
Modeling and Solving the Rush Hour puzzle⋆

Lorenzo Cian, Talissa Dreossi and Agostino Dovier

University of Udine, DMIF, Via delle Scienze 206, 33100 Udine, Italy

Abstract
We introduce the physical puzzle Rush Hour and its generalization. We briefly survey its complexity
limits, then we model and solve it using declarative paradigms. In particular, we provide a constraint
programming encoding in MiniZinc and a model in Answer Set Programming and we report and compare
experimental results. Although this is simply a game, the kind of reasoning involved is the same that
autonomous vehicles should do for exiting a garage. This shows the potential of logic programming for
problems concerning transport problems and self-driving cars.

Keywords
Rush Hour, Planning, MiniZinc, ASP, Autonomous vehicles

1. Introduction

Rush Hour is a physical puzzle created by Nob Yoshigahara in 1970 and sold in USA for the
first time in 1996. The game is played on a 6× 6 board, on which there are a number of cars (of
size 2) and trucks (of size 3). Cars and trucks can only move forwards or backwards (but not
sideways). There is a unique exit door. The aim is to move the vehicles in such a way that the
only red car can be driven out of the exit (see Figure 1 for an example).

The generalized rush hour problem, which has an arbitrary 𝑚×𝑛 grid size and allows to place
the exit at any point on the perimeter of the grid, has been proved to be PSPACE-complete [1].
Due to this intrinsic limit we focus on the problem of finding a plan that allows to exit the red
car with a fixed number 𝑡 of moves. Then the solver will be run with 𝑡 = 1, 2, 3, . . . until a
solution (if any) is found.

Apart from [2, 1] where parameterized complexity is studied, in [3] the authors use model
checking techniques for developing initial configurations that require high values for 𝑡 making
the instances difficult.

In [4] the authors studied the reasons why the transport puzzles are that complex, studying
the sokoban, rush hour, and replacement puzzle. The complexity and a solution of sokoban in
declarative programming was also presented in [5].

In this paper, as made in [6] and recently in [7] for other problems/puzzles, we model the

CILC 2022: 37th Italian Conference on Computational Logic, June 29 – July 1, 2022, Bologna, Italy
⋆

Research partially supported by Fondazione Friuli/Università di Udine project on Artificial Intelligence for Human
Robot Collaboration and by INDAM GNCS projects NoRMA and InSANE (CUP E55F22000270001).
$ agostino.dovier@uniud.it (A. Dovier)
� www.dimi.uniud.it/dovier (A. Dovier)
� 0000-0003-2052-8593 (A. Dovier)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:agostino.dovier@uniud.it
www.dimi.uniud.it/dovier
https://orcid.org/0000-0003-2052-8593
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Figure 1: A six-moves exit plan for the red car on the physical game (the curious reader might find a
plan with only five moves)

(generalization) of the rush hour puzzle in declarative programming using the language MiniZinc
for a constraint programming encoding and Answer Set Programming for a logic programming
encoding. We show the good results and the limits of the two approaches and set the basis for
future development.

Although this is a game, self driving cars need to solve these kinds of puzzles for leaving a
garage without damaging each other.

The paper is organized as follows: in Section 2 we set the background of the problem. We
assume that the readers are aware of Constraint Programming and Answer Set Programming
so we decided to avoid the definitions of those languages. The modeling in MiniZinc and ASP
are presented in Sections 3 and 4, respectively. In Section 5 we report on the running time of
the two approaches. Finally some conclusions are drawn in Section 6.

2. The problem and its complexity

A 𝑚 × 𝑛 board is a subset of the Cartesian plane identified by points ℬ =
{︀
(𝑥, 𝑦) :

1 ≤ 𝑥 ≤ 𝑚 ∧ 1 ≤ 𝑦 ≤ 𝑛
}︀

. Let us assume (1, 1) is the bottom-left cell, and (𝑚,𝑛) the top-right
cell. (𝑥, 𝑦) is on the border of the grid if 𝑥 ∈ {1,𝑚} or 𝑦 ∈ {1, 𝑛}.

Let 𝑠 be a function reporting the size of vehicles. A vehicle 𝑐 can be of size 𝑠(𝑐) = 2 (a car) or
𝑠(𝑐) = 3 (a truck). A vechicle occupies exactly 𝑠(𝑐) adjacent cells. Given the position (𝑥, 𝑦) of
its front and its polar orientation north, south, east, west, the remaining cells occupied by the
vehicle are univocally determined. For instance, if the orientation of a truck is toward south,
the rest of the truck occupies (𝑥, 𝑦 + 1), (𝑥, 𝑦 + 2).

A garage is a set 𝒢 = {(𝑐1, 𝑠1), . . . , (𝑐𝑟, 𝑠𝑟)} of pairs (𝑐𝑖, 𝑠𝑖) where 𝑐𝑖 is the name/index of a
vehicle and 𝑠𝑖 = 𝑠(𝑐𝑖) ∈ {2, 3} denotes its size.

An allocation of a garage in a 𝑚 × 𝑛 board is a set of triplets 𝒯 = {𝑡1, . . . , 𝑡𝑟} of the
form 𝑡𝑖 = (𝑥, 𝑦, 𝑜) where (𝑥, 𝑦) is the grid cell occupied by the nose of the vehicle 𝑐𝑖 and

Figure 2: Allowed moves (right). The grey arrow denotes the exit gate (6, 4)

𝑜 ∈ {𝑁,𝑆,𝐸,𝑊} (north, south, east, west, respectively) is its cardinal orientation, such that
(1) all pieces of the vehicles are on the grid and (2) no pairs of them overlap.

Definition 2.1. A generalized rush hour (briefly, GRH) instance is a tuple

⟨board-size, door,𝒢, ℐ⟩

where

• board-size is a pair (𝑚,𝑛) ∈ N2 defining the grid size
• door is a pair (𝑥𝑒, 𝑦𝑒) ∈ N2 on the border of the grid where the exit door is located
• 𝒢 = {(𝑐1, 𝑠1), . . . , (𝑐𝑟, 𝑠𝑟)} is a garage
• ℐ = {𝑡1, . . . , 𝑡𝑟}, called the initial state, is an allocation of 𝒢

We assume that 𝑐1 identify the “red” car of the physical instance.

Every vehicle 𝑐𝑖 can be moved of one or more units, in one or the other direction consistent
with its orientation 𝑜 (see Fig 2). The car cannot exit from the board. If the vehicle moves of 𝑘
units, the 𝑘 cells must be free in the current state.

Definition 2.2. Given a generalized rush hour (briefly, GRH) instance ⟨board-size, door, 𝒞, ℐ⟩
a plan of length ℓ is a sequence of ℓ moves such that at the end a part of the vehicle 𝑐1 occupies the
door cell, and it is properly oriented to be allowed to exit the door.

Let us observe that due to the kind of moves allowed, if 𝑡1 = (𝑥1, 𝑦1, 𝐸) or 𝑡1 = (𝑥1, 𝑦1,𝑊)
then 𝑦𝑒 = 𝑦1, and if 𝑡1 = (𝑥1, 𝑦1, 𝑁) or 𝑡1 = (𝑥1, 𝑦1, 𝑆) then 𝑥𝑒 = 𝑥1. If this does not holds
then a plan cannot exist and the problem becomes trivial. Thus, we consider only instances that
satisfy the above constraint.

As common in planning, there are two decision problems associated with GRH:

Figure 3: Vehicles cannot overlap, and cannot jump

1. Given an instance of GRH and ℓ ∈ N, establishing whether a a plan of lenght ℓ exists, and
2. Given an instance of GRH establishing if there is an ℓ ∈ N such that a plan of lenght ℓ

exists

Flake and Baum in [1] show how to encode Boolean formulas into instances of GRH proving
NP-completeness of the former and PSPACE completeness of the latter.

Of course, the physical, 6× 6 game has a finite number of possible instances, so, in principle
it admits a constant time complexity using a program of huge size, storing features of all the
possible instances. This size is of course not acceptable, thus we develop a program for GRH
that, as particular case, solves 6 × 6 instances without making use of simplifications due to
particular cases.

3. MiniZinc modeling

We describe our constraint programming encoding using the modeling language MiniZinc [8].
As common in planning we refer to a pair of garage (the set and kind of vehicles) 𝒢 and their
allocation 𝒯 on a 𝑚× 𝑛 grid as a state. We have to model states, actions, and the state change.
The main constraints to be considered are the following:

• A vehicle cannot exit the board (neither completely nor partially)
• A vehicle cannot change its initial row or column or orientation
• Two different vehicles cannot overlap each other (see Figure 3)
• When the state is updated, a vehicle cannot jump over another (see Figure 3)

There are two main choices for the representation of a state:

• Focusing on the grid, namely defining a matrix 𝐵 of size 𝑚× 𝑛 where 𝐵[𝑖, 𝑗] = 0 means
that the cell is free and 𝐵[𝑖, 𝑗] = 𝑘 that the cell is occupied by the vehicle 𝑘

• Focusing on the vehicles, namely using vectors of size 𝑟 storing, in some way, the initial
point and the orientation of all vehicles

Figure 4: Example of representation: size[A]=2, size[B]=3, versus[A]=4, versus[B]=-5,
initial[A]=2, initial[B]=1

Each representation has its pros and cons. For instance the matrix representation implements
implicitly the non overlap constraint, while the vechicle representation uses less space and
allows an easy update (only one vehicle per time-step). After the first empirical tests, we decided
to focus on the second approach. Let us present it in some more detail.

For the sake of simplicity we’ll use the standard board in what follows (i.e., 𝑚 = 𝑛 = 6). The
encoding is easy to generalize.

The input consists in three arrays of length 𝑟. An array size stores for each vehicle its
size (2 or 3). Changing direction of a vehicle is not possible. This means that once we know
if it is horizontal (resp., vertical), the 𝑦 coordinate (resp., 𝑥 coordinate) is the same for all the
computation. We store this info with a unique array versus that takes values in -6..6. If
versus[𝑖] > 0 then the vehicle is horizontal, and versus[𝑖] denotes its 𝑦 coordinate (row). If
versus[𝑖] < 0 then the vehicle is vertical, and versus[𝑖] denotes its 𝑥 coordinate (column).
The GRH instance is completed by the array initial that fixes the other coordinates of each
vehicle. For breaking symmetries, we do not store where the front of the vehicle is located. We
store instead the smallest coordinate of the cells occupied by the vehicle (see Figure 4 for an
example). Without loss of generality we assume that the red car is horizontal and that the exit
door is located in the eastern cell of its row.

These were the static and input information. The dynamic behavior depends on two matrices
that include the decision variables: pos[i,j] stores the smallest cell occuped by vehicle i at
time j. move[i,j] is 0 if vehicle i does not move at time j, and 𝛿 ̸= 0 if it moves (positively
or negatively) of 𝛿 positions. Although we don’t need a matrix for the latter information (two
vectors are sufficient) the matrix will allow an easy encoding of the inertia laws (as shown later).

The initial state can be stated as follows:

constraint
forall(v in 1..vehicles)(pos[v,1]=initial[v]);

We will omit the declaration constraint before the following constraints.

The goal should be reached by a plan of exactly 𝑡 time steps1

pos[1,t]=5;

The constraint stating that vehicles cannot exit the board is set in this way (pos[v, s] ≥ 1 is
guaranteed by the domain of the variable):

forall(v in 1..vehicles, s in 1..steps)
(pos[v,s]+size[v]-1<=6);

We need to state the non overlapping constraint. First we deal with pairs of vehicles in the
same column or row:

forall(v1,v2 in 1..r,s in 1..t
where (v1 < v2 /\ versus[v1] = versus[v2]))

(pos[v1,s]+size[v1]-1 < pos[v2,s] \/
pos[v2,s]+size[v2]-1 < pos[v1,s]);

Then we deal with pairs of hortogonal vehicles. In this case we explicitly avoid that they form a
“cross”

forall(v1,v2 in 1..r,s in 1..t
where (versus[v1] > 0 /\ versus[v2] < 0))

(not (pos[v1,s] <= -versus[v2] /\
-versus[v2] <= pos[v1,s]+size[v1]-1 /\
pos[v2,s] <= versus[v1] /\
versus[v1] <= pos[v2,s]+size[v2]-1));

Let us focus now on the moves. We need to state that there is exactly one move per time step.

forall(s in 1..t-1)
(sum(v in 1..r)(move[v,s]!=0) = 1);

Other lower level, and slightly faster definitions have been tested, as well. The effect of a move
action can be defined by this constraints. The fact that move[v,s] contains 0 for all vehicles v
but one allows us to easily deal with inertia.

forall(v in 1..r, s in 1..t-1)
(pos[v,s+1] = pos[v,s] + move[v,s]);

It remains to state that cars cannot jump during the move. This can be made as follows. For
jumps on vehicles in the same row/column:

forall(s in 1..t-1, v1,v2 in 1..r
where ((v1<v2) /\ versus[v1]=versus[v2]))(

not (pos[v1,s]<=pos[v2,s] /\ pos[v1,s+1] > pos[v2,s+1]) /\
not (pos[v2,s]<=pos[v1,s] /\ pos[v2,s+1] > pos[v1,s+1]));

1Or alternatively, of at most 𝑡 steps by defining a variable min as var 1..t: min and requiring pos[1,min]=5.

And for vertical and horizontal jumps on orthogonal cars

forall(s in 1..t-1, v1,v2 in 1..r
where (versus[v1] < 0 /\ versus[v2] > 0))(

(pos[v2,s] <= -versus[v1] /\
-versus[v1] <= pos[v2,s]+size[v2]-1)

-> (pos[v1,s] < versus[v2] -> pos[v1,s+1] < versus[v2]) /\
(pos[v1,s] > versus[v2] -> pos[v1,s+1] > versus[v2]));

forall(s in 1..t-1, v1,v2 in 1..r
where (versus[v1] > 0 /\ versus[v2] < 0))(

(pos[v2,s] <= versus[v1] /\
versus[v1] <= pos[v2,s]+size[v2]-1)

-> (pos[v1,s] < -versus[v2] -> pos[v1,s+1] < -versus[v2]) /\
(pos[v1,s] > -versus[v2] -> pos[v1,s+1] > -versus[v2]));

Finally, some symmetry breaking can be obtained by forbidding consecutive moves of the
same vehicle:

forall(v in 1..r,s in 1..steps-2) (move[v,s] * move[v,s+1]=0);

4. Answer Set Programming Modeling

We developed two ASP models, one of them is based on the same ideas of the just described
MiniZinc model. We explain below another approach that proved to be faster. As for the
MiniZinc encoding we use the 6×6 grid, but the code is written in order to be easily generalizable.
The code is tested with the ASP solvers clingo [9] and DLV [10].

First of all we set the grid size, the exit location and other domain predicates including the
time range

grid(1..6, 1..6).
exit(6-1, 6/2 + 1).
move_amount(1..6).
direction(up; down; left; right).
time(0..t).

Vehicles are represented by facts of the kind

vehicle(Index, Size, Direction).

Where Index is the index (the name) of the car, Size is its size (2 or 3) and Direction states if
it is horizontal or vertical, and its initial posizion is given as

position(Index, 0, X, Y).

where 0 stands for time 0, and X and Y are its initial coordinates. Precisely, if its an horizontal
vehicle X is its minimal coordinate, if it is a vertical vehicle Y is its minimal coordinate (as made
for the constraint modeling in the previous section).

We use intervals in the head of the rules to establish whether a grid cell is occupied or not:

busy(X, Y..Y+S-1, T) :- grid(X, Y), time(T),
vehicle(A, S, vert), position(A, T, X, Y).

busy(X..X+S-1, Y, T) :- grid(X, Y), time(T),
vehicle(A, S, horiz), position(A, T, X, Y).

free(X, Y, T) :- not busy(X, Y, T), grid(X, Y), time(T).

We use input allocations that do not overlap vehicles, however it would be simple checking
consistency with a variation of the predicate busy. It is sufficient to add a parameter in the
head and say that a cell is made busy by vehicle A and then requiring that it is impossible that
a cell is made busy by two different vechicles. Similarly, we assume that the vehicles do not
exit the board in the input allocations. These kind of constraints are instead controlled when
actions are applied.

Let us set the executability conditions of a move:2

movable(A, T, up, N) :- grid(X,Y), grid(X,Y+S+N-1), time(T),
vehicle(A, S, vert), position(A, T, X, Y),
N {free(X, Y+S..Y+S+N-1, T)} N, move_amount(N).

movable(A, T, down, N) :- grid(X,Y), grid(X,Y-N), time(T),
vehicle(A, S, vert), position(A, T, X, Y),
N {free(X, Y-N..Y-1, T)} N, move_amount(N).

movable(A, T, left, N) :- grid(X,Y), grid(X-N,Y), time(T),
vehicle(A, S, horiz), position(A, T, X, Y),
N {free(X-N..X-1, Y, T)} N, move_amount(N).

movable(A, T, right, N) :- grid(X,Y), grid(X+S+N-1,Y), time(T),
vehicle(A, S, horiz), position(A, T, X, Y),
N {free(X+S..X+S+N-1, Y, T)} N, move_amount(N).

The four cases above are very similar: for a move of N steps, there must be N free cells in that
direction. Let us observe how the aggregate is used in clause body.

Exactly one move per time is made:3

1 {move(A, T, D, N) : vehicle(A, S, D), direction(D),
movable(A, T, D, N), move_amount(N) } 1 :-

2The rules have been unfolded for N from 1 to 4 in the DLV encoding.
3The first rule was substituted with a choice rule and four constraints in the DLV encoding

time(T).

moved(A, T) :- move(A, T, D, N), direction(D), move_amount(N).

The following rules compute the new position for moved and not moved vehicles:

position(A, T+1, X, Y+N) :- move_amount(N) vtime(T), time(T+1),
move(A, T, up, N), movable(A, T, up, N),
vehicle(A, S, O), position(A, T, X, Y), grid(X, Y).

position(A, T+1, X, Y-N) :- move_amount(N) vtime(T), time(T+1),
move(A, T, down, N), movable(A, T, down, N),
vehicle(A, S, O), position(A, T, X, Y), grid(X, Y).

position(A, T+1, X-N, Y) :- move_amount(N) vtime(T), time(T+1),
move(A, T, left, N), movable(A, T, left, N),
vehicle(A, S, O), position(A, T, X, Y), grid(X, Y).

position(A, T+1, X+N, Y) :- move_amount(N) vtime(T), time(T+1),
move(A, T, right, N), movable(A, T, right, N),
vehicle(A, S, O), position(A, T, X, Y), grid(X, Y).

position(A, T+1, X, Y) :- grid(X, Y), time(T), time(T+1),
not moved(A, T), position(A, T, X, Y),
vehicle(A, S, O).

And finally we set the goal:

goal :- position(1, t, X, Y), exit(X, Y).
:- not goal.

A Python interface has been written to call clingo and provide a graphical view of the plan.
The input can be also given in command line using a string of chars. In the string, empty cells
are represented by o, while vehicles are labeled by letters A, B, C, The 36 char string is
obtained by storing the content of the rows, starting from the top one. The number of steps 𝑡 is
also passed. An example is reported in Figure 5.

5. Experimental Results

We compared the running time of the two proposed encodings on a set of benchmarks on the
“official” 6× 6 grid. Instances require increasing plan length. We run the codes on the minimum
plan length leading to a solution. Tests are run on a system equipped with a AMD Ryzen 7
4700U CPU system, 16GB RAM, with OS 20.04 OS. We used version 2.5.5 of the MiniZinc to
FlatZinc converter, the version 0.10.4 of the Chuffed solver [11], the version 5.4.0 of clingo, and
the version 2.1.1 of DLV (for linux-x86_64). We set a timeout of 5 minutes.

Figure 5: Example of the execution of the script:
Python3.8 rush_hour.py "02 oooooooooooBAAoooBoooooooooooooooooo" lp
Let us observe that the vehicle that just moved is highlighted

We used two benchmark sets. The first one was developed by us, it contains several instances
of the physical game (there are cards with instances on them in the toy box) and other similar
instances; globally it is a set of one hundred of instances from 5 to 17 steps. The second one is a
set of 35 instances extracted from Michael Fogleman’s database of Rush Hour configurations [12].
In this case, the plan length goes from 6 to 51 steps.

As far as the MiniZinc is concerned, we tested other solvers compatible with MiniZinc,
namely Gecode version 6.3.0 and OR Tools version 9.3.10497. Both the solvers, with or without
search annotations, performed considerably worse than Chuffed on simple instances, so we
did not use them. The model without search annotations is the one which leads to the best
performance with Chuffed. The default settings of both the MiniZinc compiler and Chuffed
seem to be the ones which lead to the best performance. The default settings for clingo are also
the ones that lead to the best performance.

Figure 6: Comparison of the running time of the two encodings on a set of instances ordered by plan
leght (maximum 17)

Both the approaches are sufficienlty efficient to solve all the instances of the first step of
Figure 6 whitin the time limit, actually most of them in less than 0.2 seconds. Instead, with the
second test, it can be oberved that the constraint modeling scales better as the number of steps
increases. The problems arise when the plan length is more than 30. We have noticed that it
is not simply a grounding problem, since for the most difficult instances (plan length 51), the
grounded file has 71K lines, with a size in the text format of 6 MB, still not an issue. By the way,
the solution in this case is found in 20 minutes (the timeout was set to 5 minutes). On these
instances, with the default settings, DLV performs slightly better than clingo.

6. Future work and conclusions

We have presented two declarative encodings of the Rush Hour transport puzzle. Both of them
are written using declarative code, without particular optimizations. The Mininizinc code, also
thanks to the efficiency of the solver Chuffed is capable of solving hard instances in less than
one second. The ASP code is extremely fast for plan lengths less than 30. Then solving takes
more time, in any case within 20 minutes.

As future work, we would like to experiment the whole set of tests of Fogleman [12] (we
have used only a sampling of it) and the whole set of instances of the physical game (printed on
cards sold with the toy). We will embed some domain heuristics [13, 14] and adding a graphical

Figure 7: Comparison of the running time of the two encodings on a set of 35 instances (plan lenght
from 6 to 51, timeout 5 minutes)

interface for generating the input and for the animation of the solutions.
Moreover, in order to add some realism to the game, we would like to admit cars and trucks

to turn right/left of 90∘. Another interesting aspects would be the one of a multiagent systems
where more cars can move in parallel.

The codes are written almost completely in the paper, however, we will report them together
with the set of instances in http://clp.dimi.uniud.it/sw/.

References

[1] G. W. Flake, E. B. Baum, Rush hour is pspace-complete, or "why you should gener-
ously tip parking lot attendants", Theor. Comput. Sci. 270 (2002) 895–911. doi:10.1016/
S0304-3975(01)00173-6.

[2] H. Fernau, T. Hagerup, N. Nishimura, P. Ragde, K. Reinhardt, On the parameterized
complexity of the generalized rush hour puzzle, in: Proceedings of the 15th Canadian
Conference on Computational Geometry, CCCG’03, Halifax, Canada, August 11-13, 2003,
2003, pp. 6–9. URL: http://www.cccg.ca/proceedings/2003/22.pdf.

[3] S. Collette, J. Raskin, F. Servais, On the symbolic computation of the hardest configurations
of the RUSH HOUR game, in: H. J. van den Herik, P. Ciancarini, H. H. L. M. Donkers (Eds.),
Computers and Games, 5th International Conference, CG 2006, Turin, Italy, May 29-31,

http://clp.dimi.uniud.it/sw/
http://dx.doi.org/10.1016/S0304-3975(01)00173-6
http://dx.doi.org/10.1016/S0304-3975(01)00173-6
http://www.cccg.ca/proceedings/2003/22.pdf

2006. Revised Papers, volume 4630 of Lecture Notes in Computer Science, Springer, 2006, pp.
220–233. doi:10.1007/978-3-540-75538-8_20.

[4] P. Jarusek, R. Pelánek, What determines difficulty of transport puzzles?, in: R. C. Murray,
P. M. McCarthy (Eds.), Proceedings of the Twenty-Fourth International Florida Artificial
Intelligence Research Society Conference, May 18-20, 2011, Palm Beach, Florida, USA,
AAAI Press, 2011. URL: http://aaai.org/ocs/index.php/FLAIRS/FLAIRS11/paper/view/2518.

[5] N. Zhou, A. Dovier, A tabled prolog program for solving sokoban, Fundam. Informaticae
124 (2013) 561–575. doi:10.3233/FI-2013-849.

[6] A. Dovier, A. Formisano, E. Pontelli, An empirical study of constraint logic programming
and answer set programming solutions of combinatorial problems, J. Exp. Theor. Artif.
Intell. 21 (2009) 79–121. doi:10.1080/09528130701538174.

[7] N. Rizzo, A. Dovier, 3cosoku and its declarative modeling, J. Log. Comput. 32 (2022)
307–330. doi:10.1093/logcom/exab086.

[8] P. J. Stuckey, K. Marriott, G. Tack, The minizinc handbook, 2022. URL: https://www.
minizinc.org/.

[9] University of Potsdam, Potassco, the potsdam answer set solving collection, 2022. URL:
https://potassco.org/.

[10] M. Alviano, F. Calimeri, C. Dodaro, D. Fuscà, N. Leone, S. Perri, F. Ricca, P. Veltri, J. Zangari,
The ASP system DLV2, in: M. Balduccini, T. Janhunen (Eds.), Logic Programming and
Nonmonotonic Reasoning - 14th International Conference, LPNMR 2017, Espoo, Finland,
July 3-6, 2017, Proceedings, volume 10377 of Lecture Notes in Computer Science, Springer,
2017, pp. 215–221. doi:10.1007/978-3-319-61660-5_19.

[11] G. Chu, M. G. de la Banda, C. Mears, P. J. Stuckey, Symmetries, almost symmetries,
and lazy clause generation, Constraints An Int. J. 19 (2014) 434–462. doi:10.1007/
s10601-014-9163-9.

[12] M. Fogleman, Solving rush hour, the puzzle, 2022. URL: https://www.michaelfogleman.
com/rush/.

[13] M. Gebser, B. Kaufmann, J. Romero, R. Otero, T. Schaub, P. Wanko, Domain-specific
heuristics in answer set programming, in: M. desJardins, M. L. Littman (Eds.), Proceedings
of the Twenty-Seventh AAAI Conference on Artificial Intelligence, July 14-18, 2013, Belle-
vue, Washington, USA, AAAI Press, 2013. URL: http://www.aaai.org/ocs/index.php/AAAI/
AAAI13/paper/view/6278.

[14] C. Dodaro, P. Gasteiger, N. Leone, B. Musitsch, F. Ricca, K. Schekotihin, Combining
answer set programming and domain heuristics for solving hard industrial problems
(application paper), Theory Pract. Log. Program. 16 (2016) 653–669. doi:10.1017/
S1471068416000284.

http://dx.doi.org/10.1007/978-3-540-75538-8_20
http://aaai.org/ocs/index.php/FLAIRS/FLAIRS11/paper/view/2518
http://dx.doi.org/10.3233/FI-2013-849
http://dx.doi.org/10.1080/09528130701538174
http://dx.doi.org/10.1093/logcom/exab086
https://www.minizinc.org/
https://www.minizinc.org/
https://potassco.org/
http://dx.doi.org/10.1007/978-3-319-61660-5_19
http://dx.doi.org/10.1007/s10601-014-9163-9
http://dx.doi.org/10.1007/s10601-014-9163-9
https://www.michaelfogleman.com/rush/
https://www.michaelfogleman.com/rush/
http://www.aaai.org/ocs/index.php/AAAI/AAAI13/paper/view/6278
http://www.aaai.org/ocs/index.php/AAAI/AAAI13/paper/view/6278
http://dx.doi.org/10.1017/S1471068416000284
http://dx.doi.org/10.1017/S1471068416000284

	1 Introduction
	2 The problem and its complexity
	3 MiniZinc modeling
	4 Answer Set Programming Modeling
	5 Experimental Results
	6 Future work and conclusions

