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Abstract
Argument Mining is an emerging research area in natural language processing; it is concerned with
extracting arguments and their structure from text documents. Deep neural networks and contextualized
word embeddings have been recently obtaining state-of-the-art results on various classification and
relation extraction tasks including argument mining, but they tend to learn spurious correlations and
to memorize high-frequency patterns possibly undermining systems’ predictions. In this paper we
illustrate how transformers-based models fine-tuned on argumentative student essays are biased (and
their performance are thereby affected) by their structure; additionally, we show that adopting data
augmentation by shuffling sentences may be helpful in reducing structure dependency and to improve
generalization.
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1. Introduction

Argumentation is a verbal and social activity aimed at increasing or decreasing the acceptability
of a controversial standpoint: it typically involves logical and linguistic competences going
well beyond syntax, semantics and pragmatics. Whereas the study of argumentation was
originally a philosophical subject, it is to date a comprehensive and interdisciplinary research
field: it involves many other research areas including communication science, linguistics,
psychology and computer science. Computational Argumentation (CA) is a recent research
field in computational linguistics that focuses on the automatic analysis of arguments in natural
language texts [1]. Until recently, the argumentation analysis has been mostly considered a
manual task performed through a skilled and time-consuming process; its scientific relevance
and high economic potential for innovative applications are making CA increasingly relevant.
A relevant branch in CA is Argument Mining (AM), that is the automatic extraction of the
argumentative structure of a text [2]: this typically includes the identification and classification
of the arguments, their components and the relations intervening between them.

State-of-the-art approaches in AM adopt supervised learning and deep neural networks, but
one of the main challenges is the lack of appropriately annotated corpora with argumentative
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information to train and test Machine Learning systems [3]. The creation of a corpus for AM is
indeed a difficult and time-consuming task, one requiring costly resources to obtain high quality
annotations, as delivered by expert annotators. Furthermore, the annotation process itself can
be subjective and to some extent controversial: even the annotations by expert annotators may
be affected by poor inter-rater agreement [4], thus menacing the learning process. Another issue
related to existing corpora is that they are typically small in size and domain-specific, thereby
making harder the learning task. To face these problems different solutions have been proposed
in AM, such as Transfer Learning (TL) and Cross-Corpora systems [5]. Another approach
that has been proposed to deal with data scarcity and imbalance is Data Augmentation (DA):
DA techniques can expand the amount and diversity of training examples without explicitly
collecting new data in the wild, but manipulating or perturbing existing ones, also helping
to reduce variance and overfitting in a simple and low-cost way [6]. Among classic and
unconditional text DA, two directions have been extensively investigated: adding noise through
text editing, for example by substituting/deleting words such as Easy Data Augmentation
(EDA) [7]; and back translation, translating the original text into other languages (one or more),
and then back to the original one [8]. To the best of our knowledge, none of these DA techniques
have been investigated in AM.

Deep Neural Networks and transformer-based architectures such as the Bidirectional Encoder
Representations from Transformers (BERT) [9] have been obtaining state-of-the-art results
on various classification and relation extraction tasks including AM, but they also tend to
learn spurious correlations and memorize high-frequency patterns that are difficult for humans
to detect but influence predictions. These may amount to frequent patterns or to extracting
specific linguistic structures that do not generalize well [10]. In this perspective, DA can act as
a regularization strategy, whereby overfitting is contrasted by shuffling the particular forms of
language and thus mitigating the influence of unwanted patterns.

Three steps are typically involved in the closed-domain investigation [1]:

– Argument Identification is concerned with categorizing argumentative and non-
argumentative sections in a given text;

– Argument Classification addresses the function of argument components, classifying them
into different types according to the linguistic model adopted;

– Structure Identification is to assign the relation type to directly connected arguments.

The main contributions of this paper are as follows: i) We adapted an existing BERT-based model
originally developed for Information Extraction in the Medical Domain to perform Argument
Identification and Classification; ii) We obtained results on par with state-of-the-art models,
and analyzed the different performances at various levels of training and tags; iii) We propose a
novel DA technique to reduce the dependency from the structure, and experimentally found
beneficial effects on the accuracy of the employed model.

The paper is structured as follows: Section 2 surveys related work that precedes and inspires
our research. Section 3 presents the dataset used in the experiments, along with its properties. In
Section 4 we introduce the BERT-based model, and report the results obtained in the Argument
Identification and Classification. In Section 5 we introduce the novel shuffling technique
exploited for augmenting data and show its impact on the argument classification task. Section 6
contains conclusions and an outlook on future work.
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2. Related Work

2.1. Background on Argument Mining

One pioneering approach to AM was proposed in the legal domain, aimed at argument identifi-
cation [11]. The first corpus of argumentative student essays of attested high quality, composed
by 90 essays, later expanded to 402, was compiled in [12]; on this basis AM applications could
be tested and their results compared [1]. Historically, research on models dealing with multiple
domain corpora required to solve some issues, such as the difficulty of merging such corpora,
which were often annotated based on different argumentation schemes [13]. In the early phase,
the three sub-tasks of AM (Argument Identification, Argument Classification and Structure Iden-
tification) were carried out separately; pipelines usually employed domain specific feature-based
models, and the argumentative structure was mostly considered as a tree.

In [14] sequence-to-sequence attention modeling was applied to structural prediction in
discourse parsing tasks, and a joint model was developed to extend this architecture to simulta-
neously address the link extraction task and the classification of argument components. This
work showed that joint optimization on both tasks is crucial for high accuracy results. The first
results on end-to-end AM in student essays using a pipeline approach were presented in [15];
they also proposed a novel notion for scoring metrics specifically tailored for AM, that has been
referred to as ‘𝛼 level matching’ [16]. In particular, this notion allows to distinguish between
exact (100% level) and approximate (50% level) match. In the first case predicted and gold
components must have exactly the same spans, whereas in the 50% level they need to share at
least 50% tokens.

A trend in more recent AM approaches is to construct end-to-end models using contextualized
world embeddings. The first neural end-to-end model, jointly addressing all sub-tasks and
employing the Argument Annotated Essay Corpus (AAEC) was proposed in [16], and the
results obtained by their LSTM-ER model [17] lasted as state-of-art results until recently. A new
approach based on a modified biaffine dependency parsing was proposed by [18], by replacing
its embedding layer and BiLSTM layer with a pre-trained BERT encoder and was able to reach
a new state-of-the art in AM. The work in [19] showed that adding information about Part of
Speech tagging (POS), Chunking and using advanced deep learning techniques lead to results
favorably comparing with those obtained by state-of-the-art systems exploiting hand-crafted
features. Another relevant work adopting BERT and the transfer learning approach included four
corpora from different domains, including the AAEC, to construct a binary identification model
(“Argument”, “Non-Argument”) [20]. The approach introduced by AMPERSAND (Argument
Mining for PERSuAsive oNline Discussions) employs BERT to perform argument classification
and relation extraction, bringing together both micro-level (intra-argument relations) and macro-
level (inter-argument relations) models of argumentation [21]. Moreover, a neural transition-
based model has been developed to handle both tree and non-tree structured argumentation
schemes, and to incrementally construct an argumentation graph [22]. This model obtained the
best accuracy on the argument classification task, experimenting on AAEC data. An approach
to apply transfer learning across auxiliary AM corpora and to develop an end-to-end cross-
corpus model using multi task learning called Multi-Task Argument Mining (MT-AM) has been
introduced in [5]. This work obtained state-of-art accuracy for argument classification and
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relation extraction on AAEC data. Argument classification on ’middle school students’ (11-14
years old) essays is instead the focus of the work in [23]. However, such sort of essays has been
acknowledged as rather different from the university students’ essays that we are employing
in the present work because poorly compliant with argumentative conventions, which makes
such data more challenging and difficult to analyze.

Finally, a sentence rearrangement step was introduced in [24] to improve the quality and
consistency of the essay at the level of textual surface, to retain the original meaning of the
sentence and to track major claims, by reordering sentences, replacing pronouns with their
referents, and removing or replacing inappropriate connectives. This research provided evidence
about the potential to use well-written texts enriched with syntactic information, together with
noisy texts, to increase the size of AM training data. This work can be compared to ours, in
that we also investigate how to apply DA techniques with the purpose to mitigate the effects
of structural features, possibly undermining the classification task. One chief difference is,
nevertheless, that we do not employ deep semantic techniques (such as parsing and reference
resolution), but rather a shallow sampling approach.

2.2. Background on Data Augmentation

DA is a simple and low-cost technique that has been successfully applied in some areas of AI,
such as computer vision and speech recognition. Text Data Augmentation (TDA) was also
successfully employed in some NLP tasks such as text classification, question answering and
multi-turn dialogue [25]. More specifically, it has been used for classification problems where
class boundaries are learned from label assignments [26], similar to the argument mining tasks.
DA has been largely employed in low-resource tasks and domains, to tame data scarcity and
imbalance, and has been employed as a regularization strategy [6]. As mentioned, AM corpora
often suffer from lack of data, and models tend to overfit a particular domain or structure;
DA has thus been profitably applied in tasks such as sequence tagging, parsing and dialogue
systems.

There are essentially two classes of (TDA): classical TDA, also called unconditional, includes
rule-based methods that have been applied in NLP without the use of neural generative methods,
such as back translation [8] or text editing. EDA is a good example of this lexical technique,
consisting of four simple but powerful operations of token-level random perturbation: synonym
replacement, random insertion, random swap and random deletion [7]; EDA obtained good
results in text classification tasks using small datasets, but it can also easily interface with pair-
wise classification, extractive question answering, abstractive summarization, and chatbots [26].
Another class of DA methods is concerned with conditional neural text generation, that can be
used to create new text or counterfactual examples [27].

Notwithstanding its merits, to the best of our knowledge DA remains largely unexplored in
AM. It was used in multilingual AM, where the original English training data were augmented
through machine-translated data of other languages: results show that this approach may be
helpful in tracking the stance of the argument towards the topic [28]. The same study shows
that for evidence detection (evidence relevant to the topic), adding data from the target language
along with related languages also improves performances.
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Figure 1: The general structure of an essay. In a linear perspective there are non-argumentative
units (blue square) and argumentative components: Major Claims (MC), Claims (C) and Premises (P).
Relations are represented as solid (support and for) and dashed (attack and against) arrows. Figure
borrowed from [16].

3. Dataset

Similar to most surveyed literature, we used the AAEC [1], which contains university level
student essays annotated with argumentative information at the token-level. An essay is a
structured text divided into paragraphs, where a specific and controversial topic is discussed; it
typically begins with an introduction, followed by a series of body paragraphs and ends with a
conclusion. Based on this structure, Stab and Gurevych [1] developed annotations guidelines to
deal with these types of text and chose three argument components:

1. Major Claim: the stance of the author with respect to the essay’s topic;
2. Claim: a statement that are either directly for or against the major claims;
3. Premise: a statement giving reasons for claims or other premises and either support or

attack them.

Such components are then structured as a tree and connected by appropriate relations. Relations
follow a precise structure in this model: we have outgoing relations (ORs) and incoming relations
(IRs) that link the various components. Each premise has one OR and none or several IRs,
e.g., coming from further premises. A claim may have one or more IRs coming from different
premises and one OR going towards the major claim, which in turn exhibit one or more IRs
but no ORs. The relation of each argument to the major claim, or the direct relation between a
claim and the major claim is indicated by a stance attribute which can either be for or against,
while the relationship between two premises or between a premise and a claim is marked
either as support or attack. The dataset consists of 402 essays, spanning over 7, 116 sentences
divided into 1, 833 paragraphs. Regarding the argument components, 6, 089 instances have
been annotated, where 73% are premises, 18% claims and 9% major claims. Additionally, 5, 338
relations have been identified, where 68% are support and 4% are attack relations while 23%
are for and 5% are against relations.

The argumentation structure related to a claim (i.e., premises either attacking or supporting
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Figure 2: Example of an essay from the AAEC with argument components annotated. Major Claims
are highlighted in red, Claims in blue and Premises in green.

it) is completely contained within the paragraph including that particular claim. For this reason
some approaches perform the predictions at the paragraph-level instead of essay-level. Which
of the two methods is better is however controversial and may depend on the model. Another
important issue relies to the fact that arguments do not necessarily cover an entire sentence.
Stab and Gurevych [1] identified some preceding text units, called "shell language", that can help
recognizing the argument components and their type, but should not be marked as arguments.
Furthermore, a sentence might include more than one argument component. They also found
that this shell language can be very useful to identify the boundaries of argument components.

The general structure of an essay is shown in Figure 1 [16]. The argumentative components
can be reconstructed in a tree structure. Here solid arrows represent support and for relations
and dashed arrows represent attack and against relations. In a linear perspective an essay can be
seen as a sequence of non-argumentative units, represented as dark blue squares, and argument
components. Since there may be several major claims (typically two), each claim potentially
connects to multiple targets, violating the tree structure. However, there are some tricks one
can use to uniquely reconstruct a tree. Since all major claims within an essay are considered to
be equivalent in meaning, they can be treated as a single special root node [16].

Figure 2 shows an example of essay from the AAEC where argument components are anno-
tated.

4. Experimentation

In this Section we report the results of a preliminary experimentation on Argument Identification
and Classification.

Both Argument Identification and Argument Classification were addressed by exploiting
an existing library originally devised for information extraction in the medical domain [29].
This model was originally conceived to extract named entities from clinical texts, framing the
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I firmly believe that we should attach more

importance to cooperation during primary education .

Figure 3: The output of themodel for the sentence I firmly believe that we should attachmore importance to
cooperation during primary education. Here the token we is marked as the beginning of an argumentative
unit, followed by the subsequent tokens. The full stop is classified as not belonging to the unit.

problem as a span detection task. Considering the similarity between the problem for which this
model was designed and the task addressed in our experiments, and also given the versatility of
the library, we fine-tuned for 15 epochs the model (using an early-stop condition on 5 epochs)
on both Argument Classification and Argument Identification by opting for BERTbase [9].

Data representation: BIO labelling. We cast both Argument Identification and Argument
Classification to span classification problems: that is, we aim at detecting the boundaries of
each argumentative unit within the essays. We employed a sequence labeling strategy using the
BIO labeling schema [30]: each token in a sentence is labeled with one of the B-I-O tags, where
B indicates the first token of the argumentative unit, I is used to label tokens within a unit,
and O marks tokens that do not belong to any argumentative unit. The adopted model allows
to reshape the problem as token classification task that, given a sentence 𝑊 = 𝑤1𝑤2 . . . 𝑤𝑛,
amounts to labeling each word 𝑤𝑖 with one of the B-I-O tags. Figure 3 reports an example of
the system output for the sentence from Figure 2. Considering the example, we can see that the
token we is correctly tagged as the beginning of the new argumentative unit, while the token
education is labeled as the last token within the same unit.

Given that we are interested in dealing with both tasks with the same architecture, we
devised two different sets of tags according to the task definition. More precisely, for the
Argument Identification task we adopted the classic B-I-O tags during the training to identify
the boundaries of each argumentative unit regardless of its type. At test time, in addition to the
classic B-I-O tags, we also employ an ‘A’ tag (to arguments, and thus including both B and I tags);
however, not being part of the B-I-O labels, this is only a metrics to assess the accuracy of the
system, and not actually part of the B-I-O encoding schema. Since the Argument Classification
task requires to recognize different unit types, we adopted a different set of tags: here, extending
the B-I-O tags logic, each token may be labeled with [B,I]-MC, [B,I]-C, [B,I]-P, or O tags for
Major Claim, Claim, Premise or Other, respectively. At test time, similar to the identification
task, we also use a synthetic (or compressed) labeling representation, including 4 tags instead
of 7, to grasp the ability of the system to categorize components independently of B and I.

Data Partitioning. We employed a BERT-based classifier, and the experiments were carried
out in 5-fold cross-validation. For the identification task we used three different training
schemes: at sentence-level, at paragraph-level and at essay-level, while during classification we
only trained at the paragraph and essay-level.
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Table 1
Results of experiments in the Argument Identification task, performed at the sentence, paragraph and
essay level. For each experimental setting columns report Precision (P), Recall (R), their harmonic mean
F1(P,R), and accuracy (Acc.).

(a) Results at sentence, paragraph and essay level. Best
results for each metric and for a given tag are
marked in bold, for example, considering the Preci-
sion (P) on the I-tag, the highest score is obtained
by the essay-level identification while the best pre-
cision for B-tag is obtained at sentence-level. This
means that for each metrics we found four best re-
sults (one for each tag). The dashed line separates
the scores obtained with the B-I-O tags and the syn-
thetic A tag.

Level Tag P R F1 Acc.

Sentence

B-tag 74.27 86.42 79.85 98.17
I-tag 89.83 92.10 90.91 88.04
O 82.92 75.43 78.76 87.61
A 89.74 92.76 91.18 87.61

Paragraph

B-tag 73.16 89.41 80.44 98.18
I-tag 92.91 94.41 93.64 91.66
O 88.64 82.69 85.52 91.46
A 92.63 95.28 93.92 91.46

Essay

B-tag 72.34 89.96 80.18 98.13
I-tag 93.53 95.47 94.48 92.73
O 90.98 83.98 87.33 92.60
A 93.20 96.39 94.76 92.60

(b) Comparison against the state
of the art.

Model F1

CRF ([1]) 86.70
ACD ([19]) 88.70
LSTM-ER ([16]) 90.84
Wambsganss et al. ([20]) 85.19
ours 87.33

Evaluation Metrics. We assessed Argument Identification results through Precision, Recall,
Accuracy and F1 score, that are standard Information Retrieval metrics. In Argument Identi-
fication these are computed by counting true positive, true negative, false positive and false
negative at the token-level, while in Argument Classification we also used the ’𝛼 level matching’
method proposed in [15], considering matching of spans (instead of tokens); we only considered
Precision, Recall, and F1 score as evaluation metrics. The corpus is quite imbalanced, and thus
Accuracy is not so meaningful. This approach is coherent with surveyed literature [16, 5], and
involves considering both exact and approximate (over 50%) matches. In this setting, two text
spans 𝑖 and 𝑗 are considered an exact match if they have exactly the same boundaries, whereas
they are considered as an approximate match if they share over half tokens. This more lenient
evaluation metrics is customarily used also to assess human beings’ agreement, which is not
always full in complex tasks, such as the present one [15].
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4.1. Argument Identification

Our results in the Identification task are presented in Table 1. Results tend to improve as the
granularity of training data becomes rougher, that is from the sentence-level to the essay-level.
The reason is probably due to the fact that paragraphs and essays contain some complete
arguments, while sentences do not (or equivalently, arguments seem to often span across
sentences). But paragraphs can show different behaviors and roles within an essay: for example,
the first and last paragraph generally contain fewer argumentation elements, or none.

Table 1b reports a comparison with results from the literature: our F1-score has been computed
as the arithmetic mean among B-I-O tags, as in [1]; and best results are reached at the essay-
level. (please refer to Table 1a). The ‘A’ tag measures whether the argumentative units (without
distinction between B and I) were correctly discriminated from the not argumentative units.

4.2. Argument Classification

As earlier mentioned, this task is to recognize different unit types and mark them as Major
Claim, Claim, Premise or Other. We did not perform the Argument Classification in a pipeline:
rather, the Argument Classification task was performed independently from the Argument
Identification, using the same BERT-based model directly for the classification. Furthermore,
we adopted the BIO notation with 7 labels, and the more synthetic notation with 4 labels (that
is, without distinction between B and I tags).

Results in the Classification task are provided in Table 2. In Table 2a and Table 2b we report
results for the training at paragraph-level, which leads to the best results in general, while in
Table 2c we also reported the averaged F1 score at essay-level for comparison (we averaged
using the 4-tags notation). More specifically, Table 2a shows the results obtained using BIO tags
for each component (such as MajorClaim B-tag or MajorClaim I-tag) and also using synthetic
tags (such as MajorClaim tag). In the first case we have 7 labels: B and I for each of the three
components and the O component, while in the second case labels reduce to 4 since we do
not distinguish between B and I. Results for the approximate and exact match are reported in
Table 2b. From these sets of results, we observe that claims are more difficult to identify, maybe
because, compared to the other components, they exhibit an higher degree of variability in
the essay structure. When the training is performed at the paragraph-level, however, accuracy
significantly increases in respect to the setting in which the training is performed at essay-level.
Paragraphs may vary in length: hence at essay-level it may be harder to learn high-frequency
positional features related to claims within an entire essay. Finally, in Table 2c we provide a
comparison with other baselines found in literature. Since models have been trained in different
perspectives (basically, at essay- and paragraph-level), we also report information on training
to allow for better comparison.

4.3. Argument Identification through Classification

Finally, as customary, we also performed Argument Identification through Classification. In
this case we carried out Argument Classification, and then mapped the tagged classes onto the
two required in the Identification task. This technique results in an improvement of the results
on the Argument Identification, for both A and O classes, as illustrated in Table 3. Experiments
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Table 2
Results on the Argument Classification Task.

(a) Accuracy at token-level (paragraph-level
training). The dashed line separates the
scores obtained with the BIO tags (7 in
total) and the synthetic tags (4 in total).

P R F1 Acc.

MajorClaim B-tag 34.17 61.07 43.67 99.18
MajorClaim I-tag 69.41 68.39 68.59 95.58
MajorClaim tag 67.96 70.61 68.97 95.18

Claim B-tag 31.01 58.16 40.35 98.20
Claim I-tag 59.49 55.93 57.39 87.99
Claim tag 58.09 58.30 57.96 86.88

Premise B-tag 59.70 80.37 68.47 98.05
Premise I-tag 86.48 87.02 86.71 88.37
Premise tag 85.97 88.17 87.02 87.84

Other tag 89.60 84.51 86.95 92.28

(b) Accuracy at 𝛼-level 50% and 𝛼 100% (paragraph-
level training).

𝛼 50% 𝛼 100%

P R F1 P R F1

Major Claim tag 83.82 72.99 77.81 82.89 52.66 63.90
Claim tag 68.37 59.65 63.44 67.39 46.67 54.69
Premise tag 91.28 86.46 88.76 90.08 70.19 78.85
Other tag 97.72 94.05 95.85 97.68 89.42 93.36

(c) Comparison against the state of the art. For each model at stake we
report whether it was trained at the paragraph-level (par), or at the
essay-level (ess).

Models
F1 (Precision and Recall)

Token-Level 𝛼-Level (50%) 𝛼-Level (100%)

ILP (par) [1] 82.60 73.35 62.61
Potash et al. (par) [14] 84.90 - -
Mensonides et al. (par) [19] 72.57 - -
Bao et al. (par) [22] 88.40 - -
Morio et al. (par) [5] 86.82 - 76.48
Morio et al. (ess) [5] - - 76.55
LSTM-ER (par) [16] - 77.19 70.83
LSTM-ER (ess) [16] - - 66.21
STagBLCC (par) [16] - 74.08 66.69
STagBLCC (ess) [16] - - 63.23
Wang et al. (par) [31] - 76.7 69.3
ours (ess) 72.06 79.09 63.79
ours (par) 75.22 81.47 72.70

where training was conducted at paragraph-level show that the accuracy in identification does
not benefit from the higher accuracy in the classification task, while the training at essay-level
leads to an improvement. This trend is also confirmed in the binary argument identification we
performed before: at essay-level, almost all metrics improve for O and A respect to the classic
argument identification.

Thus a more fine grained argumentation analysis aimed at identifying the argument com-
ponents, paired with essay-level training, also improves the general identification (regardless
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Table 3
Accuracy on Argument Identification through Classification: we report precision, recall, their even
harmonic mean (F1 score), and accuracy, along with the adopted training strategy (ess: at the essay-level)
and (par: at the paragraph-level).

Tag P R F1 A

O Tag (Standalone AI) (ess) 90.98 83.98 87.33 92.60
O Tag (AI through AC) (par) 89.60 84.51 86.95 92.28
O Tag (AI through AC) (ess) 90.59 85.71 88.08 92.96

A Tag (Standalone AI) (ess) 93.20 96.39 94.76 92.60
A Tag (AI through AC) (par) 93.34 95.61 94.50 92.28
A Tag (AI through AC) (ess) 93.89 96.12 94.99 92.96

of argument types). This is probably due to an improved capacity to identify major claims in
introduction and conclusion, since now they are explicitly fed to the system with a proper label.
This was in fact one of the major sources of errors in Argument Identification.

To sum up, we observe that testing at the essay-level seams to produce improved results for
the argument identification, while the paragraph-level for the argument classification.

5. Data Augmentation Through Shuffling

In what follows we report the results of a preliminary experimentation concerning a novel DA
technique, specifically performed through sentence shuffling.

By analyzing the misclassified sentences in the previous experiments, we realized that a
fraction of such cases were located in recurrent positions in the essays. An hypothesis stemming
from this observation is that our model may have been misled by the structural patterns in the
input text, rather than focusing on the actual wording and the semantic content of the sentences
themselves. In particular, the identification of the major claim (MC) appears to be more difficult,
since the introduction and conclusion –where MC is typically located– show greater variability,
both in length and structure.

To test this hypothesis, we propose a novel DA technique based on the shuffling of the
sentences in the essay. We were of course aware that such process can be highly detrimental
to the argument classification task, since reordering statement units might yield as a result
an incoherent text containing wrong references and tangled connective expressions [32]. For
these reasons two different augmentation approaches were explored. In the open DA approach
sentences were shuffled at the essay-level, and moved all throughout the essay (in this setting
sentences may be moved also outside their original paragraph). On the other hand, in the
closed DA approach we implemented the shuffling only at the paragraph-level, thereby allowing
for more local variations (in this setting sentences cannot be moved outside their original
paragraph). In both cases, to systematically analyze how this method impacts on the argument
classification task, we have considered different shuffling steps: varying percentages of essays
were shuffled, in particular, we used a +10%, +20%, +30%, +40% and +50% incremental
augmentation. Only sentences in the training set were shuffled (test data were not altered),
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Figure 4: Absolute gain/loss of F1 in ordinates at varying levels of DA (from 0% to 50%), measured at 𝛼
100% on the argument classification task (training at essay-level). The zero values for each component
are MC: 52.46, C: 33.95, P: 75.29, O: 93.45.

and the training process was performed both at the essay- and paragraph-level; the results
were evaluated both through the 𝛼-100% and 𝛼-50% evaluation metrics, and using the same
cross-validation set-up to ensure the comparability to previous results. Furthermore, since the
open domain makes no sense when training is conducted at paragraph level, we employed this
setting only when training was conducted at essay-level.

Figure 4 illustrates the F1 gain/loss in the argument classification task by varying the percent-
age of shuffled sentences and measured with 𝛼 100%. In this setting the training was performed
at essay-level. The base condition is that employing no DA (the corresponding F1 values are
reported in the caption). Results for both open and closed approaches were recorded, together
with detailed results on each component (MC, C, P and O) on the left; a cumulative sum of all
differences between the augmented training and the base condition is presented on the right of
the Table. We note a beneficial effect of DA both in the open and closed DA (plots in the right
side of the Figure); but the closed domain ensures consistently higher accuracy. By training at
essay-level even the best DA approach (closed DA, at 50% DA) yields a F1 score of 68.99, which
is still significantly lower than the performance obtained by training at paragraph-level without
any DA (72.70). In other words, when training at essay-level, DA is always able to improve
performances for 100% 𝛼 level (compared to the case without DA), but this is not sufficient to
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Figure 5: Absolute gain/loss of F1 in ordinates at varying levels of DA (from 0% to 50%), measured at 𝛼
50% on the argument classification task (training at essay-level). The zero values for each component
are MC: 76.64, C: 55.65, P: 87.78, O: 96.27.

outperform the paragraph-level training.
Figure 5 illustrates the F1 gain/loss in the argument classification task by varying the percent-

age of shuffled sentences, with results recorded with 𝛼 50%. In this setting the training was also
performed at essay-level. In this case, the open approach seems to undermine the accuracy of
the system, even at a minimum DA of 10%. Using the closed DA and employing a small amount
of shuffling seems helpful to preserve the semantics of the inputs: in the conditions with 20%
and 30% sentences shuffled we obtained a small though significant improvement in accuracy
by applying DA. Such improvements were recorded on claims and major claims. Interestingly
enough, any level of open DA appears to be detrimental when evaluating at 𝛼 level 50%, while
it was not at 𝛼 level 100%. Somehow, open DA creates such a variability beneficial to refine the
exact match of some components, but it does not increase the general ability to find components
in the 50%𝛼 level setting. This might be due to the fact that the exact match yields absolute
lower figures which are easier to improve respect to the approximate match. More in general,
we observe that testing at paragraph (essay) level after having trained with DA at paragraph
(essay) level improves with respect to cases in which training did not make use of DA.

Figure 6 illustrates the F1 gain/loss in the argument classification task by varying the percent-
age of shuffled sentences and measured with 𝛼 100% and 𝛼 50%. In this setting the training
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Figure 6: Absolute gain/loss of F1 in ordinates at varying levels of DA (from 0% to 50%), measured at 𝛼
100% and 𝛼 50% on the argument classification task (training at paragraph-level). The zero values for
each component at 𝛼 100% are MC: 63.91, C: 54.69, P: 78.85, O: 93.36, while at 𝛼 50% are MC: 77.81,
C: 63.44, P: 88.76, O: 95.85

was performed at paragraph-level and we only tested the closed DA approach (in that shuffling
at essay level is pointless when the system is only trained on paragraphs).

For 𝛼 100% we obtain the best F1 score of 75.10 with 40% DA and for 𝛼 50% the best F1 score
of 81.83 is reached with 20% DA; higher levels of DA appear to be detrimental. By focusing on
the single components delta (graphs on the left) we can observe that some components (e.g.,
Major Claims) enjoy greater variability then others (e.g., Premises). In fact, higher percentages
of DA allow for the better classification of Major Claims, however, the overall performance
is worsened by an increased difficulty in Premises and Claims classification. Since DA was
beneficial at essay-level, we also expected them to be beneficial when training at paragraph-level.
In fact, using DA when training at paragraph-level lead us to the best results.

6. Conclusions

In this paper we adapted a BERT-based model to perform argument mining; this model obtains
competitive results on the standard tasks of argument identification and classification. We have
shown that training at essay-level is more suited for argument identification, while training at
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paragraph-level produces the best results in argument classification. We then used this model
to test a new model-free DA method, developed to mitigate the difficulty to deal with structural
variations in the essays during argument classification.

Our approach is based on shuffling sentences and we have explored two approaches: an Open
Domain (shuffling sentences within the whole essay) and a Close Domain (shuffling sentences
only within paragraphs) and we have experimentally verified that Closed Domain shuffling
always provides more accurate results. We have shown that DA techniques are always helpful
with the metrics considering exact matches (𝛼 100% condition); in 50% approximate match
there is an improvement in F1 score when shuffling is limited to 10-20% sentences. In general
we noticed that DA produces improvements in the results, especially in recognizing Claims
and Major Claims. Regards as argument classification, DA techniques paired with training at
essay-level are not enough to improve on the accuracy obtained by training at paragraph-level.
Conversely, DA also improves results obtained through models trained at paragraph-level,
leading to the best result of 75.10 (𝛼 100% and +40% DA) and 81.83 (𝛼 50% and +20% DA).
Reported figures favorably compare to state-of-the-art results.

Further research is indeed required to assess the robustness of this DA technique, to try to
refine shuffling techniques (e.g., by pairing shuffling with dependency parsing information), and
to perform experiments on multiple and diverse datasets. Additionally, further developments
may be envisaged aimed at applying differing levels of shuffling according to each component.
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