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Abstract
We introduce a novel class of fully rational contraction operators that work by selecting models, which

we call tracked contraction operators. These operators are founded on a plausibility relation on models,

called a track, that allows distinguishing between suitable and unsuitable models. We show a representa-

tion theorem between tracked contraction operators and the basic rationality postulates of contraction.

For the supplementary postulates (conjunction and intersection), we strengthen such operators by im-

posing the mirroring condition on the track relations. We consider logics that are both Tarskian and

compact.
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1. Introduction

The �eld of Belief Change [1, 2, 3] studies how an agent should rationally modify its corpus of

beliefs in response to incoming pieces of information. The two most important kinds of change

are: contraction, which relinquishes undesirable/obsolete information; and revision, which

accommodates new information with the caveat of keeping the corpus of beliefs consistent.

Each of these kind of changes are governed by sets of rationality postulates, split into basic and

supplementary rationality postulates, which prescribe adequate behaviours of change. Such

rationality postulates are motivated by the principle of minimal change: in response to a piece

of information, say α, an agent should remove only beliefs that either con�ict with α (in the

case of revision), or that contribute to entail α (in the case of contraction).

Several classes of belief change operators were proposed that abide by such rationality

postulates, called rational belief change operators (see [3], for a list). These classes of operators

can be split in two main kinds: syntactic operators and semantic operators. Operators belonging

to the �rst kind select sentences from the language, while operators of the second kind select

models. Examples of syntactic operators are partial meet operators [1] and smooth kernel

operators [4], while Grove’s system of spheres [5, 2] and the faifthful pre-orders of Katsuno

and Mendelzon [6] are the main frameworks for constructing semantic operators. In the most
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fundamental case, when an agent’s corpus of beliefs is represented as a logically closed set of

sentences, called a theory, all these classes of operators are characterised by the rationality

postulates of contraction/revision.

Theories, however, are very restrictive, as they do not distinguish between explicit and implicit

beliefs. One can achieve this distinction by dropping the logical closure requirement, and simply

representing an agent’s corpus of beliefs as a set of sentences, called a belief base [3]. For bases,

however, very few belief change operators are capable of satisfying the rationality postulates

of belief change. Precisely, only partial meet, a syntactic operator, remains rational for belief

bases [3, 4]. As a result, research on belief base change has focused on partial meet operators

or other similar syntactic operators [3, 7, 8]. This poses a severe limitation in advancing belief

base change, as syntactic operators are highly dependent on the assumptions made about the

underlying logic used to represent an agent’s knowledge, as for instance, imposing that the

language is closed under classical negation [9]. By devising belief change operators via models,

such conditions upon the language of the logics can be easily waived.

In this work, we devise two novel classes of semantic operators for belief base contraction.

Our approach consists in imposing a pre-order, called a track, upon the models of the logics. A

track indicates the most plausible models, which in turn are selected to perform a contraction.

We show a representation theorem between the basic rationality postulate of belief base con-

traction and such novel class of contraction operators. We then impose the mirroring condition

[10] upon such tracks, and we show that tracks satisfying mirroring induce belief base con-

traction operators that capture the supplementary postulates of belief contraction. It is worth

highlighting that, except for safe contraction [11], the study of the supplementary postulates on

belief bases has been neglected. As contraction is a central operation in belief change, our result

can be extended to provide semantic operators for other kinds of belief change such as revision.

Road map: Section 2 introduces some basic notations and de�nitions that will be used

throughout this work. In Section 3, we brie�y review belief contraction, including both basic

and supplementary rationality postulates of contraction as well as the partial meet contraction

operators. For semantic operators, we review the faithful pre-orders of Katsuno and Mendelzon

[6] for revision, and we translate them in terms of belief contraction. We show that such

operators, though fully rational for theories, are not rational for belief bases. In Section 4,

we introduce our two novel classes of contraction operators and the representation theorem

connecting tracks and the basic rationality postulates of contraction. Finally, in Section 5 we

conclude the work and discuss some future works. Full proofs of the results can be found in the

appendix at https://jandsonribeiro.github.io/home/appendix/FCR_22_appendix.pdf

2. Notation and Technical Background

The power set of a set A is denoted by P(A). We treat a logic as a pair 〈L, Cn〉, where L is

a language, and Cn : P(L) → P(L) is a logical consequence operator that indicates all the
formulae that are entailed from a set of formulae in L. We limit ourselves to logics whose

consequence operator Cn satis�es:

monotonicity: if A ⊆ B then Cn(A) ⊆ Cn(B);
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inclusion: A ⊆ Cn(A);

idempotency: Cn(Cn(A)) = Cn(A);

compactness: if ϕ ∈ Cn(A) then there is some �nite set A′ ⊆ A such that ϕ ∈ Cn(A′).

Consequence operators that satisfy the �rst three conditions above are called Tarskian. Some

times we say that the logic itself is Tarskian. Throughout this work, unless otherwise stated,

all the presented results regard logics whose consequence operators are Tarskian and satisfy

compactness. A theory is a set of formulae X ⊆ L such that X = Cn(X).
As we are interested to de�ne semantic operators, we exploit the semantic of the logics. Given

a logic 〈L, Cn〉 and a set of structures I , an interpretation or a model is an element of I that

gives meaning to the formulae of L; I is called an interpretation domain of that logic, whereas

each subset of I is called an interpretation set. For instance, an interpretation domain for the

Propositional Logic is the power set of the propositional symbols of the language. A satisfaction

relation |= ⊆ I×L is used to indicate on which interpretations a formula is satis�ed. IfM |= α,

then we say thatM is a model of α. If an interpretationM does not satisfy a formula α, denoted

byM 6|= α, then we say thatM is a counter-model of α. The set of all models of α is given by

JαK, while the set of all counter-models of α is given by JαK.
In Tarskian logics, the consequence operator can be semantically de�ned as: a formula

ϕ ∈ Cn(X) i� every model that satis�es all formulae in X also satis�es ϕ [12]. Let I be

an interpretation domain of a logic 〈L, Cn〉, andM a model in I . The set of all formulae of

L satis�ed by M is the theory Th(M) = {ϕ ∈ L | M |= ϕ}. Generalising, given a set of

models A, Th(A) = {ϕ | ∀M ∈ A,M |= ϕ} is the theory of the formulae satis�ed by all

models in A. Moreover, given a set X ⊆ L, the set of models that satisfy all formulae in X is

JXK = {M ∈ I | ∀ϕ ∈ X,M |= ϕ}. For simplicity, given a set of formulae X and a modelM ,

we will writeM |= X to mean thatM satis�es every formula in X .

Throughout this paper we will provide examples to support the intuition of the proposed

contraction operators. Due to its simplicity, we will use classical propositional logics to construct

such examples. Observe, however, that our results are not con�ned to classical propositional

logics. As usual, the formulae of classical propositional logics are Boolean formulae constructed

from a setAP of atomic propositional symbols, via the operators of conjunction (∧), disjunction
(∨) and classical negation (¬). The models are subsets of AP , and the satisfaction relation is

de�ned as usual.

A pre-order on a domain D is binary relation ⩽ ⊆ D × D that satis�es transitivity and

re�exivity. The minimal elements of a set A ⊆ D w.r.t ⩽ is given by the setmin⩽(A) = {a ∈
A | if b ⩽ a then a ⩽ b, for all b ∈ A}. We write a < b to denote that a ⩽ b but b 
 a.

3. Belief Contraction

We assume that an agent’s corpus of beliefs is represented as a belief base, which will be denoted

by the letter K. The term belief base has been used in the literature with two main purposes:

(i) as a �nite representation of an agent’s beliefs [13, 14, 15], and (ii) as a more general and

expressive approach that distinguishes explicit from implicit beliefs [16, 3]. We follow the latter

approach, and therefore a belief base can be in�nite.
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Let K be a belief base, a contraction function for K is a function −̇ : L → P(L) that given an

unwanted piece of information α, outputs a subset of K which does not entail α. A contraction

function is subject to the following basic rationality postulates [17, 4]:

(success): if α 6∈ Cn(∅) then α 6∈ Cn(K −̇ α);

(inclusion): K −̇ α ⊆ K;

(vacuity): if α 6∈ Cn(K) then K −̇ α = K;

(uniformity): if for allK′ ⊆ K it holds that α ∈ Cn(K′) i� β ∈ Cn(K′), thenK−̇α = K−̇β;

(relevance): if β ∈ K\(K−̇α) then there is someK′ such thatK−̇α ⊆ K′ ⊆ K, α 6∈ Cn(K′)
but α ∈ Cn(K′ ∪ {β})

For a discussion on the rationale of this postulates, see [3]. We call the set of rationality

postulates listed above as the basic rationality postulates of contraction. A contraction function

that satis�es all the basic rationality postulates above will be dubbed a rational contraction

function.

There are other two postulates, called supplementary postulates [1, 3, 18]:

(intersection) K −̇ ϕ ∩ K −̇ ψ ⊆ K −̇ ϕ ∧ ψ

(conjunction) If ϕ 6∈ Cn(K −̇ ϕ ∧ ψ) then K −̇ (ϕ ∧ ψ) ⊆ K −̇ ϕ

It is important to stress that the study of the supplementary postulates has been con�ned to

theories, and very little is known about their behaviours on belief bases. Rational contraction

operators that satisfy the supplementary postulates will be dubbed fully rational.

3.1. Partial Meet Contraction

Several rational contraction operators were proposed in the literature. One of themost in�uential

ones is partial meet (De�nition 3, below), which makes use of remainders.

De�nition 1. Given a belief base K and formula α, an α-remainder of K is a set X ⊆ K such

that: α 6∈ Cn(X), and if X ⊂ Y ⊆ K, then α ∈ Cn(Y ). The set of all α-remainders of K is

denoted by K ⊥ α.

Each member of K ⊥ α is called a remainder, and it is a maximal subset of K that does not

entail α. A partial meet operator works by selecting remainders and intersecting them. As a

remainder set might have many remainders, a choice must be made about which ones are the

best to perform the contraction. This choice is done via an extra-logical mechanism called a

selection function:

De�nition 2. A selection function γ picks some remainder ofK ⊥ α such that, (i) γ(K ⊥ α) 6= ∅,
(ii) γ(K ⊥ α) ⊆ K ⊥ α, if K ⊥ α 6= ∅; and (iii) γ(K ⊥ α) = {K}, otherwise. A selection

function γ is relational i� there is some binary relation ⩽ on all remainders such that γ(K ⊥
α) = min⩽(K ⊥ α), for all K ⊥ α 6= ∅. If ⩽ is transitive then γ is called transitive relational.
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A selection function works as an extra-logical mechanism that realises the agent’s epistemic

preferences. In the original work of [1], the authors propose to represent an agent’s preferences

as a binary relation ⩽ on all remainders. Precisely, a pair A ⩽ B means that the remainder A is

at least as preferable as B. The agent picks the most preferable α-remainders w.r.t ⩽.

Remainder sets and selection functions are used to de�ne a contraction operator called partial

meet contraction:

De�nition 3. Given a belief base K, and a selection function γ, the operation −̇γ de�ned as

K −̇γ α =
⋂
γ(K ⊥ ϕ) is a partial meet contraction function.

Theorem 4. [19] A contraction operator is rational i� it is a partial meet contraction operator.

For theories, the transitive relational partial meet operators are characterised by all the

rationality postulates of contraction.

Theorem 5. [1] On theories, a contraction operator is fully rational i� it is a transitive relational

partial meet contraction operator.

As Hansson [18] shows, the transitive relational partial meet operators are not strong enough

to satisfy the two supplementary postulates on belief bases. Hansson proposed to strengthen

the transitive relations with a property called maximising. However, a representation theorem

was not obtained.

3.2. Semantic Contraction Operators

We start by explaining how belief contraction works on models when the agent’s corpora of

beliefs are represented as theories. After that, we show why such strategies do not work for

belief bases.

In terms of models, in order to contract a formula α from a theory K, it su�ces to obtain a

theory that is a subset of K (due to the inclusion postulate) and it is satis�ed by some counter-

models of α. This can be formalised by taking a function σ : L → P(I) that picks, for every
non-tautological formula α, some counter-models of α. For tautological formulae α, we make

σ(α) = ∅, as tautologies have no counter-models. Moreover, if two formulae α and β are

logically equivalent, then σ(α) = σ(β). This guarantees that the choice function is not syntax

sensitive. We say that σ is a model choice function.

De�nition 6. The contraction function induced by a model choice function σ is the operator

K −̇σ α = {ϕ ∈ K | σ(α) |= ϕ}.

Indeed, the basic rationality postulates of contraction characterise such class of semantic

contraction operators for theories:

Theorem 7. [10, 12] In classical propostionl logics, a contraction function −̇ on a theory K is

rational i� it is induced by some model choice function σ.

For full rationality, there are two main classes of belief operators: the revision operators

based on faithful pre-orders of Katsuno and Mendelzon (KM, for short) [6] and the revision

operators based on Grove’s spheres[5]. Although both classes of operators were originally

framed for belief revision, they can be easily translated to contraction. In the following, we

present a translation of KM operators based on faithful pre-orders in terms of contraction:
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De�nition 8. [6]1 Given a belief base K, a pre-order ⩽K is faithful w.r.t K i� it satis�es the two

following conditions: (1) ifM,M ′ ∈ JKK thenM 6<K M ′; (2) ifM ∈ JKK andM ′ 6∈ JKK then
M <K M ′.

De�nition 9. Given a faithful pre-order⩽K on a belief base K, the faithful contraction operator

founded on ⩽K is the operation −̇⩽K
such that JK −̇⩽K

αK = JKK ∪min⩽K
(JαK). If ⩽K is total

then −̇⩽K
is a total faithful contraction operator.

A faithful pre-order works as an epistemic preference relation on models. In order to contract

a formula α, the agent chooses exactly the most plausible counter-models of α. In the current

presentation, KM operators are suitable only for theories, because, for belief bases, there is no

guarantee thatK−̇⩽K
α outputs a subset ofK, as the inclusion postulate demands. Towards this

end, in order to satisfy the inclusion postulate we need only to rewrite faithful contraction in the

spirit of De�nition 6: get the greatest subset ofK satis�ed by the minimal counter-models of the

formula α to be contracted. Indeed, within classical propositional logics, each KM operation is

a special kind of contraction induced by a model choice function as per De�nition 6. In classical

propositional logics, for theories, the faithful contraction operators on total pre-orders are fully

rational:

Theorem 10. In classical propositional logics, a contraction operator on a theoryK is fully ratio-

nal i� it is a total faithful contraction operator.

Caridroit et al. [20] obtain an analogous of Theorem 10 via Levi and Harper identities on the

KM faithful revision operators. Observe that the representation theorems above (Theorem 7

and Theorem 10) are established only for theories. Indeed, as Example I below illustrates, both

representation theorems breaks down for bases, which is due to violation of the relevance

postulate.

Example I. Consider the belief baseK = {p, q, p∨q,¬q∨p}, expressed in classical propositional
logics, with AP = {p, q}. We want to contract the formula p ∧ q. There are only three rational

contraction results: A1 = {p, p ∨ q,¬q ∨ p}, A2 = {q, p ∨ q} and A3 = {p ∨ q}. Not every
model choice function, however, induces a rational contraction operator. To see this, note that we

have only four modelsM1 = {p, q},M2 = {p},M3 = {q} andM4 = ∅. Observe that Jp ∧ qK =
{M2,M3,M4}. Let ⩽K be the following faithful pre-order on K: M1 ⩽K M4 ⩽K M3 ⩽K M2.

Let σ be a model choice function such that σ(p ∧ q) = min⩽K
(Jp ∧ qK) = {M4}. The only

formula of K thatM4 satis�es is ¬q ∨ p. Thus, K −̇σ p ∧ q = {¬q ∨ p}. However, this does not
correspond to any of the three possible rational contraction results listed above.

4. Tracks and Mirrors: Belief Base Contraction on Models

In this section, we provide a novel class of semantic contraction operators for belief bases.

In terms of models, contracting a formula α from a theoryK consists in picking some counter-

models of α and maintaining the formulae in K satis�ed by all such picked counter-models.

1Originally, KM de�nes an assignment that maps each formula to a pre-order, and de�nes such an assignment to

be faithful. This assignment has only the purpose to provide general contraction operators. As here we focus on

local contraction, we opt to remove this complication and operate directly on the pre-orders.

9



While this strategy yield rational contractions for theories (Theorem 7), it fails for belief bases as

Example I illustrates. This occurs because some counter-models of αmight satisfy less formulae

than allowed by the relevance postulate. For instance, looking back at Example I, according to

relevance the formula p ∨ q must be kept. Observe that this formula appears in all the three

possible rational contraction results. The counter-modelM4, however, does not satisfy p ∨ q,
which makes it unsuitable for performing a rational contraction, as picking it would remove

p ∨ q. The main hurdle is to properly distinguish between suitable and unsuitable models.

To solve this problem, we establish a plausibility relation ⩽ on the models. Intuitively, a pair

M ⩽M ′ means that the modelM is at least as plausible asM ′. Towards this end, in order to

contract a formula α, only the most plausible counter-models of α w.r.t ⩽ should be chosen,

that is, only models withinmin⩽(JαK). The question at hand is which properties a pre-order on

models should satisfy in order to be an adequate plausibility relation that distinguish between

suitable and unsuitable models.

Here, we propose such plausibility relations to be de�ned upon the notion of information

preservation. Intuitively, the more information from K a model preserves the more plausible it

is. The set of all formulae from K satis�ed by a modelM is given by the set Pres(M | K) =
{ϕ ∈ K |M |= ϕ}. De�nition 11 below formalises a class of pre-orders based on this notion,

which we call tracks.

De�nition 11. A track of a belief base K is a pre-order ⩽K ⊆ I × I such that

1. If Pres(M | K) = Pres(M ′ | K) thenM ′ ⩽K M andM ⩽K M ′; and

2. If Pres(M | K) ⊂ Pres(M ′ | K) thenM ′ <K M

In short, a track relation imposes models that strictly preserve more information to be strictly

more plausible (condition 2), while models that preserve the same set of information are equally

plausible (condition 1). Thus, in every track for a belief a base K, the models of K are the most

plausible ones, and they are also all equally plausible.

Proposition 12. If K is a consistent belief base and ⩽K is a track of K then min⩽K
(I) = JKK.

The less pairs a track contains, the more permissive it is. A most permissive track of a belief

base K will be called a least track of K. It is easy to see that each belief base has exactly one

least track.

De�nition 13. A least track of a belief base K is a track ⩽−

K
such that for every track ⩽K of K,

⩽
−

K
⊆ ⩽K

Observation 14. Every belief base has a unique least track ⩽−

K
.

Example II (continued from Example I). The beliefs in K = {p, q, p ∨ q, p ∨ ¬q} preserved by

each of the four models are:

Pres(M1 | K) = K Pres(M2 | K) = {p, p ∨ q, p ∨ ¬q}
Pres(M3 | K) = {q, p ∨ q} Pres(M4 | K) = {¬q ∨ p}
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Fig. 1 (on the right ) illustrates the set inclusion relation between the preservation sets of each

model, while Fig. 1 (on the left) depicts the least track relation of K. AsM1 is the only model of

K, it is strictly more plausible than all other models. ModelsM2 andM3 are incomparable, since

they preserve di�erent beliefs in K. For the same reason,M4 andM3 are incomparable. However,

M2 is strictly more plausible thanM4, asM2 preserves strictly more information thanM4.

At this point, we can see that a track can distinguish between suitable and unsuitable models.

According to this track, both modelsM2 andM3 are the most plausible counter-models of p ∧ q.
If we choose eitherM2 orM3 then we get a rational contraction: either A1 = {p, p ∨ q,¬q ∨ p},
or A2 = {q, p ∨ q}. By picking both models we get the last rational contraction A3 = {p ∨ q}.
The only not rational contraction are those involving the modelM4 which is not among the most

plausible one (the suitable ones). Also observe that other tracks exist: for instance augmenting the

illustrated track by makingM2 andM3 comparable or evenM3 andM4 comparable. However,

for any of the possible tracks, M4 is never among the suitable ones, as it must be strictly less

plausible thanM2, due to condition 2 of track’s de�nition. This suggests that tracks can be used as

an adequate class of plausibility relations to distinguish between suitable and unsuitable models.

M1 = {p, q}

M2 = {p} M3 = {q}

M4 = ∅

K ⩾
⩽K

⩽K

Pres(M1 | K) = K

Pres(M2 | K) Pres(M3 | K)

Pres(M4 | K)

⊂ ⊃

⊃

Figure 1: The least track relation⩽K(on the le�), and the set inclusion relation on the preservation set

of the models (on the right).

As tracks establish an adequate notion of plausibility between models, then most plausible

ones to contract a formula α are the minimal counter-models of α. In classical propositional

logics, such minimal models always exist, as there is only a �nite number of models. However,

for more expressive logics, such as First Order Logics and several Description Logics [21], there

are formulae with an in�nite number of (counter-)models. In the presence of an in�nite amount

of models, some tracks arrange the models through in�nite chains. In general, these in�nite

chains prevents identifying the most plausible counter-models for some formulae. Thus, we

need to constrain ourselves to tracks that do not present such bad behaviour, that is, tracks that

are founded:

De�nition 15. A relation ⩽ ⊆ I × I is founded i� min⩽(JαK) 6= ∅ for every non-tautological

formula α.

Relying on founded tracks guarantees that for every non-tautological formula α, there is

at least one counter-model to be picked to perform such a contraction. In fact, as long as the

underlying Tarskian logic satis�es compactness, every belief base presents at least one founded

track: its least track.

Theorem 16. If a logic 〈L, Cn〉 is Tarskian and compact then for every belief base K ⊆ L, the
least track is founded.
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We can then de�ne a function that selects among the most plausible models:

De�nition 17. Let ⩽K be a founded track. A tracking selection function on ⩽K is a function

δ⩽K
: L → P(I) such that

1. δ⩽K
(α) ⊆ min⩽K

(JαK)

2. δ⩽K
(α) 6= ∅, if α is not a tautology

3. if α and β are logically equivalent then δ⩽K
(α) = δ⩽K

(β).

A tracking selection function works similarly to the model choice function for theories. The

main di�erence is that model choice functions can choose any counter-model of a formula α,

while tracking selection functions choose only among the most plausible (w.r.t a track relation)

counter-models of α. Condition 3 is related to the postulate of uniformity, and guarantees that

a tracking selection function is not syntax sensitive. When it is clear from context, we drop the

subscript ⩽K
and simply write δ.

Following the same strategy as for theories, a contraction on a belief base is performed by

keeping the formulae from the current belief base that are satis�ed by all the counter-models

selected by a tracking selection function.

De�nition 18. Let δ be a tracking selection function. The tracked contraction founded on δ is

de�ned as

K −̇δ α = {ϕ ∈ K | δ(α) |= ϕ}.

Example III (continued from Example II). Let ⩽−

K
be the least track of the belief base K =

{p, q, p ∨ q,¬q ∨ p}. Observe that min
⩽

−

K

(p ∧ q) = {M2,M3}. Then, we can choose any

combination of M2 and M3 to contract p ∧ q. Let δ1, δ2 and δ3 be tracked selection functions

founded on ⩽
−

K
such that δ1(p ∧ q) = {M2}, δ2(p ∧ q) = {M3} and δ3(p ∧ q) = {M2,M3}.

They induce the following tracked contraction operators: K −̇δ1 ¬q ∨ p = {p, p ∨ q,¬q ∨ p},
K −̇δ2 ¬q ∨ p = {q, p ∨ q}, and K −̇δ3 ¬q ∨ p = {p ∨ q}. As one can easily check, each one of

them is a rational contraction operator.

Theorem 19. Every tracked contraction function is rational.

Proof sketch. Postulates of success, inclusion, vacuity and uniformity are easy to prove. We focus

on relevance. Let β ∈ K\(K−̇δ⩽ α). Thus, there is some modelM ∈ δ⩽K
(α) such thatM 6|= β.

As M ∈ δ⩽K
(α), we have that M |= K −̇δ⩽ α and M ∈ min⩽K

(JαK). Thus, K −̇δ⩽ α ⊆
Pres(M | K) ⊆ K. Let us suppose for contradiction that α 6∈ Cn(Pres(M | K) ∪ {β}).
Thus, there is some modelM ′ ∈ JαK such thatM ′ |= Pres(M | K) ∪ {β}. This means that,

Pres(M | K) ⊂ Pres(M ′ | K) which implies thatM ′ <K M . Therefore,M 6∈ min⩽K
(JαK),

which is a contradiction.

Theorem 20. Every rational base contraction function is a tracked contraction function.

Since a track establishes a plausibility relation between models, it is natural to expect that a

track also works as an epistemic preference relation. Therefore, instead of simply picking some

of the most plausible models w.r.t a track, it would be rational to pick all such most plausible

models. We will call contraction operators that follow this strategy full tracked contraction:
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De�nition 21. Let⩽K be a founded tracking of a belief base K. The full tracked selection of⩽K

is the function µ⩽K
such that µ⩽K

(α) = min⩽K
(JαK). Tracked contraction operators founded on

full tracking selection functions are full tracked contraction operators.

Full tracked contraction operators do satisfy intersection, due to the transitivity of tracks.

Theorem 22. Every full tracked contraction satis�es intersection.

Although tracks capture intersection, they are not strong enough to capture conjunction.

Observe that tracks form a special case of faithful pre-orders (De�nition 9). It would be natural

then to simply impose totality upon the tracks in the hope of capturing conjunction. Totality,

however, has been criticised in the literature for being too demanding, as an agent might be

indi�erent or ignorant on how to grade some of its beliefs [22]. Moreover, works such as [10, 23]

have observed that totality is not strong enough to capture conjunction, even for theories, in

more expressive logics. As a solution, Ribeiro et al. [10] has introduced mirroring:

mirroring: if A 6⩽ B and B 6⩽ A but C ⩽ A then C ⩽ B.

According to mirroring, if two models are incomparable then they should agree upon their

preferences. We will show here that by employing mirroring upon tracks, conjunction is also

captured for belief bases.

Theorem 23. If a founded track satis�es mirroring then its full tracked contraction operator

satis�es conjunction.

5. Conclusion and Future Works

While both syntactic and semantic operators are well known for belief theory contraction (and

other forms of belief change), only syntactic operators are known to be rational on belief bases.

In this work, we have introduced two new classes of semantic contraction operators for belief

bases: tracked contraction operators and full tracked contraction operators on mirroring. These

operators rely on plausibility relations between models, called tracks. In order to contract a

formula α, the agent seeks the most plausible counter-models of α w.r.t a track relation, and

chooses some of these counter-models (the ones the agent deems most reliable). We have

established a representation theorem between tracked contraction operators and the basic

rationality postulates of contraction. A track unveils an agent’s epistemic preferences: the most

plausible models coincides with the most reliable ones, and the agent picks all these models.

Tracked contractions following this strategy are called full tracked contraction. We have shown

that tracks that satisfy the mirroring condition yield full tracked contraction satisfying the two

supplementary postulates.

As future work we shall investigate if mirroring su�ces to establish a representation theorem

between full tracked contractions and the supplementary postulates. This connection with the

supplementary postulates is important, because the study of such postulates has been restricted

to belief change operators on theories. Particularly, the connection between contraction opera-

tors and the supplementary postulates has been established via epistemic preferences relations
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such as Epistemic Entrenchment[2] and Hierarchies (for safe contraction)[3]. Although all such

epistemic preferences work well for theories, their connection with such rationality postulates

easily disappears for bases. The only known exception is safe contraction, which still connects

with the supplementary postulates only when a base K is �nite and it is as expressive as a its

theory Cn(K): for each formula α ∈ Cn(K) there is a formula in K logically equivalent to α.

We shall extend our results for more expressive logics by dispensing with compactness and

widening our results to Tarskian logics. Although we have focused on contraction, our results

can be easily translated to revision: instead of selecting counter-models, one needs only to

select models of the formulae α to be revised.
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