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ABSTRACT

The importance of incorporating metadata for data discovery,

provenance, resource management, and resource identification is

well established. The quality of metadata significantly improves

data decisions, inferences, resource reusability, and data mainte-

nance. With the increasing importance of data quality, metadata

is becoming more popular in resource management and analysis

and provides a solid foundation for monitoring data quality. To

achieve better data analysis, it is crucial to either obtain high-

quality and representative metadata or to improve the quality of

existing metadata as much as possible. To improve the quality

of existing metadata, this paper discusses and introduces “sanity

checks” that are quality operators for cleaning and enhancing

existing metadata in metadata files. Each quality operator tar-

gets a specific problem in a metadata file and tries to improve it

according to its definition.
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1 INTRODUCTION

Our research explores the role of metadata in various fields, such

as searching data in web repositories [1], schema matching [12],

data integration [7], and exploring data lakes [9]. However, the

metadata available in online repositories is usually of poor qual-

ity and scattered, leading to less than optimal use. To address

this problem, we define sanity checks called "quality operators,"

which attempt to improve metadata quality in metadata files. The

research identifies three categories of metadata files based on

their raw formats: (1) Low-quality files, (2) Good quality files, and

(3) No metadata files. This paper focuses on low-quality metadata.

In this research paper’s context, we focus on the first category,

i.e., low-quality metadata. Our research investigates how to im-

prove metadata quality and addresses specific quality issues in

metadata management. The goal of attaining metadata quality

is to ensure accurate and timely information for reusability and

comprehensibility [10, 14]. The metadata collection process is

messy and involves collection, extraction, inference, and profiling

to obtain high-quality metadata [11]. Low-quality metadata files

contain incomplete, incomprehensible, unorganized, and often

incorrect information that can lead to misinterpretation in data

analysis and other data-related tasks.

To better understand this, we surveyed to observe patterns and

the most frequent discrepancies in metadata files. We crawled

1578 metadata project files from the UKGov
1
to investigate po-

tential metadata quality issues. We then manually inspected each

project file and provided labels. During our manual annotation

1
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process, we encountered several inconsistencies in the crawled

project files. Based on the label occurrence, we then select the

following nine inconsistencies (every second file has these in-

consistencies) and try to improve them using quality operators.

Data file parsing details missing (file dialect), empty cells, and

empty blocks to serve human readability or due to missing values,

missing value’s property, e.g., email, file path, etc., missing prop-

erty’s value, e.g., email address, URL containing file path, etc.,

no domain information, generate attribute list, inconclusive file

names, andmissing directory information. Similar to UKGov
1
, we

observe the same problems with the majority of files in our other

datasets (Kaggle
2
, DataGov

3
). In Section 2, we describe these

problems and relevant quality operators in more detail. Table 1

lists the set of quality operators, where each quality operator

attempts to improve the aforementioned quality problems.

Please note that our system expects a spreadsheet as a meta-

data file. Hence, as a pre-processing step, we convert other file

formats, such as comma-separated files (CSV), JSON, XML, and

TXT, to XLXS to take advantage of the stylistic peculiarities of

this format and optimize the grid-based view for scanning and

enhancing metadata. It would be interesting to extend our ap-

proach to other file formats, such as CSV, JSON, XML, etc., in the

future.

This paper makes the following contributions:

• A set of quality operators for metadata cleaning.

• A systemMDClean, to automatically clean and enhance

available metadata.

• A wide range of experiments to validate MDClean and

its applicability.

The rest of the paper is organized as follows: Section 2 illus-

trates the workflow of the MDClean and explains its main mod-

ules. Section 3 presents the experimental evaluation of MDClean.

Section 4 discusses related work in the field of data cleaning for

diverse domains, and Section 5 concludes our study.

2 THE MDCLEAN PROCESS

First this section defines and differentiates between sanitized

and non-sanitised metadata and describes the problem state-

ment.Then, this section describes the quality operators and their

scope. Followed by the workflow of MDClean as shown in Fig-

ure1.MDClean takes a non-sanitized metadata file along with

a data file as input and outputs the sanitized metadata file along

with a meta metadata file.

Figure 1: The workflow of MDClean

2
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2.1 Non-Sanitized and Sanitized Metadata

Definition 2.1 (Non-Sanitized Metadata). Metadata with incon-

sistencies, such as missing properties, incorrect references, empty

blocks, which can be improved by applying quality operators.

Definition 2.2 (Sanitized Metadata). After applying quality op-

erators, the metadata we get contains a correctly computed at-

tribute list, enhanced metadata values, their properties, and in-

formation about the origin and parsing of the linked data file.

To sanitize metadata, we address two sub-problems. First, we

detect incorrect values or erroneous values, or missing values

that are in the metadata file but not near its counterpart, e.g.,

property{email} : value{bob@example.com}, and try to re-

move them in case of empty or impute the property or value near

the counterpart to clean metadata. Second, we add additional

information to the metadata file, e.g., missing parsing details for

the data file or missing attribute list information.

We now formally define our problem as follows:Given an input
metadata file with non-sanitized metadata, systematically apply
quality operators and produce an output metadata file containing
sanitized metadata.

2.2 Scanning and Detection

This section discusses the details of the scanning and detection

module that supply the processed metadata file for quality opera-

tors. The scanning and detection module of our quality operators’

system operates hand in hand with each other. The expected out-

come of the scanning and detection module is finding the file

layout by scanning and detecting file content.

2.2.1 Scanning Metadata File. The scanning module recog-

nizes data types in metadata files by generating a color-coded

image of cell contents. This helps identify what is available in

the file before cleaning. Each data type is assigned a color, such

as strings as purple and numbers as green. Annotated metadata

cells are then sent to the detection module.

2.2.2 Detecting Metadata File Content. The detection module

assigns labels to strings based on semantics on top of scanning

labels, such as description or email. It also improves the annotation

of empty cells from the scanningmodule. For example, it looks for

property and property value and changes the empty annotation

to a missing value annotation if one of the values from the pair

is missing.

2.3 Quality Operators

Table 1 lists the quality operators we introduced in this research.

A quality operator is a method that receives a detected meta-

data inconsistency as input, inserts new values or updates the

given inconsistent values, and outputs a set of values that are

of higher quality or more useful. Cleverly selecting and apply-

ing quality operators on metadata can improve the latter to a

cleaner state. The selected quality operators are meaningful for

the datasets we annotated and can be easily applied to other

domains due to their generalizability. Furthermore, we divide our

quality operators into two categories, (1) metadata cleaners and

(2) metadata enhancers. Metadata cleaner checks improve the

metadata by cleaning the value or removing redundant elements

such as empty values or empty blocks. In contrast, metadata

enhancers add value to existing metadata by inserting neces-

sary details, e.g., inserting domain inference or adding a missing

attribute list.

2.3.1 Dialect Details. CSV file dialect detection is a well-

known problem in the industry
4,5,6

and academia [2, 15]. Since

our research task is not a parsing problem, we use the state-

of-the-art parsers
4
[2, 15] in dialect detectors for this quality

operator implementation. The dialect detection quality operator

has primarily two functions, the first is to search for the label that

indicates information about the file dialect within the metadata

file, and we get this label from the detection module. If no label

is detected by the detection module, it is assumed that the dialect

information for passing the data file is missing. Then, the second

task is to infer the dialect information using an ensemble method

and add the details about the file dialect to the sanitized metadata

file. As mentioned before, we make use of state-of-the-art dialect

detectors for the dialect ensemble (see Figure 2). Since we have

different data file formats, as a preprocessing step, if a data file is

not CSV, the module first converts the file to the extension (.csv)

and then sends it to these parsers since the parsers expect a CSV

file as an input. The ensemble selects the dialect information by

passing the data file to each parser and selecting the most popular

of them all (majority vote ensemble). The ensemble returns the

file dialect details, which are then inserted into the metadata file.

Figure 2: Dialect detection ensemble

2.3.2 Trim Whitespace & Empty Blocks. the whitespace trim-

mer is a quality operator that detects and removes irregular and

consecutive whitespace frommetadata content. It scans for white-

space in different parts of the metadata, including neighboring

cells, to avoid removing important information. The trimmer

uses regex and defines classes for every operation it takes. It also

considers neighboring cells and evaluates if they are continuous,

interrupted, or span over multiple rows and columns. If a cell is

next to a detected metadata element, it is labeled as a missing

value rather than an empty cell.

2.3.3 Value’s Property Imputation. the metadata files in our

dataset are often empty or contain scattered metadata. Our meta-

data element imputation targets files with dispersed data and

aims to improve properties and values hand in hand. We detect

metadata properties and identify cells with valuable values but

no corresponding properties. Our quality operator scans file la-

bels for value’s property and property’s value tags and suggests

missing property names. We use KeyBERT, dictionaries, and a

link-text extractor to create a meaningful title, header, and subject

for the metadata value’s property. Finally, the sanitized metadata

file is appended with meta information.

2.3.4 Property’s Value Imputation. imputing missing values

in metadata files is a complex task. Traditional methods, such as

calculating column means, do not work for metadata. Two ap-

proaches are used in our research: property-targeted imputation

and manual imputation. In property-targeted imputation, the sys-

tem searches for relevant values related to the property for which

4
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# Quality Operators Category Description

1 Dialect Details Enhancer Detects and adds information about the file’s dialect

2 Trim Whitespace & Empty Blocks Cleaner Detects and removes extra whitespace

3 Value’s Property Imputation Cleaner Detects and adds property for a value

4 Property’s Value Imputation Cleaner Detects and adds value for a property

5 Domain Inference Enhancer Infer domain from the given textual description

6 Generate Attribute List Enhancer Extracts and adds the attribute information

7 Assign Meaningful File Name Cleaner Updates inconclusive file names

8 Self Directory Inference Enhancer Includes self directory for provenance

9 Other Directory Inference Enhancer Includes data file(s) directory for provenance

Table 1: Quality operators, their categories and description

a value is missing, and then evaluates all metadata elements with

complete values. The most relevant value is mapped against the

property based on relevancy scores calculated using keyword

analysis, data type information, and categorical transformation.

In manual imputation, the user adds metadata values against the

corresponding metadata element. The system adds a text label

manually for user readability next to the metadata value cell.

2.3.5 Domain Inference. our research proposes a quality op-

erator that uses natural language processing techniques to search

metadata files for dataset descriptions and other relevant infor-

mation. The operator operates on three use cases, identifying

and pre-processing potential resource description cells, extract-

ing keywords, analyzing them using n-gram combinations, and

assigning domain topics using the Zero-Shot Method. Case I

deals with metadata files containing descriptive text, footnotes,

or comments. Case II processes mixed descriptions containing

text, numbers, and hyperlinks. Case III allows users to add domain

informationmanually. The pre-processing pipelinemaintains and

records all changes made to the text, ensuring the comprehensi-

bility and readability of the metadata files.

2.3.6 Generate Attribute List. to handle metadata files that

lack attribute lists for datasets, our system uses relevant tags to

identify contenders for a given property during the detection

phase. In attribute list concatenation, we first identify a property

that describes or lists the attributes in a spreadsheet cell that

might be misplaced or dispersed. Then, the quality operator at-

tempts to check the attribute list in three cases, including adding

a new property and appending a list of attributes extracted from

the data file, searching for dispersed metadata values that could

be a list of attributes, and appending the attribute list extracted

from the data file when there is no potential list within the meta-

data file. The quality operator uses a string similarity check and

threshold of 60% to conduct a transformation cycle for cases

where lists are not an exact match.

2.3.7 Inconclusive File Names. it is necessary to have mean-

ingful file names because it is not only easy for humans to read

and understand what the file is about. Our system extracts incon-

clusive or non-representative metadata file names and updates

them with meaningful file names. It updates metadata file names

with a metadata prefix-domain inferred title - -date-file extension

suffix. This quality operator depends on the domain inference

check since file names should be representative and meaningful

for the reader.

2.3.8 Self Directory Inference. data scientists and machine

learning engineers often search data from open-source reposito-

ries to test their experiments. During this process, if the link to

the file source is missing, problems arise in tracking down the file

or citing the file source for copyright issues. This quality operator

ensures the source link is not lost during metadata collection.

When the metadata files are crawled, the system downloads the

metadata and data files and the web link information to get the

source information. The downloaded information is appended to

the metadata file as meta-meta data along with the retrieval date,

web link, time, type, and size of the metadata file. If the down-

load was bulk, i.e., more than one metadata file, then a unique

metadata file ID is added to meta-meta data in the file. For the

files that have already been downloaded without source links,

this quality operator cannot find the relevant information and

prompts the user to manually enter the path for the downloaded

file.

2.3.9 Other Directory Inference. this is similar to self-directory

inference but for the data files. This quality operator maintains

the information about the data files that were crawled with their

web source link, name, title, file size, file type, domain text (if

available), etc. Each metadata file could have one or more associ-

ated data files. In the case of one metadata file representing more

than one data file, we assign a unique metadata file ID and append

it to the directory information for data files. In this way, for a set

of files, the same metadata information can be reused for accessi-

bility, pre-processing, and analysis. Similar to the metadata file, if

the data files that have already been downloaded without source

links, this quality operator cannot find the relevant information

and prompts the user to enter the path for the downloaded file

manually.

3 ANALYSIS AND RESULTS

This section first presents the datasets we used, their description,

the necessary preprocessing steps, and the annotation process.

We then, in the following, evaluate the performance of our system,

(1) Evaluation queries, their scope, and performance on metadata

file. (2)Effects of quality operators on different file formats. (3)

Performance evaluation of quality operators. (4) quality operator

applicability on non-sanitized metadata files.

3.1 Datasets

To evaluate the performance of our system, we crawled datasets

from three open data repositories, namely: Kaggle (www.kaggle.

com), UKGov (www.data.gov.uk), and DataGov (www.data.gov),

and randomly selected a total of 1123 metadata files for our ex-

periments. Table 2 lists the datasets we used for our experiments.

To evaluate our system, we created a ground truth by annotating

every file in our collection. The annotation process was divided

into three sections: scanning, content detection, and cleaning. For

the scanning module, we manually labeled the layout based on

www.kaggle.com
www.kaggle.com
www.data.gov.uk
www.data.gov


Dataset

Source

Total

Files

Pre-

Processing

Misplaced

Metadata

MD Accessibility

Kaggle 375 91% Yes, mostly

dispersed, multiple files

(not in one place)

DataGov 374 35% Partially metadata inside files

UKGov 374 84% Yes, mostly

dispersed, multiple files

(not in one place)

Table 2: The Table lists the datasets we used to develop

and evaluateMDClean, and provides insights related to

the amount in percentage for metadata pre-processing,

misplaced metadata, and metadata accessibility.

data types, while for the detection module, we annotated seman-

tics on top of the layout. Finally, we annotated the cell values for

the cleaning module and inserted details such as dialect, attribute

list, and domain inference, while leaving missing property values

empty to avoid filling in false information.

3.2 Evaluation Queries

We developed evaluation queries to assess the quality operators

for metadata cleaning, comparing the results for sanitized and

non-sanitized metadata files. The queries assess the state of in-

formation available in the files and are listed in Table 3. Figure 3

shows the average query performance for both types of files. The

first query retrieves and compares dialect details, where non-

sanitized files perform better due to missing parsing details in

sanitized files. The third query compares irregular whitespace

blocks, where non-sanitized files have more blocks than sanitized

files. Overall, the query performance is better for sanitized files

generated by our system than for non-sanitized files. In cases

where the query cannot find information, it is because our quality

operator could not find the correct details, and the parser cannot

parse the input files accurately.

Figure 3: Evaluation queries performance on sanitized and

non-sanitized metadata files

3.3 Quality Operators on Different File Format

As mentioned above, we used data from different sources, and

each source has different file formats. To develop MDClean, we

use TXT, CSV, and XLSX file formats and convert TXT and CSV

file formats to XLSX. This experiment aimed to find out how

information from different file formats affects the applicability of

quality operators. We observed several aspects; the most impor-

tant is the amount and scope of metadata present in a file. It is

essential to understand that if metadata is present in a file, quality

Figure 4: Percentage changes by file format

operators can improve the readability and understanding of the

file. If this is not the case, our system can also insert properties

based on the underlying issues (see Figure 4).

3.4 Performance Evaluation of Quality

Operators

We used the manually annotated ground truth to evaluate the

performance of quality operators. Each metadata file is cleaned

based on two essential prerequisites: either the information was

present in the non-sanitized metadata file, or the information

could be derived based on quality operators. Figure 5 shows the

average accuracy score of quality operators across all files on all

three Kaggle, UKGov, and DataGov datasets.

Figure 5: Quality operator’s average accuracy score across

all files on all datasets

Non-sanitized metadata files of our datasets were missing the

dialect details of the data files. Our dialect detail quality operator

evaluated each file and used ensemble methods to extract the di-

alect information and append it to the metadata file. The average

accuracy across all files of all datasets of our quality operator

is 98%. The few cases where our approach does not determine

the correct dialect are due to the scope of our parser that we

use when parsing the CSV files to determine the dialect details.

The parsers worked perfectly for the Kaggle and DataGov files.

For UKGov, on the other hand, some of the files were messy and

contained multiple tables or broken dialects [8] that our parsers

could not repair and parse.

Deriving and adding properties and values to a metadata file

improves file quality, processing, and readability. The imputation
checks are also notable in their performance, with an average

accuracy of over 80%. These checks carefully inferred missing

properties from values. While for missing property values, the

quality operator looks across the file and tries to impute the

correct value. However, value imputation imposes its challenges,

and to overcome this; we experimented with human-in-the-loop



Query-Id Query Title Query Description

QR-01 Check Dialect Details Retrieve dialect details from sanitized and non-sanitized metadata files

QR-02 Check Empty Blocks Compare total empty blocks between sanitized and non-sanitized metadata files

QR-03 Check Value Property Count value properties in sanitized and non-sanitized files

QR-04 Check Property Value Count property values in sanitized and non-sanitized files

QR-05 Check Domain Inference Look for domain inference in sanitized and non-sanitized files

QR-06 Check Attribute List Look for attribute list in sanitized and non-sanitized files

QR-07 Check Data File Source Fetch source file details from sanitized and non-sanitized files

QR-08 Check Metadata File Source Fetch metadata source file details from sanitized and non-sanitized files

Table 3: Queries and their description to evaluate the impact of quality operators on metadata files

operations to assist our system with domain expertise for filling

and updating wrongly interpreted property values.

Another challenging use case for our research was domain in-
ference. Non-sanitizedmetadata files contained information about

the domain or subject of the dataset, but none of this information

was precisely referenced. It had to be inferred or extracted from

the available information in the Non-sanitized metadata files.

In this case, the domain inference quality operator yielded, on

average, accurate domains across all files for 84% of the files. This

accuracy is validated by manual expert comments for datasets

on the subject in conjunction with scraped web information

from hosting websites. Apparently, it is a trivial task trimming
whitespace blocks, but it imposes challenges when the whitespace

is spanned to multiple columns. The missing property:value
pairs cause ambiguity in most cases. Consequently, empty block
trimmer takes the wrong decision, and thus, the score for this

quality operator is low compared to other checks.

4 RELATEDWORK

To the best of our knowledge, there is no directly related work

on cleaning up metadata files. However, we have collected some

notable research contributions that focus on understanding the

metadata file layout and content of metadata files for metadata

management.

Khalid et al. used rule agents and conducted a comprehensive

study on how disorganized open-source metadata files are. In ad-

dition, the authors annotated many files and showed that agents

work well with the annotated files due to the cleaned information

and better structural layout [4]. Smutz et al. detected malicious

PDF files based on metadata and structural features [13]. The

authors presented how metadata elements can influence such

decisions by carefully arranging metadata in files. Liu et al. pre-

sented automaticmetadata extraction from documents using deep

networks [5]. The authors focused on extracting metadata from

academic papers, which can be helpful for scientific searches and

digital libraries. Ha et al. introduced the OCRMiner system, which

uses the layout features of structured documents by applying

optical character recognition (OCR) and extracting the indexing

metadata [3]. Tabular presentation of information is wildly used

in the scientific community. However, searching for tables online

takes much work. Liu et al. presented TableSeer, which searches

digital libraries and recognizes tables in documents by extracting

table metadata [6].

5 CONCLUSION

This paper introduces MDClean, a system that automatically

detects and corrects metadata content in unorganized and non-

sanitized metadata files, using quality operators as quality indica-

tors to target specific issues in the files. The system is evaluated

using metadata files from three open data repositories, with 1123

files randomly selected for experimentation and annotations used

as ground truth for performance evaluation. Future work will

address semantic challenges to support further automating meta-

data processes for resource management and enhance the sys-

tem’s usability through a graphical user interface. In summary,

MDCleanis an automated system that improves the manage-

ment and organization of metadata content in large-scale data

systems.
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