of the
models and applications depicted with prospective users.
At the same time we will explore feasibility from a data
collection and training perspective. We share these ideas
with this workshop in the hope of inviting critique, dis-
cussion, and generative AI experimentation in the area
of assisting the UX modernization process.

Deep Capture

Sketch

Convert as is
Convert as wireframe
Convert in Carbon style

Sketch

Board 1

1. Joe is a UX designer on a team
that is modernizing a legacy web
application. Today he is going to
design and specify an updated
Preferences page. He begins by
opening the legacy preferences
page and reading the functional
user story as well as links to legacy
documentation provided by the
product manager.

5. In this case, Joe is just going to
use the legacy screen for
reference while he converts the
functionality they plan to preserve
into a new design. He right clicks
to access a menu of style transfer
capabilities offered by the plugin.
He chooses to convert the style to
Carbon, which is the design
system of the next gen version of
the application.

5. Eva opens the resulting code file
in her IDE where she reviews what
is there and tries displaying and
testing the page. It’s not perfect
but it’s a good head start. She has
to fix some problems and also
needs to chase down some legacy
business logic that was not picked
up in the conversion because it
resided in a back-end part of the
code. She finds that code using
another AI Utility that helps her to
find and extract it.

*Screen-to-Mockup

*UI-Style-Transfer

*UI-Code-Disentanglement

*Mockup-to-Implementation

*UI-Framework-Translation

2. He will use a number of new
generative AI modernization
utilities as he works today. One of
these is a browser plug-in that
allows him to do a “deep capture”
of a UX screen. He uses it to
capture an image of the page as
well as the HTML representation of
the screen, hierarchical Domain
Object Mode model (DOM), text
content, and any associated front-
end code that can be located.

6. This allows him to generate a
second screen mock-up next to
the legacy mock-up with the same
UX features mapped to their
Carbon design system equivalents.
The conversion is not perfect but
gives Joe a head-start on different
changes he needs to make to
comply with style patterns that his
group is using as well as functional
changes specified by the product
manager.

10. When her work is done the first
version of the modernized page is
ready for testing. The AI tools
used along the way accelerated
the time it took to get to this point
compared with the way the team
used to do all steps manually. Eva
estimates it might make the
process faster by 20% or even
more!

3. Next, he opens Sketch (a vector-
based drawing tool that he uses to
prototype UI designs). There he
right clicks to access a Generative
AI powered plugin utility that
allows him to paste an editable
version of the legacy page he just
copied onto the Sketch canvas.
Several different conversion style
options are available. He chooses
to convert the screen “as is”.

7. He replaces some radio button
choices with check boxes, puts the
slide-out panel in context of a new
drag and drop workflow area of the
tool that was not present in the
legacy version, and he adds
accept/cancel buttons that got lost
in the transfer. After Joe has
evaluated and refined the design
with users and other stakeholders,
he attaches the completed Sketch
file to a GitHub work item already
prepared by the product manager.

4. This converts the image into
editable text and UI graphics
where text and images can be
examined, copied, pasted, and
subsequently edited. The
conversion process enabled by
this paste was facilitated by the
multiple image and code inputs
captured earlier in the deep copy.

8. Eva, a software engineer on the
development team gets the
implementation task assignment.
She starts by opening Joes's
Sketch file that Joe prepared using
the Generative AI plugin to convert
the new page mockup-in sketch to
a coded version using the React
framework of the next gen
application. The export capability
uses the new design as well as
details such as field names and
validation in the legacy framework
to produce the resulting code file.

Sketch

Board 1

Convert as is
Convert as wireframe
Convert in Carbon style

Sketch

Board 1 Board 2

Sketch

Board 1 Board 2

Sketch

Board 1 Board 2

Export as React
Export as BootStrap
Export as original framework

VS Code

Figure 5: Future UX modernization "to-be" scenario. In this scenario, a UX designer’s work is augmented via a suite of
generative models that make it easier to move between UI representations (e.g. Screen-to-Mockup and UI Style transfer in
Steps 4 and 6) as well as hand-off work to software engineers (e.g. Mockup-to-Implementation, UI Framework Translation, and
UI Code Disentanglement in steps 8 and 9). *Names of future generative models, shown in bold italic text, described in more
detail in Section 5.2.

References
[1] M. Yost, A brief history of software

development (2018). URL: https://https:
//medium.com/@micahyost/a-brief-history-
of-software-development-f67a6e6ddae0.

[2] S. Jain, I. Chana, Modernization of legacy systems:
A generalised roadmap, in: Proceedings of the
Sixth International Conference on Computer and
Communication Technology 2015, 2015, pp. 62–67.

[3] A. K. Kalia, J. Xiao, C. Lin, S. Sinha, J. Rofrano,
M. Vukovic, D. Banerjee, Mono2micro: an ai-based
toolchain for evolving monolithic enterprise appli-
cations to a microservice architecture, in: Proceed-
ings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2020,
pp. 1606–1610.

[4] M. Mishra, S. Kunde, M. Nambiar, Cracking the
monolith: Challenges in data transitioning to cloud
native architectures, in: Proceedings of the 12th Eu-
ropean Conference on Software Architecture: Com-
panion Proceedings, 2018, pp. 1–4.

[5] M. Fauscette, R. Perry, Simplifying it to drive better
business outcomes and improved roi: Introducing
the it complexity index, International Data Corpo-
ration (2014).

[6] M. Kangasaho, et al., Legacy application modern-
ization with rest wrapping (2016).

[7] J. D. Weisz, M. Muller, S. Houde, J. Richards, S. I.
Ross, F. Martinez, M. Agarwal, K. Talamadupula,
Perfection not required? human-ai partnerships in
code translation, in: 26th International Conference
on Intelligent User Interfaces, 2021, pp. 402–412.

[8] J. Johnson, H. Mulder, Endless modernization
(2020). URL: https://www.researchgate.net/profile/
Hans-Mulder-2/publication/348849361_Endless_
Modernization_How_Infinite_Flow_Keeps_
Software_Fresh/links/60132878299bf1b33e30c29e/
Endless-Modernization-How-Infinite-Flow-
Keeps-Software-Fresh.pdf.

[9] R. Settu, P. Raj, Cloud application modernization
and migration methodology, in: Cloud Computing,
Springer, 2013, pp. 243–271.

[10] L. Tahlawi, Combining legacy modernization ap-
proaches for OO and SOA, Ph.D. thesis, University
of New Brunswick., 2012.

[11] Google, Material design, n.d. URL: https:
//material.io/, n.d.

[12] IBM, Carbon design system, 2021. URL: https://
www.carbondesignsystem.com/, accessed: 2021-
12-20.

[13] O. source community, Get bootstrap, n.d. URL:
https://getbootstrap.com/, n.d.

[14] Anonymous, Awesome react design systems, 2021.

URL: https://github.com/jbranchaud/awesome-
react-design-systems, accessed: 2021-12-20.

[15] J. Lasarte, Principles to guide your ux mod-
ernization (2018). URL: https://medium.com/
headspring-ux-team/principles-to-guide-your-
ux-modernization-d1d7ee56270d, [Online;
accessed 16-Dec-2021].

[16] A. Hindle, E. T. Barr, Z. Su, M. Gabel, P. Devanbu,
On the naturalness of software, in: 2012 34th In-
ternational Conference on Software Engineering
(ICSE), IEEE, 2012, pp. 837–847.

[17] V. Raychev, M. Vechev, A. Krause, Predicting pro-
gram properties from" big code", in: Proceedings
of the 42nd Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages,
2015, pp. 111–124.

[18] M. Bruch, M. Monperrus, M. Mezini, Learning from
examples to improve code completion systems, in:
Proceedings of the 7th joint meeting of the Euro-
pean software engineering conference and the ACM
SIGSOFT symposium on the foundations of soft-
ware engineering, 2009, pp. 213–222.

[19] A. Svyatkovskiy, S. K. Deng, S. Fu, N. Sundaresan,
Intellicode compose: Code generation using trans-
former, arXiv preprint arXiv:2005.08025 (2020).

[20] M. Tufano, D. Drain, A. Svyatkovskiy, S. K. Deng,
N. Sundaresan, Unit test case generation with trans-
formers, arXiv preprint arXiv:2009.05617 (2020).

[21] X. Guo, Towards automated software testing
with generative adversarial networks, in: 2021
51st Annual IEEE/IFIP International Conference
on Dependable Systems and Networks - Supple-
mental Volume (DSN-S), IEEE Computer Society,
Los Alamitos, CA, USA, 2021, pp. 21–22. URL:
https://doi.ieeecomputersociety.org/10.1109/
DSN-S52858.2021.00021. doi:10.1109/DSN-
S52858.2021.00021.

[22] L. Moreno, J. Aponte, G. Sridhara, A. Marcus, L. Pol-
lock, K. Vijay-Shanker, Automatic generation of
natural language summaries for java classes, in:
2013 21st International Conference on Program
Comprehension (ICPC), IEEE, 2013, pp. 23–32.

[23] A. Y. Wang, D. Wang, J. Drozdal, M. Muller,
S. Park, J. D. Weisz, X. Liu, L. Wu, C. Dugan,
Themisto: Towards automated documentation gen-
eration in computational notebooks, arXiv preprint
arXiv:2102.12592 (2021).

[24] B. Roziere, M.-A. Lachaux, L. Chanussot, G. Lam-
ple, Unsupervised translation of programming lan-
guages., in: NeurIPS, 2020.

[25] M. Allamanis, E. T. Barr, P. Devanbu, C. Sutton, A
survey of machine learning for big code and natu-
ralness, ACM Computing Surveys (CSUR) 51 (2018)
1–37.

https://https://medium.com/@micahyost/a-brief-history-of-software-development-f67a6e6ddae0
https://https://medium.com/@micahyost/a-brief-history-of-software-development-f67a6e6ddae0
https://https://medium.com/@micahyost/a-brief-history-of-software-development-f67a6e6ddae0
https://www.researchgate.net/profile/Hans-Mulder-2/publication/348849361_Endless_Modernization_How_Infinite_Flow_Keeps_Software_Fresh/links/60132878299bf1b33e30c29e/Endless-Modernization-How-Infinite-Flow-Keeps-Software-Fresh.pdf
https://www.researchgate.net/profile/Hans-Mulder-2/publication/348849361_Endless_Modernization_How_Infinite_Flow_Keeps_Software_Fresh/links/60132878299bf1b33e30c29e/Endless-Modernization-How-Infinite-Flow-Keeps-Software-Fresh.pdf
https://www.researchgate.net/profile/Hans-Mulder-2/publication/348849361_Endless_Modernization_How_Infinite_Flow_Keeps_Software_Fresh/links/60132878299bf1b33e30c29e/Endless-Modernization-How-Infinite-Flow-Keeps-Software-Fresh.pdf
https://www.researchgate.net/profile/Hans-Mulder-2/publication/348849361_Endless_Modernization_How_Infinite_Flow_Keeps_Software_Fresh/links/60132878299bf1b33e30c29e/Endless-Modernization-How-Infinite-Flow-Keeps-Software-Fresh.pdf
https://www.researchgate.net/profile/Hans-Mulder-2/publication/348849361_Endless_Modernization_How_Infinite_Flow_Keeps_Software_Fresh/links/60132878299bf1b33e30c29e/Endless-Modernization-How-Infinite-Flow-Keeps-Software-Fresh.pdf
https://www.researchgate.net/profile/Hans-Mulder-2/publication/348849361_Endless_Modernization_How_Infinite_Flow_Keeps_Software_Fresh/links/60132878299bf1b33e30c29e/Endless-Modernization-How-Infinite-Flow-Keeps-Software-Fresh.pdf
https://material.io/
https://material.io/
https://www.carbondesignsystem.com/
https://www.carbondesignsystem.com/
https://getbootstrap.com/
https://github.com/jbranchaud/awesome-react-design-systems
https://github.com/jbranchaud/awesome-react-design-systems
https://medium.com/headspring-ux-team/principles-to-guide-your-ux-modernization-d1d7ee56270d
https://medium.com/headspring-ux-team/principles-to-guide-your-ux-modernization-d1d7ee56270d
https://medium.com/headspring-ux-team/principles-to-guide-your-ux-modernization-d1d7ee56270d
https://doi.ieeecomputersociety.org/10.1109/DSN-S52858.2021.00021
https://doi.ieeecomputersociety.org/10.1109/DSN-S52858.2021.00021
http://dx.doi.org/10.1109/DSN-S52858.2021.00021
http://dx.doi.org/10.1109/DSN-S52858.2021.00021

[26] T. Tritchew, A multi-step incremental approach to
modernization (2020). URL: https://medium.com/
@tedt_39153/a-multi-step-incremental-approach-
to-modernization-e6264318b462.

[27] IBM, Ibm cloud transformation advisor, 2021. URL:
https://www.ibm.com/garage/method/practices/
learn/ibm-transformation-advisor, accessed:
2021-12-20.

[28] Z. Zhao, X. Ma, A compensation method of two-
stage image generation for human-ai collaborated
in-situ fashion design in augmented reality envi-
ronment, in: 2018 IEEE International Conference
on Artificial Intelligence and Virtual Reality (AIVR),
IEEE, 2018, pp. 76–83.

[29] K. Gregor, I. Danihelka, A. Graves, D. Rezende,
D. Wierstra, Draw: A recurrent neural network
for image generation, in: F. Bach, D. Blei (Eds.), Pro-
ceedings of the 32nd International Conference on
Machine Learning, volume 37 of Proceedings of Ma-
chine Learning Research, PMLR, Lille, France, 2015,
pp. 1462–1471. URL: https://proceedings.mlr.press/
v37/gregor15.html.

[30] L. A. Gatys, A. S. Ecker, M. Bethge, Image style
transfer using convolutional neural networks, in:
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016.

[31] Y. Aslam, S. N, A review of deep learning ap-
proaches for image analysis, in: 2019 International
Conference on Smart Systems and Inventive Tech-
nology (ICSSIT), 2019, pp. 709–714. doi:10.1109/
ICSSIT46314.2019.8987922.

[32] T. J.-J. Li, L. Popowski, T. Mitchell, B. A. Myers,
Screen2vec: Semantic embedding of gui screens
and gui components, in: Proceedings of the 2021
CHI Conference on Human Factors in Computing
Systems, 2021, pp. 1–15.

[33] T. Weber, H. Hußmann, Z. Han, S. Matthes, Y. Liu,
Draw with me: Human-in-the-loop for image
restoration, in: Proceedings of the 25th Interna-
tional Conference on Intelligent User Interfaces,
2020, pp. 243–253.

[34] B. Shneiderman, Human-centered artificial intelli-
gence: Reliable, safe & trustworthy, International
Journal of Human–Computer Interaction 36 (2020)
495–504.

[35] J. M. Bradshaw, P. J. Feltovich, M. Johnson, Human–
agent interaction, in: The handbook of human-
machine interaction, CRC Press, 2017, pp. 283–300.

[36] E. Horvitz, Principles of mixed-initiative user
interfaces, in: Proceedings of the SIGCHI
Conference on Human Factors in Computing
Systems, CHI ’99, Association for Computing
Machinery, New York, NY, USA, 1999, p. 159–166.

URL: https://doi.org/10.1145/302979.303030.
doi:10.1145/302979.303030.

[37] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei,
I. Sutskever, Language models are unsupervised
multitask learners, OpenAI blog 1 (2019) 9.

[38] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Ka-
plan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sas-
try, A. Askell, et al., Language models are few-shot
learners, arXiv preprint arXiv:2005.14165 (2020).

[39] Anonymous, Sketch, 2021. URL: https:
//www.sketch.com/, accessed: 2021-12-20.

[40] Anonymous, Figma, n.d. URL: https:
//www.figma.com/, accessed: 2022-12-20.

[41] D. Friedmana, D. Pollaka, Image co-creation by non-
programmers and generative adversarial networks
(2021). URL: http://ceur-ws.org/Vol-2903/IUI21WS-
HAIGEN-4.pdf.

[42] S. Nilsson, Application modernization: Ap-
proaches, problems and evaluation, Mas-
ter’s thesis, Umeå University, 2015. URL:
https://www.diva-portal.org/smash/get/diva2:
875375/FULLTEXT01.pdf.

[43] IBM, Ibm mono2micro, 2021. URL: https:
//www.ibm.com/cloud/mono2micro, accessed:
2021-08-05.

[44] M. Laine, Y. Zhang, S. Santala, J. P. Jokinen,
A. Oulasvirta, Responsive and personalized web
layouts with integer programming, Proceedings of
the ACM on Human-Computer Interaction 5 (2021)
1–23.

[45] S. Rahman, V. P. Sermuga Pandian, M. Jarke, Ruite:
Refining ui layout aesthetics using transformer
encoder, in: 26th International Conference on
Intelligent User Interfaces - Companion, IUI ’21
Companion, Association for Computing Machin-
ery, New York, NY, USA, 2021, p. 81–83. URL: https:
//doi.org/10.1145/3397482.3450716. doi:10.1145/
3397482.3450716.

[46] D. K. Palani, Statistical Machine Translation of En-
glish Text to API Code Usages: A comparison of
Word Map, Contextual Graph Ordering, Phrase-
based, and Neural Network Translations, Ph.D. the-
sis, Concordia University, 2018.

[47] T. Beltramelli, pix2code: Generating code from a
graphical user interface screenshot, in: Proceedings
of the ACM SIGCHI Symposium on Engineering
Interactive Computing Systems, 2018, pp. 1–6.

[48] Wikipedia contributors, Unix philoso-
phy — Wikipedia, the free encyclopedia,
https://en.wikipedia.org/w/index.php?title=
Unix_philosophy&oldid=1036396134, 2021.
[Online; accessed 6-August-2021].

https://medium.com/@tedt_39153/a-multi-step-incremental-approach-to-modernization-e6264318b462
https://medium.com/@tedt_39153/a-multi-step-incremental-approach-to-modernization-e6264318b462
https://medium.com/@tedt_39153/a-multi-step-incremental-approach-to-modernization-e6264318b462
https://www.ibm.com/garage/method/practices/learn/ibm-transformation-advisor
https://www.ibm.com/garage/method/practices/learn/ibm-transformation-advisor
https://proceedings.mlr.press/v37/gregor15.html
https://proceedings.mlr.press/v37/gregor15.html
http://dx.doi.org/10.1109/ICSSIT46314.2019.8987922
http://dx.doi.org/10.1109/ICSSIT46314.2019.8987922
https://doi.org/10.1145/302979.303030
http://dx.doi.org/10.1145/302979.303030
https://www.sketch.com/
https://www.sketch.com/
https://www.figma.com/
https://www.figma.com/
http://ceur-ws.org/Vol-2903/IUI21WS-HAIGEN-4.pdf
http://ceur-ws.org/Vol-2903/IUI21WS-HAIGEN-4.pdf
https://www.diva-portal.org/smash/get/diva2:875375/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:875375/FULLTEXT01.pdf
https://www.ibm.com/cloud/mono2micro
https://www.ibm.com/cloud/mono2micro
https://doi.org/10.1145/3397482.3450716
https://doi.org/10.1145/3397482.3450716
http://dx.doi.org/10.1145/3397482.3450716
http://dx.doi.org/10.1145/3397482.3450716
https://en.wikipedia.org/w/index.php?title=Unix_philosophy&oldid=1036396134
https://en.wikipedia.org/w/index.php?title=Unix_philosophy&oldid=1036396134

[49] N. Gajjar, V. P. Sermuga Pandian, S. Suleri,
M. Jarke, Akin: Generating ui wireframes
from ui design patterns using deep learning,
in: 26th International Conference on Intelli-
gent User Interfaces - Companion, IUI ’21 Com-
panion, Association for Computing Machinery,
New York, NY, USA, 2021, p. 40–42. URL: https:
//doi.org/10.1145/3397482.3450727. doi:10.1145/
3397482.3450727.

[50] T. Karras, S. Laine, T. Aila, A style-based generator
architecture for generative adversarial networks,
in: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2019,
pp. 4401–4410.

[51] T. Zhao, C. Chen, Y. Liu, X. Zhu, Guigan: Learning
to generate gui designs using generative adver-
sarial networks, in: Proceedings of the 43rd
International Conference on Software Engineering,
ICSE ’21, IEEE Press, 2021, p. 748–760. URL:
https://doi.org/10.1109/ICSE43902.2021.00074.
doi:10.1109/ICSE43902.2021.00074.

[52] Sketch2React, Build react & html prototypes in
sketch, 2021. URL: http://sketch2react.io.

[53] V. P. Sermuga Pandian, S. Suleri, M. Jarke, Synz:
Enhanced synthetic dataset for training ui element

detectors, in: 26th International Conference on
Intelligent User Interfaces - Companion, IUI ’21
Companion, Association for Computing Machinery,
New York, NY, USA, 2021, p. 67–69. URL: https:
//doi.org/10.1145/3397482.3450725. doi:10.1145/
3397482.3450725.

[54] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong,
L. Shou, B. Qin, T. Liu, D. Jiang, et al., Codebert:
A pre-trained model for programming and natural
languages, arXiv preprint arXiv:2002.08155 (2020).

[55] D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. Liu,
L. Zhou, N. Duan, A. Svyatkovskiy, S. Fu, et al.,
Graphcodebert: Pre-training code representations
with data flow, arXiv preprint arXiv:2009.08366
(2020).

[56] H. Knoche, W. Hasselbring, Using microservices
for legacy software modernization, IEEE Software
35 (2018) 44–49.

[57] H. Knoche, W. Hasselbring, Experience with mi-
croservices for legacy software modernization, Soft-
ware Engineering and Software Management 2019
(2019).

[58] T. Arachchi, Process of Conversion Monolithic Ap-
plication to Microservices Based Architecture, Ph.D.
thesis, 2021.

https://doi.org/10.1145/3397482.3450727
https://doi.org/10.1145/3397482.3450727
http://dx.doi.org/10.1145/3397482.3450727
http://dx.doi.org/10.1145/3397482.3450727
https://doi.org/10.1109/ICSE43902.2021.00074
http://dx.doi.org/10.1109/ICSE43902.2021.00074
http://sketch2react.io
https://doi.org/10.1145/3397482.3450725
https://doi.org/10.1145/3397482.3450725
http://dx.doi.org/10.1145/3397482.3450725
http://dx.doi.org/10.1145/3397482.3450725

	1 Introduction
	2 Background
	3 Method
	4 Results
	4.1 Identifying UX Modernization as a particular challenge
	4.2 As-Is: Current Process for UX Modernization

	5 Discussion
	5.1 AI-Supported UX Modernization
	5.2 Generative Models to explore for UX Modernization
	5.2.1 Screen-to-Mockup
	5.2.2 UI-Style-Transfer
	5.2.3 Mockup-to-Implementation
	5.2.4 UI-Framework-Translation
	5.2.5 UI-Code-Disentanglement

	6 Conclusion

