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Abstract
The automatic identification of burned areas is an important task that was mainly managed manually or
semi-automatically in the past. In the last years, thanks to the availability of novel deep neural network
architectures, automatic segmentation solutions have been proposed also in the emergency management
domain. The most recent works in burned area delineation leverage on Convolutional Neural Networks
(CNNs) to automatically identify regions that were previously affected by forest wildfires. A largely
adopted segmentation model, U-Net, demonstrated good performances for the task under analysis, but
in some cases a high overestimation of burned areas is given, leading to low precision scores. Given
the recent advances in the field of NLP and the first successes also in the vision domain, in this paper
we investigate the adoption of vision transformers for semantic segmentation to address the burned
area identification task. In particular, we explore the SegFormer architecture with two of its variants:
the smallest MiT-B0 and the intermediate one MiT-B3. The experimental results show that SegFormer
provides better predictions, with higher precision and F1 score, but also better performance in terms of
the number of parameters with respect to CNNs.
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1. Introduction

The preservation and continuous monitoring of natural resources is a fundamental topic that,
over the years, pushed by climate change and rapid succession of natural hazards, assumed
higher and higher relevance among the research community and society in general. The
availability of sensors with high resolution, in conjunction with the usage of aircraft and
satellites, enables the acquisition of national- and global-scale information in a short amount of
time. Moreover, thanks to the recent advances in computer vision and the high availability of
data in the remote sensing domain, such a topic represents an active field of research with a
strong community being involved.

The Earth Observation domain involves several different tasks, ranging from land monitoring
and land cover change characterization [1], change detection [2], damage estimation [3] and
many others. Deep learning-based methodologies demonstrated state-of-the-art performances
over a multitude of these tasks (e.g., [4, 5]).
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Among the Earth Observation domain, the field of emergency management plays an important
role for public authorities as well as governments in handling natural hazards, trying to limit
societal and environmental damages as much as possible with timely intervention and proper
restoration. Handling natural hazards also involves precise identification of affected areas,
damage estimation and restoration process planning. Such mentioned operations are often
performed in-situ by human operators, requiring a great amount of time and effort to quantify
the negative impact of the concluded catastrophic event. The availability of remote sensing
data and satellite imagery enables the development of automatic recognition systems to delimit
affected areas and provide initial damage assessments for operators and authorities.

In this context, we concentrate our analyses on forest fires. More specifically, we propose
our work in the field of semantic segmentation and automatic burned area identification from
Copernicus Sentinel-2 L2A acquisitions, a European multi-spectral imaging mission with a
resolution up to 10m (depending on the spectral band): given a post-fire multispectral acquisition
from Sentinel-2, the goal is to precisely identify the region affected by the already-extinguished
forest fire. This paper explores the application of one of the most recent advances in deep learning
and computer vision: transformer-based architectures for semantic segmentation. In particular,
we assess the performances of the SegFormer [6] architecture on an open dataset in comparison
with a standard thresholding baseline and a CNN-based state-of-the-art architecture, namely
U-Net [7]. The considered model proved superior performance compared to both methods. Our
source code is available at https://github.com/DarthReca/vit-burned-detection.

The paper is structured as follows: Section 2 introduces the related works in the field of
deep learning for automatic burned area detection, Section 3 introduces the vision transformers
for semantic segmentation and the SegFormer model, whereas Section 4 is the experimental
section, in which the quantitative results of the considered methodologies are compared. Finally,
Section 5 concludes the paper.

2. Related work

The burned area identification problem, also named as burned area delineation problem, is
a well-known and tackled challenge in remote sensing literature. The aforementioned issue
consists in identifying, given a multispectral input acquisition, the areas previously affected by
forest wildfire and currently damaged. Such information is useful to (i) quantify damages, both
environmental and economical, for public authorities and (ii) plan the restoration process. In
scientific literature, before the advent of modern computer vision methodologies, researchers
tackled the problem with the analysis of burned area indexes. Specifically, by gathering and
combining information from several spectral bands which are sensitive to humidity and veg-
etation, it is possible to highlight regions affected by the hazardous event. Some examples
of such indexes are Normalized Burn Ratio (NBR) [8], Normalized Burn Ratio 2 (NBR2) [9],
Burned Area Index (BAI), Burned Area Index for Sentinel-2 (BAIS2) [10] and delta Normalized
Burn Ratio 2 (dNBR2) [11]. Some of them, such as the latter, perform the comparison of the
burned area index before and after the wildfire to improve performances and detect drastic
changes in vegetation but are heavily sensitive to the presence of agricultural areas and crops.
Index-based methodologies for burned area delineation are often coupled with automatic or



semi-automatic [12, 13] thresholding algorithms, such as the Otsu method [14]. One of the
main complications of threshold-based techniques is the choice of the most adequate threshold,
varying the vegetation type, environmental and lighting condition, making it difficult to deter-
mine a unique, universal value [15] for every region worldwide. Given the recent developments
in deep learning, image segmentation tasks are tackled with convolutional neural networks.
Models such as U-Net [7] and DeepLab [16] proved their effectiveness in numerous fields,
ranging from the biomedical field [17] to autonomous driving [18] and remote sensing [19],
including burned area delineation [20]. More recently, several researchers, given the excellent
performances achieved in the field of NLP by the self-attention mechanism and the transformer
architecture [21], started exploring the adoption of transformer-based architectures in the vision
domain, too. Starting from the original Vision Transformer (ViT) [22], several architectures
were developed in the context of image classification and segmentation: Swin Transformer [23],
DeiT [24], and SegFormer [6]. Many applications in similar tasks, such as fire detection [25, 26],
proved their effectiveness. Hence, in this paper, we explore the adoption of SegFormer archi-
tecture for burned area delineation, comparing the achieved performances with U-Net and
threshold-based techniques.

3. Transformer-based burned area identification

3.1. Problem statement and model

Given a set of labelled satellite images of size 𝑊 ×𝐻 , each one associated with a binary mask
representing the information about the burned/unburned pixels, the goal consists in training
a classification model that can then be used to predict the class label (burned/unburned) for
all pixels of new images, i.e., we are interested in training a model that solves the semantic
segmentation task.

Previous works (e.g., [20]) addressed this problem using convolutional neural networks, while,
in this paper, we exploit a vision transformer model called SegFormer [6]. We decided to use
this model because it can have fewer parameters, be computationally lighter and more noise
resistant than U-Net [7] and other vision transformer architectures. Looking at the SegFormer
architecture, we can notice it is different from other vision transformers because of (1) the
hierarchical encoder that outputs multiscale features and (2) the absence of positional encoding.
It is also important to note the output size is not equal to the input size, so it is necessary to
upsample the output images. We choose to use bilinear interpolation according to the original
implementation. SegFormer was designed specifically for semantic segmentation, optimizing
the computationally expensive parts. In Table 1 we report the number of parameters of different
instances of SegFormer and U-Net. Section 4 quantifies their impact on the quality of the
predictions.

Table 1
Models comparison by number of parameters (expressed in millions).

SegFormer-B0 SegFormer-B1 SegFormer-B2 U-Net SegFormer-B3 SegFormer-B4 SegFormer-B5
# parameters 3.8 15.9 27.5 31.0 47.3 64.1 81.4



The first approach that we used to address the burned area identification problem consists in
finetuning a pre-trained SegFormer on our task providing as input 𝑊 ×𝐻 labelled images of
burned/unburned areas. Then, we apply the trained model to new images to perform predictions.
Furthermore, we explored a second approach which we called Crop&Recompose, in which the
training phase was done on images of size 𝑁 × 𝑁 , being 𝑁 smaller than the reference size
𝑊 × 𝐻 , i.e., 𝑁 ≤ 𝑊 and 𝑁 ≤ 𝐻 (to be more comfortable with calculations we choose 𝑁
submultiple of 𝑊 and 𝐻). The second solution was proposed to verify the positive or negative
impact of smaller patches during the training phase of SegFormer model in terms of precision
of the predictions. In the second case we have smaller crops, and hence less context, but more
images (in terms of images analyzed by the network at training time). However, the final goal
consists in segmenting the original images of size 𝑊 × 𝐻 , thus requiring recomposing the
output to match the original input. The model is trained on smaller images of size 𝑁 ×𝑁 using
the same architecture discussed before. Then, we apply the following approach to segment the
new images, which are of size 𝑊 ×𝐻 :

1. The original image of size 𝑊 ×𝐻 is cropped into 𝑀 patches of size 𝑁 ×𝑁 ;
2. The 𝑀 new images are passed through the model to perform the predictions;
3. The output composed of the predictions for the 𝑀 images is recomposed into a single

prediction/image of size 𝑊 ×𝐻 .

Losses. Different loss functions were evaluated. To address the unbalanced problem of burned
area delineation, we initially considered the dice loss and then we explored the possibility to
use compound losses to reach a better stability point. In particular, we evaluated (i) the Dice
loss, (ii) the Focal Loss, and (iii) the DiceFocal loss, a compound loss consisting of the former
two combined.

4. Experiments

4.1. Experimental settings

4.1.1. Dataset

We adopted an open dataset [27] of satellite imagery consisting of several areas of interest
(AoIs) spread mainly across Europe. Data is of variable resolution, up to 5000x5000 pixels. The
dataset delimits burned areas with a discrete severity level, ranging from 0 (undamaged) to 4
(completely destroyed). It is composed of images acquired from Sentinel-2 in combination with
data provided by Copernicus Emergency Management Service, which contains manually and
semi-automatically annotated damage severity maps of burned regions hit by past wildfires.
Each Sentinel-2 acquisition has 12 channels. The dataset contains post-fire images of 73 different
AoIs, which were aggregated in 7 different folds according to their geographical position. We
choose to assign as name a color arbitrarily. For training, validation, and test we adopted
the folds reported in [27]. In this paper, we explore the burned area delineation problem and
consequently we binarize the target labels into unburned/burned classes, accordingly to our
problem statement. As such, all values in range [1, 4] were encoded into the burned class. We



Figure 1: Left: distribution of the percentage of burned pixels per image. Right: distribution of the
percentage of burned pixels per image for each fold.
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(b) Complete dataset: percentage of burned pixels per im-
age for each fold
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(c) Images with at least one burned pixel: distribution of
burned pixels per image (%)
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(d) Images with at least one burned pixel: percentage of
burned pixels per image for each fold

set the reference image resolution of 512× 512 (𝑊 ×𝐻) pixels, cropping bigger acquisitions
into several images due to hardware limitations.

Figure 1 shows the high imbalanced distribution of target labels. Many images contain few
pixels assigned to the burned class. Looking at the box plot, we can also see folds suffering from
higher imbalance, having the majority of samples below 0.5 in the complete dataset. Thus, we
exclude the cropped images without any burned pixel from the dataset, mitigating the class
imbalance. In the ablated dataset the coral fold is the most complete one with percentages from
0 to 1, while the others have the majority of the samples below 0.6 and lime even below 0.2.
The assumption is reasonable because we expect our system will be applied to areas we know
there have been wildfires (several public services usually provide this information).

The sole exception is the Crop&Recompose method, for which we train with the complete
dataset, whereas testing is performed with only crops containing at least one burned pixel.

4.1.2. Parameter and Experimental setting

The experiments were run on a single Tesla V100. We used the SegFormer implementation of
HuggingFace [28] with a pre-trained encoder on Imagenet-1K, but because the original model
has only 3 channels (RGB), we replicated the weights for all the 12 channels of the satellite
images 4 times cyclically. This allowed us to leverage the pre-trained model even if the number



Figure 2: U-Net and SegFormer-B3 with dice loss predictions for the same image of lime fold
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of input channels is different. The applied mapping (satellite image band, RGB channel) is as
follows: (B01,R), (B02,R), (B03,G), (B04,B), (B05,G), (B06,B), (B07,R), (B08,G), (B09,B), (B10,R),
(B11,G), and (B12,B).

The following augmentations were adopted for generalization with probability 0.5: random
rotation with an angle in [−50∘, 50∘], random vertical and horizontal flipping, and random shear
with an angle in [−20∘, 20∘]. Image resolution is set to 512×512 except for the Crop&Recompose
method, in which a size of 64× 64 was used. We used the AdamW optimizer as in [6] and the
starting learning rate was set to 0.001. A decreasing scheduler was chosen to reduce the LR by
a factor of 10 every 15 epochs in conjunction with an early stopping mechanism on validation
loss, with a tolerance of 10−4 and patience of 50 epochs. The maximum number of epochs is
200 and the batch size is 8.

4.1.3. Model tuning

While for the dice loss the weights are self-computed according to definition [29], focal loss
needs to be tuned for correct usage. Knowing the number of positive pixels is about 4 times
smaller than negatives, we chose 𝛼 = 0.2, while for 𝛾 we tested (1, 2, 5) values as suggested
in [30] and we selected 5. As for DiceFocal loss, we chose 𝛼 = 0.5. As for Crop&Recompose,
we trained using the DiceFocal loss with the previously selected parameters, considering both
the entire dataset and the filtered dataset, keeping only crops with at least one burned pixel.
According to our experiments, we achieved better results by including all the available crops,
even though the class imbalance is furtherly worsened.

4.2. Comparison

The results in Table 2 show how for each model the worst results are obtained in the lime and
grey folds, while the better ones are in the pink and purple folds. The lime fold performances are
due to the presence of volcanic areas that frequently create conditions similar to those caused



Table 2
Summary of test metrics for each tested model and loss

coral cyan grey lime magenta pink purple mean std

F1 score

Crop&Recompose MiT-B3 0.909 0.791 0.778 0.694 0.897 0.917 0.895 0.840 0.086
Dice MiT-B3 0.899 0.790 0.762 0.712 0.877 0.909 0.899 0.835 0.080
Dice U-Net 0.895 0.797 0.817 0.506 0.883 0.907 0.894 0.814 0.142

DiceFocal MiT-B0 0.898 0.787 0.755 0.671 0.884 0.927 0.908 0.833 0.096
DiceFocal MiT-B3 0.891 0.805 0.788 0.721 0.883 0.923 0.907 0.845 0.075

Focal MiT-B3 0.694 0.732 0.661 0.650 0.830 0.716 0.859 0.734 0.081
Otsu 0.678 0.644 0.410 0.151 0.655 0.535 0.374 0.492 0.193

Precision

Crop&Recompose MiT-B3 0.881 0.806 0.852 0.657 0.854 0.903 0.948 0.843 0.094
Dice MiT-B3 0.898 0.828 0.859 0.655 0.866 0.898 0.897 0.843 0.087
Dice U-Net 0.829 0.790 0.704 0.356 0.801 0.848 0.861 0.741 0.177

DiceFocal MiT-B0 0.876 0.810 0.864 0.613 0.879 0.926 0.935 0.843 0.110
DiceFocal MiT-B3 0.901 0.823 0.876 0.693 0.871 0.893 0.922 0.854 0.078

Focal MiT-B3 0.931 0.880 0.877 0.753 0.910 0.990 0.948 0.898 0.075
Otsu 0.626 0.558 0.275 0.084 0.518 0.453 0.235 0.393 0.198

Recall

Crop&Recompose MiT-B3 0.938 0.777 0.717 0.736 0.944 0.932 0.847 0.842 0.099
Dice MiT-B3 0.901 0.755 0.685 0.779 0.888 0.920 0.902 0.833 0.092
Dice U-Net 0.972 0.804 0.973 0.869 0.985 0.974 0.930 0.930 0.068

DiceFocal MiT-B0 0.920 0.766 0.670 0.742 0.888 0.929 0.882 0.828 0.101
DiceFocal MiT-B3 0.880 0.787 0.716 0.751 0.894 0.955 0.892 0.839 0.088

Focal MiT-B3 0.553 0.626 0.531 0.572 0.762 0.561 0.785 0.627 0.104
Otsu 0.739 0.761 0.803 0.801 0.889 0.653 0.905 0.793 0.087

by wildfires. The table also presents the performances achieved by a threshold-based technique
(Otsu) on the NBR2 index [20], demonstrating the superior performances achieved by deep
learning models.

The F1 mean results confirm the superiority of SegFormer in all its variants over U-Net,
nevertheless using a loss composed of dice and focal achieves better results compared to the
sole usage of dice loss and focal loss. MiT-B3 with DiceFocal loss shows an improved F1 score
(+3% than U-Net, +1% than MiT-B3 with dice loss), greatly increasing the precision (+11%
than U-Net, +1% than MiT-B3 with dice loss). U-Net achieves higher recall but lower precision
because it tends to overestimate the burned area.

The smallest model (MiT-B0) shows degraded performance compared to MiT-B3, but consid-
ering the low number of parameters (12 times less than MiT-B3), it can still be considered a
good competitor.

Analyzing the standard deviation, SegFormer achieves more stable results for precision and
F1 score. This trend is boosted by the use of the DiceFocal loss. The comparison in Figure 2
shows how it is more precise than U-Net, while the comparison in Figure 3 shows the effects
of the different losses and models on the same image, highlighting how the cloud presence
can generally negatively affect the prediction. The heatmap of the model trained with focal
loss underlines the uncertainty of its prediction, but when combined with dice loss the model
achieves better results, solving most of the underestimation problems. The benefits can still be
seen when switching to a lighter model, despite the lower performance.

The Crop&Recompose method performs worse than the SegFormer trained on 512x512 images
because the contextual information provided by 64x64 images is not sufficient to generalize
well enough in complex cases (see Table 2).



Figure 3: Outputs of different models on the same image of grey fold.
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5. Conclusion

In this paper we investigated how a novel vision transformer architecture, SegFormer, can be
a good substitute for known CNN-based architectures in the context of remote sensing and
burned area delineation, providing not only better results, but also better performance in terms
of computational cost and number of parameters. Furthermore, we analyzed the effectiveness of
several loss functions and different versions of the SegFormer architecture, achieving superior
results in terms of precision and F1 score with respect to state-of-the-art models.

As future works, we plan to apply self-supervised learning and multi-modal transformers on
the combinations of different satellite acquisitions, such as Sentinel-1 and Sentinel-2.
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