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Abstract  
This paper presents the prototype of end-to-end speech recognition, storage, and 

postprocessing tasks to build speech analytics, real-time agent augmentation, and other speech-

related products. Moving ASR models from the dev environment into production requires both 

researcher and architectural knowledge, which slows down and limits the possibility of 

companies benefiting from speech recognition and NLP advances for fundamental business 

operations. This paper proposes a fast and flexible prototype that can be easily implemented 

and used to serve ASR/NLP-trained models to solve business problems. Various software 

solutions’ compatibility problems were solved during the experimental setup assembly, and a 

working prototype was built and tested. An architectural diagram of the solution was also 

shown. Performance, limitations, and challenges of implementation are also described. 
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1. Introduction 

The rise of speech technologies created a demand for the newest software architectures applicable 
for real business solutions on a scale. According to Gartner, by 2025, 40% of all world call centers will 
use speech-to-text technology to handle incoming communication. Automotive giants like Porsche 
Group, Volkswagen AG, Mercedes-Benz Group, and others invest hundreds of millions of USD in 

creating new experiences involving voice communication between a driver and their car. Many more 
industries jump onto natural language voice communication between a human and a machine: gaming, 
medical devices, industrial machines, and others. This shift in utilizing science in the real world created 
a demand for higher-level software frameworks with pre-built architectures rather than low-level ASR 
and TTS frameworks. The new level of frameworks should include parts that ensure easy integration in 
existing IT infrastructures, fault tolerance, data security, and others. We have built the prototype for a 
system that handles both recoded voice processing and real-time voice stream handling [1–3]. 

When it comes to business cases, more is needed to have an overwhelming number of building 
blocks, which is okay for proof of value. It should be an end-to-end research-friendly solution that is 
flexible and reliable. 
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2. Related works 

There are many ASR toolkits on the market, like NeMo: a toolkit for building AI applications using 
Neural Modules [4], ESPNet [5], and Kaldi [6]. The limitation of these frameworks is that they are very 

focused on ASR-related tasks and are only one building block for business applicability. 
NVIDIA put a lot more effort than others and developed the NVIDIA TAO Toolkit [7] and NVIDIA 

[8], which also contains pre-/post-processing components for speech-related tasks. NVIDIA Triton 
Inference Server is an open-source inference serving software that simplifies inference serving for an 
organization by addressing the above complexities. Triton provides a single standardized inference 
platform which can support running inference on multi-framework models, on both CPU and GPU, and 
in different deployment environments such as datacenter, cloud, embedded devices, and virtualized 

environments. Also Triton requires NVIDIA GPU and proprietary (can't be modified) but nice features 
like pipelines and dynamic batching [9]. Still, there need to be more high-quality implementations of 
prototypes to build software based on.  

Hence, we decided to put effort into building a modular prototype that can be used to develop any 
business software. At the ASR level, we put our models trained with an automated pipeline [10] which 
can be trained and served with any of [4–6] toolkits. As postprocessing, we have put punctuation [11] 
and emotion recognition [12]. 

3. Prototyping 

Prototyping stage includes major uncertainties in both technical implementation and client’s 
business requirements. At the same time, we need to evolve it into reliable and scalable solution to 
recognize, store, and post-process speech-related tasks, without rewriting it from scratch. Thus we 
decided to focus on three main areas: 

- Loose coupling. We should be able to replace each functional block either without changes to 
the rest of the system, or with minimal changes. For example, using a different tool or a different 

service for speech recognition should not require backend or UI changes. 
- Pipeline flexibility. During prototyping we don’t know which processing steps customer needs 

(like punctuation or emotion detection). So processing pipeline should be easy to add/remove 
steps or to change execution graph. 

- Interoperability: the solution should be easy to integrate with existing enterprise software (like 
CRM, Customer Support system, etc.). 

 

3.1. Defining loosely-coupled components 

We’ve defined the following requirements to achieve loose coupling: 
- Data formats and protocols between components are independent of data-structures of 

underlying frameworks 
- Asynchronous processing for non-interactive tasks 
- Being able to deploy and update components independently 

 

We also needed to select protocols and frameworks to receive and process audio for the prototyping. 
After evaluation, we decided that to satisfy pipeline scalability requirements, we will implement the 

solution in microservice architecture [13–15] to add new services. We also decided to divide ASR and 
postprocessing tasks for real-time processing; there is no need for most postprocessing time, and any 
additional time consumption is critical for real-time tasks [16]. 

3.2. Protocol selection 

One of the decision for prototyping was protocols selection. Criteria for protocols was: easy to 
implement and use on different programming languages; generic, so we can implement adapters for 



other protocols later as separate services selection to accept the audio signal and provide results. We 
evaluated and compared real-time and non-real-time approaches and protocols to build prototypes in 
Table 1. 

 

Table 1 
Real-time and non-real-time comparison 

Connection type Complexity for 
prototyping 

Applicable cases 
range 

Computational 
requirements 

Real-time Hard Low High 
Non-real-time Medium High Medium 

 
After evaluation, we decided to approach prototyping in two steps, starting from non-real-time 

because of its easiness of prototype and broad application, and after that, enlarging the prototype to 

Version 2 with the support of real-time audio processing. 

3.3. Non-real-time protocol selection 

For non-real-time, we decided to implement the asynchronous method using REST API. This will 
be the most flexible approach to building complex integrations with enterprise systems like Customer 
Relationship Management, Business Intelligence, email and chat system, etc. 

REpresentational State Transfer (REST) is a software architectural style that describes a uniform 

interface in a client-server architecture [17]. An Application Programming Interface (API) that complies 
with some or all of the six guiding constraints of REST is considered to be RESTful [18]. An API 
establishes a connection between programs so they can transfer data. 

A program with an API implies that some parts of its data are exposed for the client to use. The 
client could be the front end of the same program or an external program. 

3.4. Real-time protocol selection 

The decision was more complicated for real-time processing because various methods exist, like 

Websocket, MQTT over WebSocket, gRPC, etc. We decided to go with the most widely used and 
simplest one—WebSocket for the real-time prototype [16, 17]. 

WebSocket is a computer communications protocol providing full-duplex communication channels 
over a single TCP connection. The main advantage of WebSocket is simplicity and prevalence [18]. 

Real-time alternatives are GRPC or MQTT. 

3.5. Server-side frameworks selection 

As the main idea behind it is to build flexible ready in terms of integration prototype, was to prepare 
prototype as natural for researchers as possible, that is why we selected Python as the main language 
because of popularity in research community. After evaluating REST API Python frameworks (Django, 
Flask, FastAPI) [19], we decided to go with FastAPI running under Uvicorn as one of the fastest Python 
frameworks available. FastAPI is a modern, fast (high-performance) web framework for building APIs 
[20]. 

Their API-first approach will best integrate future solutions with any enterprise solutions. 

3.6. Speech recognition serving framework 

Server-side framework decision not only affects how we serve speech recognition tasks but also 
creates limitations that speech recognition models should be trained using the same framework. Hence 
decision on the server side Speech recognition framework was the most important during prototyping. 
We were chosen between two commonly used frameworks: Kaldi and Nemo. 



3.6.1. Nemo framework 

NVIDIA Nemo [4] is a conversational AI toolkit built for researchers working on automatic speech 
recognition (ASR) [2, 3, 21–23], natural language processing (NLP), and text-to-speech synthesis 

(TTS) [24], freely available under the Apache License v2.0. 
The main advantages: 

● Comparatively, easy model finetuning. 
● No need for grapheme to phoneme models. 
● Ready to go server-side framework to serve models. 

3.6.2. Kaldi framework 

Kaldi [6] is an open-source speech recognition toolkit written in C++ for speech recognition and 
signal processing, freely available under the Apache License v2.0. 

The main advantages: 
● The Acoustic Model (AM) is not biased for the Language Model (LM) task (AM of end-to-

end frameworks absorbs some part of AM inside AM). 
● Fewer input audios need to train the same accuracy model. 

After careful consideration, we have decided to build a prototype with the Nemo framework as it 

already has a server side. 

4. Implementation 

After consideration, we split the prototype into two versions. The first version should be simple and 
fast, supporting only non-real-time audio processing; because it is more stable, tasks can be repeated, 
postponed, and use lower resources. For the second version of the prototype, we decided to dedicate to 
real-time processing, indexing, and architecture comprehension to be more production ready. 

To get production-ready results, we need to guarantee stability and provide end-to-end results, which 

means that we need not only to recognize speech but also separate speakers for mono audio where 
speakers are in one channel and apply punctuation and inverse text normalization to convert words into 
easily readable numbers and signs (e.g., @, #, etc.). 

Almost all postprocessing tasks should be done after speech recognition results are obtained. Hence, 
we implemented a pipeline. 

1. Speech recognition. 
2. Diarization (mono-to-stereo). 

3. Normalization (word-to-number conversion). 
4. Punctuation. 

4.1. First version of prototype 

For the first version of the prototype, we decided to go with the minor functionality to check end-
to-end work. We designed a straightforward algorithm that takes the file into processing and returns the 
future ID of the result immediately. Hence, after some time using the GET method, the customer can 
get results. The main limitation of this algorithm is that users do not know when exactly the results will 

be ready and may need to check a few times and get just the ‘IN PROGRESS’ status. The algorithm for 
prototype Version 1 is shown in Fig. 1. 

 



  
Figure 1: Prototype algorithm (Version 1) 

 
To implement offered algorithm, we develop the most straightforward architecture shown in Fig. 2. 
 

  
Figure 2: Prototype structure (Version 1) 

 
The main building blocks of Version 1 architecture is: 
1. ASR level: to accept audio file/stream and return raw text results. 

2. Post-processing level: to implement additional tasks based on recognized text, e.g., 
Punctuation, Classification, Diarization, etc. 
3. Storage level: where a database can store all results to serve them back to the user on requests. 
4. API level: serving as the main gateway interface for customers to send audio files to and get 
results back. It is also a logic center to decide which steps to take and store results in the database at 
the end of file processing. 

4.2. Second version of prototype 

After evaluation of Version 1, which is described in detail in the results part, it was clear that we 
need to implement queue logic to build the Version 2 prototype because without overcoming of 
blocking of BE/API, it is clear that we cannot serve real-time requests. 

As a result, we develop a prototype Version 2 algorithm shown in Fig. 3. 
 



  
Figure 3: Prototype algorithm (Version 2) 

 
To implement indicated algorithm, we designed the architecture shown in Fig. 4. 

 

  
Figure 4: Prototype structure (Version 2) 

 

The main building blocks of Version 2 architecture is: 
1. All features from Version 1. 
2. Queue level: where we can put non-real-time tasks for future processing when the CPU is ready 
and be sure the task will wait until processing. 



3. Indexing level: for search functionality. 
Code example of creating a basic API endpoint to accept audio file or streams can be found below 

and results: 
 
@router.post("/audio-file") 

def upload_audio_file( 

  *, 

  file: UploadFile = File(...), 

  params: schemas.RecognizerEndpointParams = Depends(endpoint_parameters), 

) -> Any: 

  session_id = uuid.uuid4() 

  asr_instances = get_asr_by_language(language) 

 

  with tempfile.NamedTemporaryFile( 

   prefix="uploaded_", 

   delete=False, 

   dir=TMP_DATA_DIR 

  ) as fp: 

    fp.write(file.file.read()) 

    fp.seek(0) 

    tempfile_name = fp.name 

 

  if params.realtime: 

    return recognize_file( 

      filepath=tempfile_name, 

      asr_instances=asr_instances, 

    ) 

  else: 

    return queue_pipeline( 

      session_id=session_id, 

      audio_location=tempfile_name, 

      asr_instances=asr_instances, 

    ) 

 

def endpoint_parameters( 

  language: str = None, 

  realtime: bool = False, 

) -> schemas.RecognizerEndpointParams: 

  return schemas.RecognizerEndpointParams( 

    language=language, 

    realtime=realtime, 

  ) 

 
In the above code snippet, we declare the URI path to server code at 

http(s)://{server_ip_address}/recognizer/audio-file with @router.post("/recognizer/audio-

file"), and declare parameters to be accepted: audio file and dictionary parameters to parse as 

metadata. 

During the processing of a request, we store the received audio stream into a temporary file with 

tempfile.NamedTemporaryFile. We do this to have the possibility to work with queueing 

mechanism. Hence, we can’t keep all in the memory and need to exploit storage. 
In the end, we examine metadata parameters to identify whether we should return results in real-

time return recognize_file() or we can queue as a task and just return identification return 

queue_pipeline() to obtain results in the future by requesting the GET method. 

The presented code will result in generating the API endpoint shown in Fig. 5. 



 
Figure 5: API endpoint example for audio file uploading 

5. Comparison results 

5.1. Prototype performance 

Using Version 1 of the prototype on a server with 4×A100 GPUs, we were able to process 8000 
hours of audio in 24 hours or 333 hours in 1 hour, which represents 0.003 Real-Time Factor which is 
far behind with state-of-the-art models [25, 26]. We will not go deeply into the limitations of Version 1 

(described below) because the main goal is to develop a prototype that will align with the state-of-the-
art models. 

Using Version 2 of the prototype on a server with 4×A100 GPUs, we were able to process 45,000 
hours of audio in 24 hours or 1875 hours in 1 hour, which represents 0.0006 Real-Time Factor which 
is in line with the state of art models [27, 28]. 

The main components of such a tremendous end-to-end performance are ASR and WEB frameworks 
[4, 19]. 

The main performance limitation is ASR prediction. The performance of ASR models serving on 
CPU was minimal, and with the big model with WER, 4–6% is almost one real-time factor per one 
vCPU. Hence, it makes sense to use CPU-based deployments only for limited (approximately up to 100 
on the most significant AWS instance) concurrent sessions [29–31]. 

5.2. Difficulties with the first version implementation 

The main limitation was API (back-end) as a logic center that decided which steps to take next and 
waited for the results of any current task. Hence, API/BE was blocked from accepting any new files 

before the current audio file was inside the pipeline. And while each file was 5–10 minutes long, API 
was blocked for approximately this period. 



5.3. Difficulties with the second version implementation 

With Version 2, the prototype became much more stable and predictable, but still, there were a lot 
of limitations and difficulties during prototype testing. 

1. Prioritization of real-time: current prototype does not prioritize real-time tasks over queued 
ones, which means there is no confidence that real-time tasks will be accepted if queue and 
recognizers have a lot to do. 
2. Stability: to support both streaming and batch file recognition (with one ASR server prototype) 
current prototype version is recognized through streaming of audio files from the worker directly to 
ASR, which is not recommended for a production-ready solution and should be refined. 
3. Scalability: there is no load balancing opportunity in the current prototype (neither for API 

block nor for ASR and Post-processing block). This should be refined for the production readiness 
of the prototype. 
4. Feedback and visibility: no feedback information is sent back to the user other than the ID of 
future results. This can be tricky if services are busy, as users will not know when exactly the task 
will be finished and will not get any estimations and progress info. Hence prototype should be 
refined with added visibility and webhooks for feedback when results are ready and in case of any 
issue with production readiness. 
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7. Conclusion and future works 

The article presents the prototype of an end-to-end speech recognition framework with a storage 
database and results from indexing. For this framework and protocols for real-time and non-real-time 

were selected in the way to be ready to scale for a production-ready solution. 
Various software solutions' compatibility problems were solved during the experimental setup 

assembly, and a working prototype was built. An architectural diagram of the solution was also shown. 
As a result, it was tested that the prototype delivers stability if the number of processed audios is 

less than one hour of audio per one vCPU. Hence, managing and load balancing of connections and 
audios to process is a task to be solved in the following versions of the prototype, as well as prioritization 
of real-time processing against non-real-time tasks.  

Future research will be focused on optimization issues, such as the scaling of speech recognizers, 
parallelization of the pipeline, fault tolerance, pipeline progress visibility, security, and webhooks 
implementation to inform result readiness and make it easier to deploy. 
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