
A Cloud-based Continual Learning System for Road Sign
Classification in Autonomous Driving
Charalampos Davalas, Dimitrios Michail, Christos Diou, Iraklis Varlamis and
Konstantinos Tserpes

Harokopio University of Athens, 17778, Athens

Abstract
Artificial intelligence and deep learning have demonstrated highly promising results in challenging problems, such as
autonomous or assisted driving. One challenge in the integration of these solutions in real-life applications, is that they often
operate in a resource-constrained edge environment. Another important challenge is the ability of the AI system to adapt and
expand its abilities in a constantly changing environment. Constant changes could potentially cause significant deterioration
of a model’s effectiveness, a phenomenon called Catastrophic Forgetting. In this paper, we propose a Continual Learning
framework for efficient and continuous update of a road sign classification system for assisted or autonomous driving. Our
proposition considers the limitations of edge computing and utilizes a cloud infrastructure. Test results show that the our
proposition is capable of expanding an edge models knowledge in a stable manner.

Keywords
Machine Learning, Supervised Learning, Continual Learning, Catastrophic Forgetting

1. Introduction
Safe and effective operation of an autonomous vehicle
assumes that its driving mechanism perceives the envi-
ronment including nearby vehicles, pedestrians and other
obstacles, traffic and road signs, as well as the driver con-
dition. Using this information, the vehicle can take ac-
tion automatically, or hand-off control to the human pilot.
Pervasive AI can be beneficial in multiple autonomous
driving scenarios, can assist human drivers and at the
same time can learn from their feedback. In this work
we assume the scenario of a traffic sign detection module
that continuously provides feedback to the autonomous
driving system and the driver about the signs that appear
along a route, in various conditions. The heart of this
module is an online image classifier, which is trained,
using as feedback the reaction of the driver to its classifi-
cation decisions. For the implementation of the module
we assume a cloud-edge setup, in which a model on the
edge is used for inference. The model is periodically re-
trained on the cloud using i) a limited amount of data
that is being transferred from the edge to the cloud, and
ii) additional data that reside on the cloud that are used
for repairing and controlling the model performance in
order to avoid catastrophic forgetting [1].

Proceedings of the 1st International Workshop on Computational Intel-
ligence for Process Mining (CI4PM) and the 1st International Workshop
on Pervasive Artificial Intelligence (PAI), co-located with the IEEE
World Congress on Computational Intelligence (WCCI), Padua, Italy,
18–23 July 2022
Envelope-Open cdavalas@hua.gr (C. Davalas); michail@hua.gr (D. Michail);
cdiou@hua.gr (C. Diou); varlamis@hua.gr (I. Varlamis);
tserpes@hua.gr (K. Tserpes)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

For simplicity, we assume that the various traffic signs
correspond to three major groups (which we call “action
classes”) that ask for a different behavior from the driver
(or the auto-pilot): i) to stop the vehicle, ii) to decelerate,
iii) to keep a constant speed. Consequently, the classifier
output can either be directly transformed to an action
for the auto-pilot or become a recommendation for the
driver. Following the training approach that we described
above it is also possible for a generic traffic sign detection
module to adapt to the specific driver’s preferences, to
keep being trained on new, unknown or noisy signs, and
even to learn new tasks and their respective signs.
This simplified example and architecture that is de-

picted in Figure 1 can be expanded to more complex
cases, in which a pre-trained decision module can eval-
uate a situation (by analyzing sensor data on the edge)
and suggest an action to the driver (or take the action
directly). At the same time, it can take advantage of the
driver’s feedback and keep improving the decision mod-
ule. The architecture balances between the limited mem-
ory and computational resources of the edge, which are
used for input stream processing and inference, and the
unrestricted cloud resources that are used to periodically
re-train the model and avoid any drifts or performance
decays.

2. Related Work
In our previous work in [2] we combined a rehearsal
method for mitigating catastrophic forgetting [1] in a
resource-constrained, online setup while reducing train-
ing times and minimizing both memory and computa-
tional requirements. This work is mostly a proof of con-

mailto:cdavalas@hua.gr
mailto:michail@hua.gr
mailto:cdiou@hua.gr
mailto:varlamis@hua.gr
mailto:tserpes@hua.gr
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Figure 1: Overview of the proposed cloud-edge architecture for continual learning with traffic signs.

cept and we specifically use an artificial stream of data,
albeit without any focus on autonomous driving. An-
other approach is the use of Echo State Networks (ESN)
[3] for the purposes of continual learning in streaming
scenarios with Reservoir Computing.
In the bibliography, most approaches that focus on

computational efficiency in resource constrained envi-
ronments do not consider model updates using new data.
In [4], a setup of two lightweight networks is used for the
purposes of traffic sign classification at the edge with the
help of knowledge distillation. The work of [5] focuses
on efficient detection of traffic signs in a road setup but
does not include a continual learning process. In [6] a
complete smart city setup is proposed that uses image
detection and classification in IoT devices, however it
does not include provisions for frequent or continuous
model updates.

3. Traffic sign classification on the
edge

3.1. The autonomous vehicle scenario
As demonstrated in Figure 1 the traffic sign classifica-
tion scenario includes an autonomous vehicle, which is
a equipped with a forward-facing camera that sees what
the driver sees, an object detection module that is respon-
sible for detecting traffic signs from the camera input in
real-time and a pre-trained image classification module

that assigns a detected sign to one of the three action
classes (i.e. stop, decelerate, keep constant speed). Based
on the output of the classification module a different ac-
tion is recommended to the driver. The vehicle is also
equipped with a set of sensors that record the driver’s
reaction and a second classifier that assigns the driver’s
reaction into one of the three action classes.

The classification module performance is periodically
evaluated using as input the driver’s reaction and the
classifier output and any disagreements are recorded at
the edge.

When significant deviations are detected between the
two decisions, the system triggers a cloud-based model
update. In this case, the recorded cases of disagreement
are transmitted to the cloud, where the original model is
retrained. The retraining process employs additional sam-
ples (traffic sign images) in order to avoid catastrophic
forgetting. The updated model is fed back to the edge
and the same loop goes on continuously.

3.2. Edge Setup
As mentioned before, the edge device is used only for
processing the camera input and detecting the signs, and
for classifying the sign accordingly using the pre-trained
model. It also communicates with the cloud for send-
ing the cases of disagreement, i.e the new signs that
have been detected and classified but differently than the
driver’s response.

In the following, we assume excellent performance of

the module that interprets the driver’s reaction and the
sign detection module and we focus on the performance
of the traffic sign classifier. In order to simulate the oper-
ation of the classifier in a driving scenario, we create a
stream of traffic signs and feed them to the pre-trained
model. The stream of signs can take various shapes, from
a random selection of images from all “action classes”
to the more demanding setup of non-i.i.d images. For
the simulation of the driver’s experience we assume that
the human driver correctly guesses the label with a high
probability.

A major threat for online learning systems is the grad-
ual or sudden changes in the distribution of samples, or
the appearance of new samples from different classes or
tasks. This is called concept drift [7] and can be handled
by early detection of the change and retraining of the
model, or by constantly retraining the model with some
offline or past knowledge. A Drift detector is a mech-
anism that can assist in the former case, by providing
an alert when two output sources are diverging accord-
ing to a specific statistical model. These changes can be
abrupt or gradual depending on the context and there
are different drift detectors depending on the situation
[8]. The drift detector can be adjusted to check at peri-
odic time intervals and activate a drift signal only when
disagreements occur. In our scenario we use the ECDD
drift detector [9] due to its simplicity and its ability to
detect changes quickly.

4. Model re-training on the cloud
Complementing the edge setup that is shown in Figure
1 is the cloud infrastructure, where the retraining of the
image classification model takes place. Each time the
driver disagrees with the output of the classifier on the
edge, the respective sign images are stored in a buffer. In
this setup the drift detector uses both the driver reactions
and the model inference in order to keep statistics of the
disagreements between the driver and the model. When
the drift occurs, the drift activator sends the alarm signal.
When the drift detector raises an alert, the buffer is being
transferred to the cloud where a more complicated deep
learning model, uses them for further training. Note
that we do not use the driver actions as labels due to the
aforementioned disagreements.
The large model on the cloud, also referred as the

annotator, is used only for inference and plays the role
of an oracle for the sign images that arrive from the edge.
It has already been trained with a large labeled dataset
that comprises an adequate variety of images and has a
much higher complexity than the model running on the
edge (more layers and nodes per layer). Thus, the large
model could not be trained on the edge due to edge nodes’
hardware limitations. For this purpose, another simpler

model, with the same architecture as the one running
on the edge is trained on the cloud, using as input the
correctly labeled images transferred from the edge and
a dataset which contains an adequate amount of refined
samples (baseline). The training samples are shuffled and
fed in batches in order to update the small model on the
cloud. The updated model is then used to replace the
previous edge model.

5. Experimental setup

5.1. Dataset
Our dataset is actually a customization of the Belgium
traffic signs [10] dataset. We split a subset of approx-
imately 1900 images from the original dataset in two
groups. The first, Baseline group 𝐵, comprises approxi-
mately half of the images that are good quality and are
used as a basis for pretraining and/or repairing the edge
model on the cloud.
The Stream group, 𝑆 comprises the remaining images

which include lower quality images that may appear
with angle distortion, low-light, graffiti or discoloration.
These are used to populate the stream of images that
arrive to the edge model. In both cases the baseline and
stream datasets have been selected manually to simulate
the difference between high quality images that are used
for model training, vs the lower quality images that often
appear in practice.
Three labels (0,1 and 2) have been assigned to each

image, that correspond to the correct action. Label 0
corresponds to no action, allowing the driver to continue
with their current driving status, label 1 is deceleration
without stopping, and in label 2 the car must stall as
shown in Figure 2.
In order to evaluate we sample a small number of im-

ages (about 100) in held out datasets from both the Stream
and Baseline group. The evaluation by stream images can
indicate the model’s ability to learn from the stream data,
while the evaluation from the baseline portion can give
as a insight of how well a model can maintain its former
knowledge. In both cases the test images have been held
out, i.e. are not used in any way during training.

When navigating a road network, sign classes are not
”shuffled” e.g., one may frequently observe stop signs
(images with label 2) in an urban neighborhood however
these are rarely observed in high-speed roads. To simu-
late this we split the stream into ”tasks”, each containing
data from two classes only. The stream therefore consists
of consecutive blocks of 30 to 50 batches each, with every
batch containing 16 traffic sign images. Each block cor-
responds to one task only, thus the first block includes
images with labels in {0, 1}. Similarly the second and
third blocks include images with labels in {1, 2} and {2, 0}

Figure 2: Overview of the dataset.

respectively. This sequence of tasks repeats in a cyclic
manner.

5.2. Models
Training a model inside a vehicle is a challenging issue
due to the limitations that might apply in terms of com-
putational power and memory capacity.

Due to these conditions we chose to balance between
edge and cloud by using a very light network comprised
of one VGG block [11] at the edge for inference and
small scale training (if any). For the annotator, we use a
larger network made of the first four blocks of VGG-11
combined with the original fully connected layers. The
annotator model has been trained with the full set of
images for 50 epochs with a learning rate of 0.001. The
edge models have been pre-trained with the baseline
dataset for 50 epochs with a learning rate of 0.001. Edge
model retraining in the cloud takes place for 5 epochs
with a learning rate of 0.001

5.3. Metrics
In order to test the classification performance of the edge
model we use held-out datasets both from the Stream
and the Baseline image groups. We use the following
metrics:

• Stream Accuracy: Accuracy of the model evalu-
ated with the held-out dataset from the set 𝑆 of
Stream images. This metric measures a model’s
ability to learn from new samples.

• Baseline Accuracy: Accuracy of the model evalu-
ated with the held-out dataset from the set 𝐵 of
Baseline images. This metric shows the model’s
ability to maintain its effectiveness in classifying
samples that follow the same distribution as the
training samples (i.e., its ability to avoid catas-
trophic forgetting).

The edge model is evaluated at each time step using
both metrics.

6. Results
The proposed Dynamic Edge-Cloud method is compared
against the following baselines:

• Static Edge: A static, pre-trained model, which is
only used for inference.

• Driver-based Edge: A model which is trained only
with the driver actions as labels. The model
is trained at the edge for every time step. Pre-
training takes place only once in the beginning
and is optional, we use a learning rate of 0.01
for driver-based edge training since we need fast
adaptation to the new data in the online setting.

We evaluate the performance of the three approaches
(proposed and the two baselines) in three different sce-
narios, which are discussed in the following sections.

Note that blue triangles indicate when cloud retraining
has been triggered by a predefined temporal threshold
and not due to the activation of the drift detector. Red
stars indicate time-steps when cloud retraining was trig-
gered by the drift detector.

6.1. Perfect Driver - Pre-trained Model
Test

This scenario assumes that the driver never makes a
mistake and the model on the edge has already been pre-
trained using the baseline dataset. It demonstrates how
a driver, an edge model and the cloud infrastructure can
interact with each other. The respective results in Figures
3a) and 3b) show that the proposed method quickly out-
performs the two baselines, both in terms of the Stream
and Baseline held-out datasets. Compared to the “Static
Edge” model, the proposed method uses additional im-
ages for training as these become available. On the other
hand, the “Driver-based Edge” uses the same data as our
method, however it achieves lower performance due to
catastrophic forgetting, since the stream data is non-i.i.d.

6.2. An occasionally incautious driver
with a pre-trained model

The second scenario evaluates the ability of the proposed
mechanism, even when it receives false feedback from
the driver.
The driver may respond in the wrong manner with a

predefined error ratio (i.e. 15% in this case) and the most
common mistake being the disregard of a traffic sign. For
this reason we have created a pseudo-random function
where the driver assigns the label 0 in a traffic sign where
an action is required (i.e. halt or decelerate). Figures 4a)
and 4b) show that the proposed method is fault-tolerant
even in the case of a incautious driver, thus providing

a)

b)

Figure 3: a) Stream accuracy and b) Baseline Accuracy for
the best case scenario, in which the driver always makes the
right decision. with 1) an edge without further training 2) an
edge model which trains with driver input and 3) cloud-edge
combination.

a reliable solution which can maintain and expand its
ability to classify.

6.3. Train a model from scratch with a
perfect driver

The last scenario focuses in training an edge model from
scratch. In this occasion, we assume that the driver is
a professional and that the pre-training phase has been
omitted. The objective is to see the difference between
training instantly on the edge while having only the
driver responses versus the cloud-edge framework. Note
that in the case of the Driver-based edge, we never use
the baseline dataset, therefore there is no point of mea-
suring Baseline Accuracy. Figure 5 illustrates the Stream
Accuracy for the three methods. Despite the fact that
the Driver-based edge will work instantly on improving
the edge model, it can be quite unstable whereas the
proposed method provides reliable classification when
the edge decides to send the disagreement buffer in the
cloud.

a)

b)

Figure 4: a) Stream accuracy and b) Baseline Accuracy for
“incautious driver” case scenario with 1) an edge without fur-
ther training 2) an edge model which trains with driver input
and 3) cloud-edge combination.

Figure 5: Stream accuracy for “training from scratch” case
scenario with a) an edge without further training b) an edge
model which trains with driver input and c) dynamic cloud-
edge combination.

7. Conclusions
This work examined a framework for continual learning
on traffic sign classification systems as a part of assist-
ed/autonomous driving. Our suggestions use the cloud
infrastructure in order to ensure that a suggestion model
can expand its classification range while working under
constrained hardware specifications. The results show
that we can achieve high classification scores both on

terms of incorporating new knowledge and maintaining
a baseline standard of classification accuracy.

Acknowledgments
This work is supported by the “TEACHING” project that
has received funding from the European Union’s Hori-
zon 2020 research and innovation programme under the
grant agreement No 871385. The work reflects only the
author’s view and the EU Agency is not responsible for
any use that may be made of the information it contains.

References
[1] M. D. Lange, R. Aljundi, M. Masana, S. Parisot,

X. Jia, A. Leonardis, G. G. Slabaugh, T. Tuytelaars,
Continual learning: A comparative study on how
to defy forgetting in classification tasks, CoRR
abs/1909.08383 (2019). URL: http://arxiv.org/abs/
1909.08383. arXiv:1909.08383 .

[2] C. Davalas, D. Michail, C. Diou, I. Varlamis, K. Tser-
pes, Computationally efficient rehearsal for online
continual learning, in: Image Analysis and Pro-
cessing - ICIAP 2022 - 21st International Confer-
ence, Lecce, Italy, May 23-27, 2022, Proceedings,
Part III, volume 13233 of Lecture Notes in Computer
Science, Springer, 2022, pp. 39–49. URL: https://
doi.org/10.1007/978-3-031-06433-3_4. doi:10.1007/
978- 3- 031- 06433- 3_4 .

[3] A. Cossu, D. Bacciu, A. Carta, C. Gallicchio,
V. Lomonaco, Continual learning with echo state
networks, CoRR abs/2105.07674 (2021). URL: https:
//arxiv.org/abs/2105.07674. arXiv:2105.07674 .

[4] J. Zhang, W. Wang, C. Lu, J. Wang, A. K. S,
Lightweight deep network for traffic sign classi-
fication, Annales des Telecommunications/An-
nals of Telecommunications 75 (2020) 369 – 379.
doi:10.1007/s12243- 019- 00731- 9 .

[5] D. Tabernik, D. Skocaj, Deep learning for large-
scale traffic-sign detection and recognition, CoRR
abs/1904.00649 (2019). URL: http://arxiv.org/abs/
1904.00649. arXiv:1904.00649 .

[6] O. Ali, M. K. Ishak, Bringing intelligence to iot
edge: Machine learning based smart city image
classification using microsoft azure iot and custom
vision, 2020.

[7] G. Widmer, M. Kubát, Learning in the presence of
concept drift and hidden contexts, Machine Learn-
ing 23 (2004) 69–101.

[8] J. Lu, A. Liu, F. Dong, F. Gu, J. Gama, G. Zhang,
Learning under concept drift: A review, IEEE
Transactions on Knowledge and Data Engineer-
ing (2018) 1–1. URL: https://doi.org/10.1109%2Ftkde.
2018.2876857. doi:10.1109/tkde.2018.2876857 .

[9] G. J. Ross, N. M. Adams, D. K. Tasoulis, D. J. Hand,
Exponentially weighted moving average charts for
detecting concept drift, Pattern Recognition Letters
33 (2012) 191–198. URL: https://doi.org/10.1016%
2Fj.patrec.2011.08.019. doi:10.1016/j.patrec.2011.
08.019 .

[10] R. Timofte, K. Zimmermann, L. Van Gool, Multi-
view traffic sign detection, recognition, and 3d lo-
calisation, volume 25, 2009, pp. 1–8. doi:10.1109/
WACV.2009.5403121 .

[11] K. Simonyan, A. Zisserman, Very deep convolu-
tional networks for large-scale image recognition,
CoRR abs/1409.1556 (2014). URL: http://arxiv.org/
abs/1409.1556.

http://arxiv.org/abs/1909.08383
http://arxiv.org/abs/1909.08383
http://arxiv.org/abs/1909.08383
https://doi.org/10.1007/978-3-031-06433-3_4
https://doi.org/10.1007/978-3-031-06433-3_4
http://dx.doi.org/10.1007/978-3-031-06433-3_4
http://dx.doi.org/10.1007/978-3-031-06433-3_4
https://arxiv.org/abs/2105.07674
https://arxiv.org/abs/2105.07674
http://arxiv.org/abs/2105.07674
http://dx.doi.org/10.1007/s12243-019-00731-9
http://arxiv.org/abs/1904.00649
http://arxiv.org/abs/1904.00649
http://arxiv.org/abs/1904.00649
https://doi.org/10.1109%2Ftkde.2018.2876857
https://doi.org/10.1109%2Ftkde.2018.2876857
http://dx.doi.org/10.1109/tkde.2018.2876857
https://doi.org/10.1016%2Fj.patrec.2011.08.019
https://doi.org/10.1016%2Fj.patrec.2011.08.019
http://dx.doi.org/10.1016/j.patrec.2011.08.019
http://dx.doi.org/10.1016/j.patrec.2011.08.019
http://dx.doi.org/10.1109/WACV.2009.5403121
http://dx.doi.org/10.1109/WACV.2009.5403121
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556

	1 Introduction
	2 Related Work
	3 Traffic sign classification on the edge
	3.1 The autonomous vehicle scenario
	3.2 Edge Setup

	4 Model re-training on the cloud
	5 Experimental setup
	5.1 Dataset
	5.2 Models
	5.3 Metrics

	6 Results
	6.1 Perfect Driver - Pre-trained Model Test
	6.2 An occasionally incautious driver with a pre-trained model
	6.3 Train a model from scratch with a perfect driver

	7 Conclusions

