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Abstract 
With the rise of Generative Adversarial Networks (GANs), AI has increasingly become a partner to human designers in 
co-creating cultural artifacts. While generative models have been applied in various creative tasks across disciplines, a 
theoretical foundation for understanding human-GAN collaboration is yet to be developed. Drawing from the mixed-initiative 
co-creation community, we propose a preliminary framework to analyze co-creative GAN applications. We identify four 
primary interaction patterns: Curating, Exploring, Evolving, and Conditioning. The suggested framework enables us to discuss 
the affordances and limitations of the different kind of interactions underlying co-creative GAN applications. 
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1. Introduction 

With the recent development in human-AI collaborative 
applications, deep generative models have become poten-
tial co-designers to humans in creative tasks. Especially 
Generative Adversarial Networks (GANs) have gained at-
tention from designers and non-programmers across cre-
ative disciplines such as architecture, fashion, computer 
games, and art [1]. Over the recent years, GANs have 
been of particular interest to the human-computer inter-
action (HCI) community for their ability to create high-
resolution output [2, 3, 4] . 

While technological advancements underlying GANs 
progress rapidly [5, 6, 7], how to develop GANs that 
can effectively co-create with human designers is still 
an open problem. Recent HCI research has identified 
various challenges for designers to work with machine 
learning (ML) models [8, 9]. More specifically, Buschek 
et al. [10] outline the challenges in designing interactions 
with generative models. A key difficulty when designing 
with GANs is the knowledge gap regarding the technical 
possibilities and limitations of the models [1]. Due to 
its complexity, designers who apply GANs in creative 
processes cannot oversee their technical functioning. At 
the same time, ML engineers who develop the algorithmic 
aspects of the models are not acquainted with the design 
requirements of a particular creative task. 

Research in mixed-initiative co-creation (MI-CC) [11, 
12] offers a promising starting point to bridge this knowl-
edge gap. The research area of MI-CC focuses on how hu-
mans and machines can co-create together, including the 
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co-creation with AI agents [8]. For example, Spoto and 
Oleynik [13] propose a framework to map the primary 
interactions taken in the co-creative process between 
humans and computational agents [13]. Muller et al. [14] 
further expand the above-mentioned framework by in-
cluding actions specific to generative AI interfaces. While 
Muller et al.’s expanded framework provides a tool for 
analyzing generative AI interfaces, its extensive action 
set is not aligned with how the functioning of latent 
variable models, like GANs’ generators, integrates into 
co-creation. We argue that a smaller but more specific set 
of technically-grounded actions is sufficient to describe 
GANs’ interactive capabilities accurately. 

We hence suggest tailoring the framework to co-
creative GAN applications by 1) reducing the action space 
to a minimal set and 2) incorporating new actions better 
aligned with the algorithmic properties of GANs. With 
this vocabulary, we aim to describe co-creative GAN 
applications while providing insight into GANs’ inner 
workings. We developed and tested our framework by an-
alyzing related literature in art, computer games, fashion, 
and object design. 

This paper aims to answer the question: How do co-
creative GAN applications support co-creativity? To do 
so, we adapt an existing MI-CC framework previously 
applied to analyze a broad range of co-creative inter-
faces [13], and further developed to describe generative 
models [14]. Based on the MI-CC frameworks, we sug-
gest a preliminary framework for in-depth analysis of 
co-creative GAN applications. We show that the sug-
gested taxonomy lets us analyze emerging patterns in 
the interaction with GANs. We limit our study to GANs 
because the majority of examples in the field of genera-
tive design use them, but we believe that our framework 
applies to other deep generative models. More specifi-
cally, the proposed set of actions supports the mapping 
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of interactions with generators via latent codes. Hence, 
these actions are applicable to other generative models, 
such as variational autoencoders (VAEs), consisting of a 
generator network with outputs that are sampled based 
on alterable latent codes. 

By synthesizing existing GAN applications and MI-
CC theory, our work aims to shed light on how GANs 
participate in co-creative design processes. With the 
framework’s GAN-specific grounding, we hope to make 
the technical and thereby interactive capabilities better 
understandable when mapping interactions. By increas-
ing awareness of the system’s functioning, this insight 
might allow us, and non-experts in particular, to design 
better interactive applications. With the identification 
of emerging patterns, we aim to enable a discussion on 
the current trends in co-creative GAN applications and 
illuminate possible future research in this field. 

In summary, this paper presents our preliminary frame-
work for mapping the interaction in co-creative GAN 
applications and discusses the co-creative affordance of 
the emerging interaction patterns. The rest of the paper 
is structured as follows. In the next section, we sum-
marize related work. Then, we present the framework 
supported by exemplary co-creative GAN applications 
drawing on existing literature. We discuss how the iden-
tified interaction patterns support co-creativity, followed 
by a conclusion and outlook on future work. 

2. Related Work 

In this section, we summarize theoretical work on under-
standing co-creative GAN applications and approaches 
to map MI-CC interactions. 

2.1. Understanding human-AI 
collaboration with GANs 

At the intersection of HCI and AI research, designing 
human-AI interaction remains an open issue due to the 
complexity of AI models and their lack of interpretabil-
ity [9, 15]. This includes designing co-creative GAN ap-
plications. GANs learn to generate content from latent 
features, but this mapping is not explainable and black-
box, making it difficult to control the desired output after 
training [5, 7]. As a generative model, GANs are a novel 
design tool that brings new challenges when it comes 
to interaction [10]. Though non-programmers and de-
signers have applied the tool, a theoretical framework 
for analyzing GANs’ co-creative potential is yet to be 
developed. While surveys have been conducted on the 
technical aspects [16, 17, 18, 19] as well as its applica-
tion in creative domains [20], there has not been much 
work on understanding GANs’ role in co-creative appli-
cations. Research in the area mainly consists of studies 

proposing new GAN applications [21, 22, 23, 24] or sug-
gesting algorithmic methods to control GANs without 
pre-defined use cases [25, 26, 27]. As part of a study on 
AI-augmented typeface design, Zeng et al. [28] frame a 
GAN as a source of inspiration in a creativity model. To 
date, the only (systematic) review in the area is Hughes 
et al.’s [1] survey on collaborative applications of GANs 
in design tasks. Their analysis focuses on the design 
domains, inspecting applications of GANs by discipline. 
Across all approaches, they identify beautification and 
variation as modes of operation. While this helps us un-
derstand what the GAN adds to the creative process, it 
does not reflect on how it is involved in co-creation. We 
aim to dig deeper into the mechanisms at play and the 
creative role of GANs in collaborative tasks. 

2.2. Mapping mixed-initiative co-creation 

The research area MI-CC investigates interactive pro-
cesses in which both human and machine contribute 
proactively to producing artifacts [12]. MI-CC appli-
cations can be placed on a continuum, describing the 
extent to which human and computational agent take 
initiative in the creative process [29, 30]. To analyze the 
initiatives taken in such collaboration, several theoretical 
approaches have been suggested. Spoto and Oleynik [13] 
proposed to decompose the MI-CC process into seven 
primary actions: ideate, constrain, produce, suggest, se-
lect, assess, adapt. The actions can be used to map the 
“creative flow” [13] between human and computer as a 
graph. By mapping the series of actions taken by the two 
agents, the authors outline the creative (iterative) process 
for more than 70 works ranging from game level creation 
to manufacturing design systems. When it comes to in-
cluding AI agents in co-creation with human designers, 
new interaction possibilities emerge, requiring compre-
hensive analysis frameworks. Muller et al. [14] adapt 
the notation of Spoto and Oleynik’s framework to pro-
cesses including generative AI agents. They add four 
actions that are specific to generative models, such as 
learn to describe the computer’s training process. Their 
extended framework can be used to visualize “human-AI 
interaction patterns in the generative space” [14, p.1]. 
Our work aims to tailor these MI-CC methods to analyze 
co-creative GAN applications. We build on existing map-
ping methods suggested by MI-CC to outline common 
interaction patterns in co-creation between human and 
GAN. 

3. Mapping interaction patterns 
with GANs (GAN-MIP) 

We suggest a framework that applies mixed-initiative 
methods to understand how GANs function in co-



creation. As a starting point of this study, we reviewed 
GAN applications in salient design domains. Reviewed 
studies ranged from prompting GANs to invent new art 
styles [31], over breeding game levels [21], to adjusting 
fashion items as part of a person’s outfit [25]. To make 
sense of the surveyed GAN studies, we leveraged exist-
ing MI-CC frameworks to map the actions in co-creative 
tasks. They allowed us to analyze how GANs get involved 
in creative processes. In an iterative manner, we analyzed 
studies and revised the frameworks to derive one that is 
applicable across co-creative GAN applications. During 
this process, we focused on how the frameworks’ actions 
reflect the GANs’ technical functioning. Along the way, 
predominant flows in how humans and GANs interact 
in co-creation stood out among the studies, which we 
refer to as interaction patterns. This section presents the 
suggested framework and demonstrates the four primary 
interaction patterns we identified with it. 

3.1. Framework 

Our framework builds on the framework suggested by 
Spoto and Oleynik [13], further extended to map co-
creation with generative models by Muller et al. [14]. 

We adapt their proposed actions to a minimal set re-
quired to describe co-creative GAN applications. For 
example, Muller et al. distinguish between producing one 
artifact and suggesting a set of artifacts to choose from 
as separate actions. We combine them into one category 
called create, as the artifact sampling from the GAN de-
picts the same action in either case. In addition, we add 
new actions, such as initialize, which we find can present 
a crucial design choice taken by human agents [24]. The 
final set of actions illustrates the co-creation as a graph 
mapping along the two axes of agents and actions. This 
section defines the agents making up the horizontal axis 
and explains what the actions on the vertical axis stand 
for. 

3.1.1. Agents 

The agents conducting the actions are (1) a human de-
signer and (2) a computational system including a GAN 
as the main technology, which might be supported by 
other algorithms facilitating the interaction with it. 

3.1.2. Actions 

The actions are to be understood as activities that influ-
ence the artifact or the other agent directly. How actions 
can be executed depends on several factors, such as the 
design of the interface, the implementation details of a 
model, or the abilities of a human agent. Seven actions 
are used to map the interaction between the two agents, 
as described below. 

Initialize. To initialize refers to setting up the GAN, 
such as choosing a dataset and a model architecture. 

Learn. To learn describes the process of internalizing 
information. In line with Muller et al. [14], this refers 
to the training GANs on a chosen data distribution. For 
the human counterpart, the action would correspond to 
learning new skills or adapting to a new domain. 

Constrain. To constrain refers to the process of speci-
fying desired characteristics of the target artifacts, hence 
restricting the conceptual space. 
Create. To create describes the action of generating 

new (candidates of) artifacts. The number of artifacts to 
be created can vary from one to many. 

Select. To select refers to the action of choosing one or 
more artifacts and excluding others from the further pro-
cess. The action encompasses different selection mecha-
nisms including the structuring of subsets such as rank-
ing. 

Adapt. To adapt describes the act of making changes 
to existing artifacts. The agents can edit artifacts directly 
or adjust their representation, namely the latent code, 
that is used to create a new artifact. 
Combine. To combine describes the process of con-

structing a new artifact that inherits parts of existing 
artifacts. As with adapting, this is done via the artifacts’ 
latent code. 

The actions described above present a minimal set suffi-
cient to describe the core interactions of co-creative GAN 
applications. For example, we left out the action ideate, 
which describes creating high-level concepts in existing 
frameworks [13, 14]. As we find that conceptual ideation 
is often expressed by conditions imposed on a GAN, the 
action constrain covers it in our framework, aligned with 
the GANs’ algorithmic function. The derived action set 
aims to align with the algorithmic properties of GANs 
as well as the interactive abilities of the human designer. 
Mapping interactions with the framework may help non-
technical users better understand a co-creative partner’s 
algorithmic actions and show how the human designer’s 
actions embed into it. The set of core actions allows us to 
map the interactions of the co-creative GAN applications 
we surveyed. 

3.2. Primary Interaction Patterns 
Using the above framework of agents and actions, we 
identified four interaction patterns which we present 
along with an exemplary selection of co-creative GAN 
applications in which they appear. We reviewed studies 
that propose models for co-creation with GANs tested 
in user studies, such as a GAN that allows game design-
ers to generate Mario levels [21]. Besides that, we also 
considered approaches that are not explicitly embedded 
into use cases yet but suggest applicable models that 



Figure 1: We present the four primary interaction patterns between human and GAN mapped along the vertical axis of 
actions. The circles display the taking of an action, with possible final actions depicted as points. 

could support co-creative GAN applications. For exam-
ple, Yildirim et al. [26] trained a GAN to generate dress 
designs based on given features such as color. Among all 
studies, we found four underlying interaction patterns 
for which we show the graphical notations in Figure 1. 
Interaction patterns are not mutually exclusive and can 
be combined. Table 1 provides an overview of how the 
surveyed examples apply the patterns. 

3.2.1. Curating 

The most straight-forward interaction pattern is catego-
rized as Curating. After being initialized by a human 
designer, a GAN learns a to generate artifacts by being 
trained through gradient descent. Then, a set of outputs 
is created by sampling from the GAN, from which the 
human agent selects a set of final artifacts. Note that the 
selection can also include all generated artifacts. After 
the training, the GAN is the only one influencing the 
creation process. It does not receive any input from the 
human side. The main creative human input is given 
during the initialization. Hence, choosing a dataset and a 
model plays a crucial role in the human agent’s initiative. 

Curating has been applied to produce new artifacts by 
adding variation to an existing dataset in several domains. 
For instance, fashion designers might purposely choose a 
collection of clothing designs as training distribution.1 In 
that way, they determine the overall style of newly gen-
erated artifacts to which they aim to add novelty through 
the GAN’s variation. Kato et al. [32] train a GAN to pro-
duce outputs of similar quality to human-made designs. 

1https://www.vogue.com/fashion-shows/fall-2020-
menswear/acne-studios 

They replace the production step of design drawing in a 
fashion design workflow with GAN creations. Then, the 
output design is given to pattern makers. 

Besides selecting the training data, the model architec-
ture can also pose a design factor. Elgammal et al. [31] 
demonstrate that with art-generating Creative Adversar-
ial Networks (CANs). They apply a style ambiguity loss 
when training the networks on an art dataset assigned 
to different art styles as categories. As a result, the CAN 
learns to output artifacts that deviate from existing art 
styles. While there are no limitations to the complex-
ity of designing the initial GAN set-up, Curating is the 
simplest form for GANs to partake in the subsequent 
creative process. 

3.2.2. Exploring 

The interaction pattern Exploring describes an interac-
tion where the human iteratively adapts artifacts that 
are created by sampling from the GAN. This is typically 
done by introducing alterations via the latent representa-
tions of artifacts. Altering the latent code of an artifact 
can be understood as providing a recipe to create a new 
artifact. By steering the following creation process, the 
designer guides the exploration path through the space 
of possible designs. The latent space can be explored by 
traversing along different directions. These directions 
cause different changes to the output features. Users can 
control the change in direction by e.g. moving a slider. 
We present three common directions to adapt artifacts 
below. Figure 2 provides a visual example per direction. 
Interpolation. One direction to move an artifact 

through latent space is towards other artifacts in the 
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Figure 2: From left to right, we display examples of Exploring through interpolation between generated Zelda rooms [21], 
along latent directions of generated a Mario level [21], and along semantic features in CG-GAN [23]. 

space. In doing so, one explores intermediate alterna-
tives between existing artifacts. Among other methods, 
Schrum et al. [21] apply interpolation to explore the de-
sign space of GANs trained to create tile-based rooms 
for the game The Legend of Zelda. By traversing be-
tween two different level designs, the game designer can 
prompt the GAN to create new designs lying in between. 
CREA.blender [33], a tool that tests users’ creativity in 
creating GAN outputs, allows the exploration of the inter-
mediate space of up to five pre-selected images. Sliders 
let the user control the strength of an image’s represen-
tation in the generated result. 

Latent directions. Instead of altering GAN-generated 
artifacts in relation to one another, they can also be 
adapted by directly increasing or decreasing their latent 
variables. As a result, the artifact moves along the GAN’s 
latent directions. In another part of Schrum et al.’s study, 
users adjust a game level design by moving a slider per 
latent variable. Because the latent variables do not cor-
respond to visual output features, changes to the output 
design are not necessarily explainable, which users might 
experience as frustrating when having a target change 
in mind [21]. 

Semantic features. The adaption along directions in 
latent space that represent semantic attributes is better 
understandable. After finding such an attribute vector 
in the latent space, an artifact’s latent code can traverse 
along it. That influences the appearance of the attribute 
in the artifact. Research in the domain of semantic face 
editing [34, 35] has widely explored this technique to 
alter facial features. For example, the editing function 
in the interface of the Composite Generating GAN (CG-
GAN) [23] supports interaction in that manner. Human 
agents adapt generated faces by adding or subtracting 
certain facial traits. They may choose to lock other facial 
features during that process to avoid correlated changes. 

ArtBreeder [36], a website where users can make GAN-
generated art, applies another approach to disentangle 
semantic features, resulting in a similar control to CG-
GAN for a faces generator. By applying the BigGAN [37] 
or StyleGAN [7] architecture, categories present in the 
training data, such as facial attributes, can be disentan-

gled during the training process. In practice, different 
attributes link to different layers and sliders let users 
manipulate target features. On top of that, Artbreeder 
allows users to introduce semantic directions based on 
sample images containing target features. 

The features along which users explore the conceptual 
space can also be combined. For example, CREA.blender 
SDG [4], a tool to develop utopian and dystopian land-
scape images, lets users create interpolations between 
images as in CREA.blender. With the generator from 
a StyleGAN, the computational agent learned to distin-
guish between content and style of the environment. In 
the interaction, two sliders below each image let the hu-
man agent control how much of its content and style feed 
into the resulting design. Hence, the simple interpolation 
of artifacts expands to consider semantic properties. 

Bau et al. [38] also bridge the gap between the inter-
nal representation of GANs and interpretable concepts. 
By analyzing how the latter encode in the former, they 
propose GANDissect, a method to identify latent units 
in the generator’s layers that activate certain aspects in 
the output image. Taken to practice in the application 
GANPaint [39], the authors propose an interface that 
lets users add, delete, or alter aspects in images. Using a 
brush to indicate target locations, or pixels, in the image, 
the human agent can adapt GAN-generated artifacts by 
indirectly de-/activating the corresponding latent units. 
By representing actual photographs as a GAN’s genera-
tion, the changes can be applied to existing images. This 
allows a human agent “to manipulate a photograph not 
with physical colors, but with abstract concepts such as 
object types and visual attributes” [39, p.2]. 

3.2.3. Evolving 

In the third identified pattern, Evolving, the human se-
lects artifacts for the computational agent to adapt and 
combine in the following step. Within the field of evolu-
tionary computation, these actions are also referred to as 
mutation and recombination, respectively. This interac-
tion utilizes interactive evolutionary computation [40], 
more specifically an interactive genetic algorithm (IGA). 
Here, the latent codes represent the genotype of artifacts, 



Figure 3: From left to right, we display examples of Conditioning with a hand-drawn segmentation mask [42], a contour 
sketch [43], and an image and text description [25]. 

which are in turn considered as the phenotype. For a 
number of iterations, users make a selection from a pop-
ulation of artifacts to be adjusted for the next generation. 
In addition, users might be given the option to frame this 
process by specifying the exact action for an artifact or 
the operation parameters. While Exploring implies that 
the human agent directly controls the features that arti-
facts are adapted by, Evolving suggests they only select 
artifacts for the computational agent to develop further. 

Bontrager et al. [41] let human agents evolve faces, 
shoes, and chairs in that manner. Users select artifacts 
from the first creation step. Their latent codes are then 
recombined though crossover and mutated by adding 
Gaussian noise. With the adapted latent codes, new items 
are sampled and the process repeats. With the power 
to guide the process through selecting artifacts to sur-
vive, the human agent optimizes the resulting artifacts 
according to their preferences. It is the computational 
agent that adjusts the artifacts primarily. However, the 
human agent can influence that, too, by specifying the 
rules for this traversal search [12]. In practice, this would 
imply setting algorithmic parameters such as mutation 
or crossover rate. Schrum et al. demonstrated that in the 
evolving functionality of their study [21]. Here, users 
select generated game levels to be recombined and mu-
tated for the next generation, also referred to as selective 
breeding. By moving a slider, the user sets the rate for 
the applied polynomial mutation. In the evolving process 
underlying CG-GAN, the user can choose along which 
semantic features the algorithms should mutate artifacts. 
Similar directions for traversing the latent space as pre-
sented in section 3.2.2 could also be specified for the 
computational agent. The human agent might even se-
lect them during the design process. However, as the 
human agent does not directly adapt artifacts in this pat-
tern, the directions do not concern the interaction and 
are not stated here. 

3.2.4. Conditioning 

Conditioning describes an interaction in which the hu-
man constrains the desired artifact characteristics before 
outputs are created through sampling from the GAN. 

Hence, a requirement is that the GAN architecture can 
take conditions into account when sampling artifacts. 

The constraint by the human can be expressed in sev-
eral modalities, of which three examples are depicted in 
Figure 3 and described in the following. In the domain 
of fashion design, one can think of several parameters 
that might guide the creation of a clothing item. Yildirim 
et al. [42] for instance propose a GAN model that disen-
tangles color, texture, and shape through different loss 
functions. During training, parts of the latent code are 
assigned to the three features. With this model, a user 
could pre-define the shape of a dress in a hand drawing. 
The drawing is then captured as a 512-dimensional mask 
and included into the input given to the GAN. Similarly, 
Xin and Arakawa [43] apply a GAN model that takes 
a contour image as input as part of their object design 
system. In that, the human designer can determine an 
outline before the GAN generates the artifact, such as the 
contour of a shoe. Zhao and Ma [44] note that providing 
a conditional GAN with a hand-drawn constraint can 
cause difficulties when the drawing style differs from the 
distribution of training drawings [44]. 

Setting landmarks of a drawing may help further define 
a target design. Therefore, the authors apply a second 
generative network in the constraint step, that transforms 
those landmarks into a compensation image. Together 
with the user’s drawing, it acts as a reference to guide 
the generation by the main GAN. The example shows 
that constraints can consist of multiple inputs, as is also 
the case in the following case for clothing design sys-
tem suggested by Zhu et al. [25]. The authors let human 
designers guide the fashion design flow by giving an 
instruction in text form. First, a segmentation mask is 
derived from the photo of the person to be dressed. To-
gether with the text encoding of an outfit description, 
the mask is given to their GAN model as input. This 
allows them to dress a person according to a human’s 
idea. The GAN contributes creative initiative through 
unpredictable variation. 



Figure 4: From left to right, we display the interaction pattern for adding Conditioning to the flow of Xin & Arakawa’s design 
system [43], designs from a user study by Evolving alone, and designs generated by Evolving and Conditioning. 

Figure 5: We display the interaction pattern of CG-GAN giving the user the possibility to step out of the Evolving loop for 
Exploring an image by clicking on the ‘EDIT’ button beneath one of the generated artifacts in the interface displayed on the 
right [23]. 

3.3. Combination of interaction patterns 
The primary interaction patterns presented above are 
to be understood as an elementary set of interactions 
between human and GAN. As some of the reviewed ap-
plications show, they can be combined to create more 
advanced co-creative processes. 

For instance, Xin and Arakawa [43] combine Evolving 
and Conditioning in their suggestion of an object design 
system. Figure 4 shows the interaction pattern for the 
system trained on datasets of shoes, handbags, and other 
fashion items. In the first step of their user study, users 
evolved shoe designs in an IGA without the option to 
constrain the design space, following simply the Evolving 
pattern. Secondly, they extend the generation process 
so that users could prompt the GAN’s creation with a 
contour image of the desired shoe (see Figure 3). By 
adding Conditioning to the Evolving interaction pattern, 
users can better derive designs that resemble the target 
sneaker, as the example in Figure 4 shows. 

Instead of allowing the user to pre-limit the conceptual 

space of a GAN, Zaltron et al. [23] give users the chance to 
adapt generated images. The interaction underlying their 
proposed CG-GAN combines the Evolving and Exploring 
pattern, as displayed in Figure 5. First, the model lets 
users evolve faces similar to Xin and Arakawa’s IGA for 
object design. But during the process, users can edit 
artifacts by stepping out of the evolutionary loop. In 
doing so, users fine-tune a generated design by traversing 
along semantic facial features with the help of sliders. 
The evolved artifact is then added back into the loop. 

Oppositely, we can observe the Exploring pat-
tern being expanded with Evolving functionalities in 
CREA.blender [33]. In its simplest form, CREA.blender 
asks users to develop animal-like shapes based on pre-
selected basis images. Then, in the open-play mode, users 
can themselves select basis images by replacing the cur-
rent ones. With the selected images as a starting point, 
they explore new images. In comparison to the “more 
goal-oriented creative tasks” [33, p.4], letting the user 
take part in the selection supports their “open-ended 
creativity” [33, p.4]. 



Table 1 
Selection of GAN studies. 

Application Domain Curating Exploring Evolving Conditioning 

Kato et al. [32] clothing • 
Elgammel et al. (CAN) [31] art • 
Bau et al. (GANPaint) [39] photos • 
Schrum et al. [21] games • • 
Bontrager et al. (DeepIE) [41] objects • 
Xin and Arakawa [43] objects • • 
Zaltron et al. (CG-GAN) [23] faces • • 
Simon (Artbreeder) [36] diverse • • 
Gajdacz et al. (CREA.blender) [33] objects • • 
Zhao and Ma [44] clothing • 
Zhu et al. (FashionGAN) [25] clothing • 
Yildirim et al. [42] clothing • 

4. Discussion 

In this section we discuss the co-creative affordance of 
the interaction patterns and reflect on the potential usage 
of the framework. 

The interaction patterns we identified based on the 
framework allow us to analyze how co-creative GAN ap-
plications support co-creativity to different degrees. For 
example, where Muller et al. [14] identify one interaction 
pattern, we distinguish between Curating and Condition-
ing. More specifically, they categorize Elgammal et al.’s 
CAN and Zhao and Ma’s design method into the same in-
teraction pattern characterized by the population of a so-
lution space with a generative model. However, the two 
examples are fundamentally different in how they sup-
port co-creativity, and our proposed adaption allows us 
to make a fine-grained distinction between the two ways 
of interacting. Curating, as in the case of CAN, lets the 
human pre-determine the GAN’s design space through 
its initialization as an active design choice. Hence, the 
human agent’s primary input limits the GAN’s creative 
potential before training. Conditioning allows the hu-
man to narrow the existing design space of the GAN after 
training. We categorize Zhao and Ma’s example as such 
because the human agent steers the GANs by providing 
constraints, in this case, a drawing and landmarks, after 
the initial training. While Curating leaves the human 
agent out of the actual (co-)creative process and gives the 
GAN complete creative control, Conditioning restricts 
the GAN’s creativity by assigning the human agent more 
creative authority along the way, hence allowing for more 
co-creativity. By committing to a human-set frame, the 
GAN loses parts of its creative potential, leading to a 
trade-off between novelty and typicality with regards to 
humans’ expectations. 

We regard Curating and Conditioning as one-shot ap-
proaches since the computational agent does not recall 
previously created artifacts, making each iteration an 

isolated process. However, in the case of Condition-
ing, a user might map the constraint space and learn 
its constraint language by iterating the pattern repeat-
edly. While our preliminary framework does not cur-
rently capture this step, this points to the asymmetry 
in our framework, focusing on the GAN-specific tech-
nical grounding of actions rather than human-specific 
aspects. 

Opposed to the one-shot patterns, Exploring and Evolv-
ing imply iterative interaction between human and GAN. 
While human initiative appears only after the first cre-
ation stage in both patterns, they support the co-creative 
exchange differently. Through selection in an Evolving 
flow, the human agent narrows the conceptual space of 
the GAN. Hence, they restrict its creative potential to de-
veloping a chosen population of designs. In comparison, 
Exploring leaves the conceptual space as is but lets the 
human designer traverse through it. However, the direc-
tions taken restrict the exploration. Freely altering the 
latent variables allows for a broader exploration than the 
interpolation between two artifacts, whereas traversing 
along semantic features limits the search to given paths. 
Overall, Exploring affords co-creativity by simply allow-
ing the human agent to move in the conceptual space. 
In contrast, Evolving supports a more targeted search 
strategy for the user but restricts the GAN’s creative 
potential. 

As the identified patterns support different purposes, 
their mapping allows for a reflection about their appli-
cation and combination. When designing a process that 
starts from pre-defined characteristics, modeling the in-
teraction according to the Conditioning pattern would 
let humans set the scope right from the beginning of a 
creation process. But when designing for a scenario that 
requires targeted search for distinguished properties in 
a design space, Evolving might be the pattern of choice. 
Exploring, on the other hand, could support a more inspi-
rational excursion through artifact possibilities. When 



combined however, the exploration of an evolved object 
as well as the evolution of previously conditioned objects 
lets the human agent fine-tune its properties. 

Adapting Spoto and Oleynik’s and Muller et al.’s frame-
works allows us to make clear distinctions between the 
four prevailing interaction patterns. By tailoring the ac-
tions, we exchange the breadth of analyzing a wide range 
of MI-CC methods for the in-depth analysis of co-creative 
GAN applications. With the growing development of 
GANs for interaction, we hope that our framework sup-
ports the discovery of more GAN-specific interaction 
patterns. For example, a novel interaction pattern could 
be found in the recently suggested approach of Rewriting 
GANs [45], that allows users to update the generator’s 
weights through interaction so the GAN learns during 
the process. 

Awareness of the interaction patterns might inform 
the design of GAN applications according to the creative 
task at hand. Reflecting about them helps us facilitate 
meaningful interactions between GANs and humans that 
follow the purpose of a design system. The patterns 
might also point out alternative interactions by disclosing 
questions like: How could a human agent participate in the 
direct creation of artifacts? Could agents (re-)learn during 
co-creation? What would an interaction pattern with more 
than two agents look like? In practice, our framework may 
serve as a tool for UX designers to choose the correct 
interaction pattern when including GANs in creative 
design processes. 

In addition, the framework enables constructive discus-
sions on GANs’ role in human-AI design collaborations as 
it allows us to follow how agents can restrict the creative 
potential of each other. Being able to trace the devel-
opment of collaboratively created objects further allows 
us to understand where its properties originate. This 
insight matters when co-designing with intelligent sys-
tems trained on biased data distributions. As AI systems 
might further expose this bias through newly generated 
objects, reflecting on their participation is crucial for an 
informed creative process. While GANs become more 
apparent and easily applicable in creative tasks, this be-
comes essential. 

5. Conclusion and Future Work 

Our preliminary framework suggests mapping interac-
tions as a basis for understanding co-creative GAN appli-
cations. We identified four primary interaction patterns, 
which we demonstrated along with examples of existing 
approaches. The patterns let us understand how differ-
ent GAN applications support co-creativity. This insight 
can inform how we design co-creative GAN applications. 
The preliminary framework contributes to bridging the 
knowledge gap between machine learning engineers and 

designers, who aim to apply GANs in creative processes. 
Additionally, it might serve as a starting point to discover 
how other features in GANs might offer novel interaction 
techniques. Future work in this direction could include 
more human-centered design steps. 
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