
Numeric reasoning in the Semantic Web

Chimène Fankam, Stéphane Jean, and Guy Pierra

LISI-ENSMA and University of Poitiers
BP 40109, 86961 Futuroscope Cedex, France

{fankamc,jean,pierra}@ensma.fr

Abstract. The Semantic Web is an effort by the W3C to enable in-
tegration and sharing of information across different applications and
organizations using annotations by means of ontology instances. With
the growth of such data, two important problems need to be addressed:
(1) a scalability issue and (2) a performance issue for reasoning. Main
memory reasoners are efficient for reasoning, but they hardly support
real size data. This paper discusses the use of databases, more precisely
of ontology-based databases (OBDBs), for managing Semantic Web an-
notation data. Such systems are able to manage real-size data. But the
main weakness of databases are their poor deductive reasoning capabili-
ties. Thus, we propose an approach that consists in enriching annotation
instances with new numeric-valued or string-valued properties allowing
to replace deductive reasoning by numeric queries. We define formally
some cases where this approach may be implemented and we propose
extension of ontology languages allowing to represent explicitly their
structures. Ontology being recorded in OBDB, these extensions allow
the OBDB system to perform dynamically the instance enrichment and
to rewrite queries as numeric queries. This approach is in particular used
for geometric reasoning, and we present its implementation within On-
toDB, an OBDB developed in our laboratory.

1 Introduction

The Semantic Web is an effort by the W3C to enable integration of data sources
across the Web. In order to capture information semantics in a machine process-
able way, Web resources are annotated with terms described as ontology individ-
uals. Such ontology individuals are called ontology-based data. As Semantic Web
technologies become mature and standardized, they are applied to real-world
applications. As a consequence, an increasing amount of ontology-based data is
becoming available on the Web. Managing such data raises two major issues :

– a scalability issue. A lot of applications need to manage an amount of
ontology-based data that don’t fit in main memory;

– a reasoning issue. An ontology is a conceptualization based on a formal the-
ory that allows to reason over the ontology-defined concepts and individuals.
Reasoning operations need to be performed in an acceptable response time.

khalid
Typewriter
K. Belhajjame, M. d’Aquin, P. Haase and P. Missier (Eds.): SeMMA 2008CEUR Workshop Proceedings, ISSN 1613-0073, online at CEUR-WS.org/Vol-346/

Solving these two problems is an important factor in realizing the Semantic
Web vision. The difficulty is to provide a solution that solves them together.
Indeed, during these last years, several works have addressed the scalability
problem using databases. If some works have focused on using databases to
store instance data [1, 2], others have proposed new database architectures to
store both ontology descriptions and instance data. We call these database ar-
chitectures Ontology-Based Databases (OBDBs) [3–7]. Evaluations of OBDBs
performance have shown that some architectures scale quite well and do sup-
port real size Semantic Web data management[8, 6, 7]. However, if scalability
constitues a major strength of databases, this is not the case of their deductive
capabilities. Thus, several propositions have been made to combine reasoners
with databases [9–11, 1]. To speed-up the query response time of such architec-
ture, reasoning is often done offline [6]. Then, database are used to materialize
all the deduced facts which lead to a strong storage overhead.

In this paper, we propose an alternative approach. The idea is to use capabil-
ity of database to process efficiently numeric queries and string-oriented queries
to perform some reasoning operations at runtime. Thus our approach consists
(1) in using the ontology representation available in an OBDB to interpret in
a semantic way both the data manipulation language and the data query lan-
guage of the database and (2) in enriching the annotations instances with new
property values in order to replace deductive reasoning by numeric (or string-
oriented) query processing. For example, when an object property π is defined,
using OWL2 constructs, as asymmetric, transitive, and inverse functional, thus
defining a tree-order, this tree-order (≺) may be represented by means of nu-
meric intervals [12]. Thus, (1) when an instance that supports the π property is
inserted in the database, two additional data properties (lo bound, hi bound)
are computed by the system. These data properties reflect the tree-order, i.e,

x ≺ y⇔ lo bound(y) < lo bound(x) < hi bound(x) < hi bound(y).
Then, (2) when annotations instances smaller than a given instance are re-
quested, the query interprets access to the ontology and re-writes the recursive
query over π as a numeric query over lo bound and hi bound. This kind of
index is not really new. Indeed, a number of approach [12, 13], known as label-
ing, have been proposed to compute transitive closures of relationships and to
index them using numeric or string-oriented labels. However, these approaches
are often hard encoded in the data management system for pre-defined relation-
ships such as polymorphism through class subsumption. We propose extensions
of ontology languages allowing to discover when this kind of approach may be
followed and to implement it dynamically when a new ontology is loaded. The
proposed framework integrates various existing labeling schemes to address most
recursive containment relationships, including subclass reasoning and taxonomic
queries widespread in resource annotations, and we show that the same frame-
work may be efficiently used for DAG structures encountered in spatial and
temporal application.

The remainder of this paper is organized as follows. In the next section we
present an overview of OBDBs. We propose a taxonomy of existing OBDBs

and present their scalability and deductive capabilities. In section 3 we present a
framework to transform deductive reasoning into numeric reasoning for property
whose range are partially ordered sets. In section 4 we discuss how this framework
can be implemented within OBDB and in section 5 we describe our current
implementation on a real-world application. Finally, we conclude in section 6.

2 Ontology-Based Databases (OBDBs)

In the last years, many OBDB architectures have been proposed. We present
first a proposed taxonomy of these architectures. Then, we discuss capabilities
of existing OBDBs to solve the scalability and reasoning issues faced by the
Semantic Web.

2.1 Classification of OBDBs

OBDBs recording different categories of data and in particular ontologies de-
scription and instance data, these data may be governed by various number
of schemas. Thus we propose to classify OBDBs architectures according to the
number of schemas used.

Type 1 OBDBs. In type 1 OBDBs, information is represented in a single
schema composed of a unique triple table (subject, predicate, object) [14–
17]. This table, called vertical table [12], may be used both for ontology descrip-
tions and instance data. For ontology descriptions, the three columns of this table
represent respectively subject ontology element identifier, predicate and object
ontology element identifier. For example, the triple1 (Student, subClassOf,
Person) represents a subsumption relationship between classes Student and
Person. For instance data, the three columns of this table represent respectively
instance identifier, characteristic of an instance (i.e, property or class belonging)
and value of that characteristic. For example, the triple (Peter, grade, PhD)
represents the fact that Peter has a PhD grade. Figure 1 illustrates this approach.
Figure 1 (a) presents a toy example of an ontology (upper part) with some in-
stances (bottom part) as a graph. An extract of the corresponding vertical table
is shown in Figure 1 (b).

Type 2 OBDBs. Type 2 OBDBs store separately ontology descriptions and in-
stance data in two different schemas [3–5]. The schema for ontology descriptions
depends upon the ontology model used to represent ontologies (e.g., RDFS,
OWL, PLIB). It is composed of tables used to store each ontology modeling
primitive such as classes, properties and subsumption relationships. For instance
data, different schemas have been proposed. A vertical table can be used to store
instance data as triples [5, 4]. An alternative is to use a binary representation
where each class is represented by an unary table and each property by a binary
table [3, 4, 1, 2]. Recently, table per class representations (also called class-based
representations) have been proposed where a table having a column for each
1 RDF uses URI for identifiers. For readability, we use names throughout this paper.

Student

Person

Worker

Address
name

String

grade

address

Peter

Student#1

 subClassOf

property

property value

Legend:

Ontology

Instances

country

Integer
salary

age

grade

PhD

name

Worker#1

John 1500

name salary

Address#1
address

France

country

String

instanceOf
………

Address#1addressWorker#1

PhDgradeStudent#1

PeternameStudent#1

Studentrdf:typeStudent#1

………

xsd:Stringrdfs:rangename

rdf:Propertyrdf:typename

Personrdfs:subClassOfStudent

rdfs:Classrdf:typeStudent

TRIPLES

Subject Predicate Object

Person rdf:type rdfs:Class

………

Address#1addressWorker#1

PhDgradeStudent#1

PeternameStudent#1

Studentrdf:typeStudent#1

………

xsd:Stringrdfs:rangename

rdf:Propertyrdf:typename

Personrdfs:subClassOfStudent

rdfs:Classrdf:typeStudent

TRIPLES

Subject Predicate Object

Person rdf:type rdfs:Class

O
n

to
lo

g
y

In
stan

ces

(a) (b)

Fig. 1. Type 1 OBDBs approach

property associated with value for at least one instance of a class is associated
to each class [7, 6]. These three basic approaches have also small variants (see
[8] for details).

Figure 2 presents an example of type 2 OBDBs that stores data of our pre-
vious example (see Figure 1). In this example, ontology descriptions are stored
using a schema for RDFS ontologies. In the bottom part, instance data are
represented using a binary representation.

Type 3 OBDBs. OntoDB [7, 18] proposes to add another schema to type 2
OBDBs. This schema called meta-schema records the ontology model into a re-
flexive meta model. For the ontology schema, the meta-schema plays the same
role as the one played by the system catalog in traditional databases. Indeed,
meta-schema may allow: (1) generic access to the ontology, (2) support of evo-
lution of the used ontology model, and (3) storage of different ontology models
(OWL, DAML+OIL, PLIB, etc.). Figure 3 presents the meta-schema of our
example.

These three categories of OBDB architectures behave differently according
to the kind of information that need to be managed. In the next section we focus
on their scalability capacity.

2.2 Scalability of OBDBs

Type 1 OBDBs. The vertical table approach raises serious performance is-
sues when queries require many self-joins over this table [3]. To ensure a high
performance of queries, each column of the vertical table shall be indexed [5].
Moreover, the predicate column shall be clustered [12] or materialized views need

Address4

Worker3

Student2

Person1

Class

ID Name

Address4

Worker3

Student2

Person1

Class

ID Name

Ontology

Instances

13

12

SubClassOf

Sub Sup

13

12

SubClassOf

Sub Sup

……

grade3

age2

name1

Property

ID Name

……

grade3

age2

name1

Property

ID Name

……

23

12

11

Domain

prop class

……

23

12

11

Domain

prop class

……

xsd:string3

xsd:integer2

xsd:string1

Range

prop type

……

xsd:string3

xsd:integer2

xsd:string1

Range

prop type

JohnWorker#1

PeterStudent#1

Name

ID Value

JohnWorker#1

PeterStudent#1

Name

ID Value

1500Worker#1

Salary

ID Value

1500Worker#1

Salary

ID Value

PhDStudent#1

Grade

ID Value

PhDStudent#1

Grade

ID Value

Student#1

Student

ID

Student#1

Student

ID

Worker#1

Worker

ID

Worker#1

Worker

ID

Person

ID

Person

ID

Address#1

Address

ID

Address#1

Address

ID

FranceAddress#1

Country

ID Value

FranceAddress#1

Country

ID Value

Fig. 2. Type 2 OBDBs approach

to be created [1]. In both cases, these approaches require extra storage cost and
lead to update overhead. And, even with such optimizations, several works have
shown that in various conditions type 2 OBDBs outperform type 1 OBDBs [8,
5, 3].

Type 2 OBDBs. Performance of these OBDBs depend upon the represen-
tation used for instance data. Evaluation conducted in [12, 8, 1, 2] have shown
that the vertical table approach for instance data suffers the same weaknesses as
those encountered for Type 1 OBDB. Thus the binary representation has been
considered for a long time as the best representation for instance data.

However, experimental results on the recently proposed table per class rep-
resentations have challenged this idea [7, 6]. For queries where the class to be
queried is specified, table per class representations outperform the classical bi-
nary table approach with ratio often bigger than 10, in particular when instances
are associated with several properties [7]. Moreover, insertion and update are
faster. The only case where the binary approach is better than table per class

Meta-Schema

…………

23domain2

11name1

RangeDomainNameID

Attribute

…………

23domain2

11name1

RangeDomainNameID

Attribute

Entity#22

String1

Type

ID Name

Entity#22

String1

Type

ID Name

Resource1

1Property3

1Class2

SuperEntityNameID

Entity

Resource1

1Property3

1Class2

SuperEntityNameID

Entity

Fig. 3. Type 3 OBDBs Meta-Schema

representations is for queries where the class to be queried is not specified and
that only request a very small number of property values.

Type 3 OBDBs. Addition of the meta-schema in OBDBs of type 3 doesn’t
improve performance of queries but increase functionalities as stated previously.
Availability of ontologies in the database is in particular needed to implement
the dynamic labeling scheme proposed in this paper.

This survey on scalability of OBDBs show that, for a number of use cases
corresponding to the performed benchmarks, type 2 or 3 OBDBs using either
binary representation or the table per class representation scale quite well and
do support real size Semantic Web data management. The other challenge is to
provide, at the same time, reasoning capabilities.

2.3 Deductive capabilities of OBDBs

Deductive capabilities are not the major strength of databases. To perform rea-
soning, two main approaches may be followed. The first approach consists in
performing reasoning before query processing and to materialize all the deduced
facts and, in particular, the transitive closure (TC) of all transitive relation-
ships. We call this approach eager reasoning. This approach supports efficient
query processing since reasoning is not required at runtime. Its drawback is extra
storage cost and update overhead. The second approach consists in performing
reasoning during query processing using virtual deduced facts to provide query
results. We call this approach lazy reasoning. This approach is dual to the pre-
vious one: it requires extra cost for query processing but doesn’t impose storage
and update overhead.

Currently, OBDBs mainly support usual subsumption reasoning as specified
in [19] (i.e, subClassOf and instanceOf relationships). Most of them perform
lazy reasoning using different database mechanisms such as views [1], labeling
schemes [6] or subtable relationship of object-relational databases [3, 4].

Some OBDBs address more complex reasoning. For example, ONTOMS sup-
ports instance reasoning for inverse, symmetric, and transitive properties [6]. As
a rule, these most complex reasoning tasks are performed using eager reasoning
and TC which lead to serious storage and update overhead in real-size appli-
cations. Other approaches propose to use logic engines (e.g Datalog engine) of
deductive databases or OWL reasoners to perform these most complex reasoning
tasks [9–11, 1]. However deductive databases have not found widespread adop-
tions outside academia and the response time of such architectures is often not
compatible with person system interaction.

In fact, beside their capabilities to manage large size data, the major strength
of database is their capability to process efficiently numeric queries and string-
oriented queries. Thus efficient eager reasoning may be performed if a deductive
reasoning may be replaced by numeric (or string-oriented) query processing. A
well known application of this approach is the so-called labeling approach [12,
13] where transitive relationships are represented either by numeric intervals or
by string (or bit vector) values. These applications are very efficient, as long as

the transitive relationship defines a tree structure. When it is a DAG, labeling
becomes more complex and much less efficient. In the next section we propose
a framework that integrate the various labeling schemes, and we show that the
same framework may be efficiently used for DAG structure encountered in spatial
and temporal application.

3 Numeric reasoning over partially ordered sets

3.1 A Motivating Example

The aim of the e-Wok Hub project2 is to manage the memory of many engi-
neering projects on the capture and storage of CO2. In particular, an important
objective is to improve the quality of documents search on this subject. The fol-
lowed approach consists in using annotations of documents defined as much as
possible by automatic means. As an example, we have focused on geographical
aspects of CO2 storage. An existing ontology, called COG3, that describes the
spatial French geographic entities, is used to annotate documents. In this ontol-
ogy, a spatial area is represented by an ontology individual characterized by a
name, a type (e.g, country, department or town) and boundaries. Moreover, spa-
tial areas are organized in a tree structure using a transitive relationship named
subdivision. This relationship has the following meaning: x subdivision y ⇔
y ⊂ x. Thus it defines a partial order on spatial areas.

Figure 4 presents an extract of the spatial areas tree of the COG. Each node
represents a spatial area and each edge represents the subdivision relationship.
The root of the tree is the country France which is subdivided in the departments
Ile de France and Poitou Charentes areas. The latter is itself divided into
the towns Poitiers and La Rochelle.

France

Poitou CharentesIle de France

Paris
Poitiers

La Rochelle

Fig. 4. COG ontology : example of inclusive relationship between individuals

Documents are automatically annotated using the COG. The annotation
predicate is named geolocalized in. The annotation (doc geolocalized in
zone) means that the document doc contains information about whole or part

2 http://www-sop.inria.fr/acacia/project/ewok/index.html
3 Code Officiel Gographique, http://rdf.insee.fr/geo/

of the spatial area zone. We note that this predicate has a particular behavior
with respect to the subdivision order. If a document contains information
about Poitiers, it contains information about some part of Poitou Charentes.
Thus (doc geolocalized in Poitiers) implies (doc geolocalized in Poi-
tou Charentes). Notice that all predicates whose range is spatial area don’t have
necessary this behavior. For example, the person who heads Poitou Charentes
doesn’t head the town of Poitiers.

This behavior has an impact on querying. Indeed, if one searches for all doc-
uments relevant to the spatial area zone, the system should reason over the
inclusion relationship and return all documents annotated with the spatial areas
included in zone. Eager or lazy reasoning approaches can be used to provide
correct results. Eager reasoning consists in storing not only annotations defined
by domain experts but also annotations that can be derived using the character-
istic of geolocalized in. Considering the high number of documents that may
be managed combined with the number of French spatial areas (and of world
spatial areas in a second step), eager reasoning requires a lot of storage space and
would hardly scale. A naive lazy reasoning technique would be to compute the
inclusion relationship TC using recursive operator of SQL99 (if available in the
DBMS) or recursive stored procedures. Again, due to the large amount of docu-
ments combined with the number of areas, this approach would hardly scale in
query processing response time. The inclusion relationship defining a tree struc-
ture, a classical labeling scheme may be used to represent in a compressed way
the subsumption relationship TC. These techniques consist in assigning values
to each node of a hierarchy according to the node’s position. Figure 5 shows
an application of interval labeling scheme on our previous example of the COG.
On this tree, each spatial area is assigned a pair of integer values, bound1 and
bound2, that defines an interval. An area zone1 is a (recursive) subdivision of
zone2 if the interval of zone1 is included in the interval of zone2.

France

[1 , 12]

Poitou Charentes

[6 , 11]

Ile de France

[2 , 5]

Paris

[3 , 4]

Poitiers

[7 , 8]

La Rochelle

[9 , 10]

Fig. 5. translation of a tree structure into two numeric values

This approach has been implemented and scales perfectly since the annota-
tion instances are quite stable. Thus, once all instances of the COG have been
entered within the database, the labeling scheme does not need any change when
new document annotations are recorded.

Unfortunately, when one annotes automatically documents, one doesn’t only
encounter names of countries, department and town. Other geographic areas
names, such as regions, districts or localities, are also used. Note that a partial
order still exists between all these spatial areas. But this order no longer defines
a tree. It defines a DAG for which the interval labeling scheme is much less
efficient. Moreover most existing labeling schemes need to be recomputed when
the instances to be indexed are modified. We propose below a framework allowing
to select various labeling schemes depending upon the problem at hand, and we
introduce new labeling schemes for reasoning over spatial areas and temporal
periods.

3.2 Proposed Framework

First, let us characterize formally the behavior of the geolocalized in and
subdivision relationships.

Let E and F be two sets ;R ⊂ E× F and≺⊂ F× F be two binary relationships,
with ≺ being an order relationship, i.e., reflexive, antisymmetric and transitive.
We said that R is propagated by the order ≺ if and only if:

∀x ∈ E,∀y, z ∈ F, x R y ∧ y ≺ z ⇒ x R z

and we call propagated closure (PC) of R by ≺, noted R+
≺:

R+
≺ = {(x, z) ∈ E× F | ∃y ∈ F, x R y ∧ y ≺ z}

If R = geolocalized in in and ≺= subdivision, for a given geographic
area, R+

≺ contains all the documents that are annotated either by this area or
by one of its (recursive) subdivisions.

Reasoning over Propagated Closure.

We note that R+
≺ is the composition of the transitive closure of ≺, noted ≺∗,

with R: R+
≺ =≺∗ ◦ R. Thus efficient representation of ≺ TC would provide an

efficient representation of R PC. We use a labeling scheme for that purpose. A
labeling scheme L over (F,≺) is a triple: L = (D, label, less or eq) where:
– D is an ordered (≤) concrete domain;
– label : F→ D is a morphism of ordered sets:

∀x, y ∈ F, x ≺ y⇒ label(x) ≤ label(y)
– less or eq : D× D→ Boolean is a function that compares in constant time

two values of D:
∀a, b ∈ D, less or eq(a, b)⇔ a ≤ b

Thus, if for all y ∈ F, label(y) is pre-computed and stored in the database
and if less or eq may be computed in constant time (e.g., by numeric or string
value comparison), the computation of the R PC may be done in linear time by
a single traversal of the R relationship.

Topological and Geometrical Labeling Schemes.

Most labeling schemes that have been proposed use the topological structure of
the lattice that represents the order over the F space to define the labels. For
instance, as we have seen previously, the post-ordered interval scheme proposed

by Agrawal et al. [12], compute the numeric interval that labels each node by
means of a post-order traversal of the spanning tree of the order relationship
between all known instances. In the Bit Vector scheme, proposed by Wirth [20],
the label of a node is represented by a vector of n bits where n is the number of
instances of the F space. A "1" bit at some position uniquely identifies a node
in the lattice structure and each node inherits the bits identifying its ancestor in
the lattice. Thus these encodings are efficient as long as no major change occurs
in the population of the F space, and, for the interval scheme, as long as the
lattice is a tree. When signifiant changes occur in F instances, the labels need to
be recomputed.

In fact, when reasoning over spatial or temporal domain, the underlying space
has not only a topological structure but also a geometrical structure. Thus, it is
associated with a metric that may be used for defining labels. Indeed, in Figure 4,
both bounding rectangles and bounding circles might also be used for labeling
geographic areas. When reasoning over geological periods where various geologi-
cal time scales are used, an approximate mapping of each geological period onto
geologic time (expressed in mya: ”million of years ago”) may be done. Notice
that, unlike topology-based labels, these labels are absolute labels. They repre-
sent an additional knowledge that cannot be automatically computed from the
known instances of F names or relationships, but they don’t need to be changed
when the content of F is updated. All these various labels may be represented as
labeling scheme within OBDBs allowing efficient reasoning over PCs. We note
that geometrical labels have two differences with topological labels : (1) they
are invariant for a given instance, whatever other instances are considered, (2)
they cannot be derived from non geometrical or non-temporal properties of an
ontology individual. Thus, spatial and temporal properties are primitives on-
tological properties of temporal or spatial objects. As such, it is reasonable to
consider that their values, for given individuals, may be either available in some
place (e.g., through a web service) or exchanged together with the individual
descriptions. My date of birth as well as the geolocalization of Paris are both
ontological properties that are available somewhere and that could be managed
in ontology-based data source. One difficulty is that geometrical description may
involve complex data structure available only in specific systems (e.g., GIS). In
fact, important geometric reasoning only needs very simple data. Spatial inclu-
sion of convex bodies may be evaluated on the basis of bounding rectangles or of
bounding circles. Temporal precedence just need to compare two float values or
two intervals. Thus it is both possible to restrict the set of geometrical represen-
tations allowed and to support a large range of (approximate) spatial or temporal
reasonings. Our suggestion is to support only interval (in one dimension (1D)),
rectangle and circle (in two dimension (2D)).

4 Design and implementation

This section presents how our approach can be implemented in the different
OBDB architectures to allow automation of the property propagation mecha-

nism. We assume now that E and F are two ontological classes. To represent
that a property R : E× F is propagated by a partial order ≺ over F, we need to
represent: (1) the fact that ≺ is an order, (2) the labeling scheme of this order
L = (D, label, less or eq), and (3) the fact that R must be propagated by L.
Existing ontology languages don’t provide modeling primitives to represent these
three pieces of information. As a consequence, both ontology models and OBDBs
need to be extended. In an owl database for instance, the first information needs
to add a new value (named orderProperty) to the enumerated set of values of
owl property characteristics (transitiveProperty, symmetricProperty, etc.)
since antisymmetric is available neither in OWL1 nor in OWL2. The third
information needs to add a new value (named propagatedBy) to the single ex-
isting value of property-to-property relationship (inverseOf). Thus, these two
information needs extension of ontology models. Finally, for the second infor-
mation, we need to create two additional (meta-)tables in the OBDB. The first
one describes the labeling schemes available in the OBDB. The second one de-
fines which labeling scheme is assigned to a particular order property. These
two tables are the extensions to OBDB that are required by our labeling model.
Below, we outline the implementation process and discuss representation issues.
The different steps of this implementation can be supported by both type 2 and
type 3 OBDB architectures.

4.1 Extension of the Ontology Models part of OBDB

In this section, we present the information that needs to be recorded as n-ary
tables. Notice that if binary representation is used, these tables must be splitted
into binary tables. The two first tables represent information that we propose to
add to ontology definition language. The two last tables are systems tables.
- Table 1 property characteristic contains the characteristics of property.
The required extension of ontology model is the capability to represent order-
Property as a characteristic.

Table 1. property characteristic Table Columns

Column Description

propertyId refers to the unique identifier of the property in the property table.

characteristic the characteristic of the property (for example orderProperty,

symmetricProperty, etc.)

- Table 2 property to property contains the relationships between two prop-
erties. The required extension of ontology model is the capability to represent
propagated by relation between a property and another property that defines
an order. When a geometric labeling is used, and when this label is provided,
for example as a bounding rectangle, together with the instance data, the in-
clusion relationship may often be implicit : it is to be computed by inclusion

of geometrical shapes defined by the geometric labels. In this case, the orderId
is replace by a reserved word that may be *geo rectangle*, *geo circle*,
geo interval. This means that the propertyId is propagated by the inclusion
(increasing) order of the corresponding geometric shapes. The columns that con-
tain the geometric labels are named as specified in table 3. For a propagated by
relationship, the column direction specifies whether the propagation is done in
a direct way (the same direction as the order property) or in a reverse way. For
example, applicable laws in Poitou Charentes include those defined in areas
encompassing Poitou Charentes; this implies a propagation in the reverse way
as compared to the order property subdivision, on the contrary of the property
geolocalized in where the propagation is done in a direct way.

Table 2. property to property Table Columns

Column Description

PropertyId the unique identifier of the propagated property.

orderId the unique identifier of the property in property characteristic ta-
ble or a reserved word (*geo rectange*, . . .)

relationName the name of the semantic relation linking the two properties; for ex-
ample propagated by, inverse of

direction defines the propagation direction according to the order relationship.
Allowed values : direct, reverse.

- Table 3 labeling scheme contains information about the various labeling
schemes available in the particular OBDB.
This table is supposed to be defined by the database administrator (DBA). Nev-
ertheless, it contains lines whose four first attributes have predefined content.
Theses lines specify how a geometrical labeling must be identified to be recog-
nized by the system. These lines are defined in Table 4.
- Table 5 property schemes contains information about the various scheme
associated to each particular property. This table is automatically generated by
the system. When a propagated by property is introduced in table 2, the default
labeling scheme defined in table 3 is automatically implemented if the orderId
identifies a property. If the orderId is a reserved word the system just checks
that the needed labeling columns are presents and a line in table 5 is also added.
The DBA may change the default labeling scheme when needed.

4.2 Representation of Individuals

Individuals of ontology classes will be represented according to the data structure
strategy used in each particular OBDB. To automate the generation of specifics
properties used to record labels, they are manage like other properties and they
are initialized to NULL if no value is provided.

Table 3. labeling scheme Table Columns

Column Description

schemeId refers to the unique identifier associated to the labeling scheme

numberOfColumns the number of columns used to represent the domain D (for ex-
ample 2 for the interval labeling scheme)

listColumnsSuffixes a list of column’s suffixes used to represent D (for example {
bound1, bound2})

listColumnsTypes a list of column’s types associated to the column’s names in
listColumnsNames (for example {int, int})

label the optional name of the SQL/PSM function to be used for com-
puting the label associated with those instances whose labels
value equals NULL. This function is called on F each time one or
a set of new instances of F are entered in the database within
the same transaction. This name does not exist (NULL) when the
label must be provided externally with each instance (e.g., for
geometrical labeling schemes).

less or eq the name of the SQL/PSM boolean function to be used for
evaluating if one individual is smaller or equal to another for
the order defined by propertyId. If L is the interval labeling
scheme over the F space, and i1 and i2 are two individuals, i2
≺ i1 if the call less or eq(i2.bound1, i2.bound2,i1.bound1,

i1.bound2) returns true.

defaultScheme a boolean value. The default scheme to be associated to a new
property defining an order.

Table 4. predefined labeling scheme in the labeling-scheme table

schemeId numberOfColumns listColumnsSuffixes listColumnsTypes ...

geo interval 2 {bound1, bound2} {float, float} ...

geo rectangle 4 {xmin, xmax, ymin,
ymax}

{float, float, float,
float}

...

geo circle 3 {xcenter, ycenter, ra-
dius}

{float, float, float} ...

Table 5. property schemes Table Columns

Column Description

propId the unique identifier of the order property in
property characteristic table or to the identifier of a propagated
property when its orderId is a reserved word.

schemeId the unique identifier of the scheme

listProperties the list of identifiers of the properties associated to
listColumnsNames in the class F

activeScheme a boolean value. true if the scheme is active.

4.3 Representation of Annotations

Two strategies can be used for representing annotations :

– using a distinct binary table for each annotation property:
• the first column resourceId refers to the unique identifier of a resource;
• the second column individuaId refers to the unique identifier of the

ontological instance used to annotate the resource.
Using this representation, one or several joins (depending on the structure
of the data part) will be necessary during query processing to retrieve label
property(ies) value(s) associated to the property defining the order relation;

– using a distinct materialized view for each annotation property containing
resourceId and individualId columns as defined above, but also all the
columns in listColumnsNames labeling scheme representation. Notice that
if materialized views are used, a management policy must be defined for data
updating.

4.4 Queries Processing

Our goal is to support fully automatic numeric reasoning for queries using prop-
erties that have specific characteristic like order relation or propagation by an
order. Each incoming query must then be treated by an OBDB interpreter as
follows:

– identification of the query category: each ontology query must be analyzed
at the ontological level in order to determine whether it involves or not
properties with specific characteristics. This will be done using tables pro-
perty characteristic, property to property and property schemes;

– query interpretation: if the query does not require special treatment, it will
be processed as usual; if not, the query will first be translated into a nu-
meric query using information stored in the tables labeling scheme and
property schemes. This translation also depends on the annotation repre-
sentation. The resulting rewritten query will then be efficiently processed by
the database.

Figure 6 summarizes the different steps followed to process query. Below, we
describes the effective implementation of our approach in OntoDB OBDB.

Check ontology

numeric query resultinitial query
query rewritting query execution

database database

Fig. 6. Query processing steps.

5 Application to the COG Ontology in OntoDB Database

This section describes how our approach has effectively been implemented on the
OntoDB database[7, 18] using the COG ontology by means of the OntoQL query
language [21]. Only the bounding rectangle and the numeric interval labeling
schemes have been implemented. First we briefly present the OntoDB database.

5.1 OntoDB

OntoDB is a type 3 OBDB designed to support evolutions of the ontology
schema, and to offer data access at the ontology level. Currently, OntoDB is
implemented on top of Postgres. It consists of 4 parts. Parts 1 and 2 are the
traditional parts available in all DBMSs, namely the data part that contains
instance data and the meta-base part that contains the system catalog. Parts 3
(ontology) and 4 (meta-schema) are specific to OntoDB. Ontology-based data
are represented in OntoDB using an horizontal approach; one table is created
for each ontological class; its columns consists of a subset of the class applicable
properties (i.e, that include the class in their domain), namely those that are
used by at least one instance of the class. This representation scales well when
numerous properties per instances are used [7].

5.2 Implementation

Class

id name descri superclass

1 Administrative area

2 Document

Object_property

id name descri domain range

3 subdivision 1 1

4 geolocalized in 2 1

Data_property

id name descri domain range

5 name 1 string

6 type 1 string

7 3_bound1 1 int

8 3_bound2 1 int

9 4_xmin 1 float

10 4_xmax 1 float

11 4_ymin 1 float

12 4_ymax 1 float

Ontology part

PROPERTY_TO_PROPERTY

propertyId orderId relationName direction

4 3 propagated by direct

4 *geo_rectangle* propagated by direct

PROPERTY_CHARACTERISTIC

propertyId characteristic

3 orderProperty
range

1

*

1

*

Data_property

range : string

Data_property

range : string

superclass
1

*

superclass
1

*

Class

name : string

descri : string

Class

name : string

descri : string

Property

name : string

descri : string

Property

name : string

descri : string

domain

1 *

Object_propertyObject_property

Ontology model

Fig. 7. COG - OntoDB : ontology part

The COG ontology model is stored in the ontology part of OntoDB. Figure 7
shows the content of the tables of the ontology part using a simplified ontol-
ogy model. This ontology model is instantiated in the meta-schema part, this
allows to automate the generation of the structure of the ontology part using a
model transformation. When the property geolocalized in is inserted in the
property to property table, if the orderId referenced is subdivision and if the
interval labeling scheme is active as the default scheme, then, the system will
automatically add the properties bound1 and bound2, required by the default la-
beling scheme, to its range spatial area. When the property geolocalized in

is inserted again in the property to property table, then, if the orderId refer-
enced is *geo rectangle*, the system checks that properties xmin, xmax, ymin,
ymax are provided in its range spatial area and generates a new line in the
labeling scheme table. We have extended the ontology part of OntoDB with
the tables labeling scheme and property schemes described in section 4.1 and
instantiated them with appropriate information as shown in Figure 8.

LABELING_SCHEME

schemeId numberOfColumns listColumnsNames listColumnsTypes label less_or_eq defaultScheme

5 2 {bound1, bound2} {int, int} interval include TRUE

*geo_recta

ngle*

4 {xmin, xmax, ymin,

ymax}

{float, float, float,

float}

NULL MBRContains FALSE

PROPERTY_SCHEMES

propId schemeId listProperties activeScheme

3 5 {7,8} TRUE

4 *geo_rectangle* {9,10,11,12} FALSE

Fig. 8. COG - OntoDB : system extension of the ontology part

Once the COG ontology model and property characteristics and relationships
have been represented, individuals have also to be represented in the data part
using the OntoDB strategy (table per class representation) as shown in Fig-
ure 9. Labels values for individuals can either be assigned outside the OBDB,
for predefined labeling schemes, or computed automatically by the OBDB, for
topological labeling schemes (e.g. for scheme 5, the interval function is auto-
matically triggered by the system). OntoDB uses the ontological class IDs to
generate the tables names and property IDs to generate columns names in the
data part. This mechanism establishes the link between the ontology part and
the data part. For better readability, we use the names (names of classes, names
of properties, etc.) instead of IDs. Currently, we have only implemented topolog-
ical labeling schemes by numeric interval and geometrical labeling by bounding
rectangle as it is the case for the property geolocalized in and the relation
subdivision. The values of the coordinates of bounding rectangles being not
currently available in the COG ontology, they were fetched from another source
and enter into OntoDB.

spatial area

id name type … bound1 bound2

11 France country 1 12

12 Ile de France department 2 5

13 Paris town 3 4

14 Poitou Charentes department 6 11

15 Poitiers town 7 8
16 La Rochelle town 9 10

Document

id

21

22

23

subdivision

Subdivision1 Subdivision2

France Ile de france

France Poitou Charentes

Ile de france Paris

Poitou Charentes La rochelle

Poitou Charentes Poitiers

Fig. 9. COG - OntoDB : the data part

As mentioned in section 4.3, two strategies can be used to represent anno-
tations. Figure 10 shows the implementation of the two strategies in OntoDB.
In the second strategy using a materialized view, for each annotation only the
values bound1 and bound2 of the individuals are duplicated because scheme 1
(interval) is the active labeling scheme for the property 3 (subdivision).

geolocalized in

RessourceId IndividualName

21 Ile de france

22 Poitiers

23 La rochelle

24 Poitou Charentes

geolocalized in view

RessourceId IndividualName bound1 bound2

21 Ile de France 2 5

22 Poitiers 7 8

23 La Rochelle 9 10

24 Poitou Charentes 6 11

Binary table Materialized view

Fig. 10. COG - OntoDB : representation of annotations

We can now turn to the transformation of queries so that they can be effi-
ciently performed within OntoDB using numeric reasoning capabilities of Post-
gres. The incoming queries (that may be, for instance, rather simple SPARQL
queries as it is done in the eWok-Hub project) are first rewrited as OntoQL
query, an SQL-like query language [21]. Then we have classified incoming queries
in two groups; queries which do not require a special treatment and query
which need to be rewritten. This classification is done referring to the tables
property to property and property scheme as mentioned in section 4.4. Fig-
ure 11 shows an example of query rewriting where an incoming SPARQL query
is rewritten into a numeric query according to the binary table representation
and the materialized view representation.

SELECT doc.uri

FROM document doc,
 unnest(doc.geolocalized_in) as geo

WHERE geo = ‘‘Poitou Charentes’’

USING NAMESPACE “http://rdf.insee.fr/geo/”

SELECT DISTINCT doc.*

FROM document doc, geolocalized_in geo, spatial_area spa, spatial_area as x

WHERE (doc.id = geo.resourceId)
AND (x.name = 'Poitou Charentes') AND (geo.IndividualName = spa.name)

AND (include(spa.bound1,spa.bound2,x.bound1,x.bound2)=TRUE);

PREFIX geo: <http://rdf.insee.fr/geo/>

SELECT ?doc

WHERE { ?doc geo:geolocalized_in ?x .

 FILTER (?x = ‘‘Poitou Charentes’’) }

Materialized view

Binary table
SPARQL query

OntoQL query

SELECT distinct doc.*

FROM document doc, geolocalized_in_view geoview, spatial_area as x

WHERE (doc.id = geoview.resourceId) AND (x.name= 'Poitou Charentes')

AND (include(geoview.bound1,geoview.bound2,x.bound1,x.bound2)=TRUE);

Fig. 11. COG - OntoDB : example query rewriting

6 Conclusion

Realization of the Semantic Web vision requires scalable ontology data manage-
ment tools that perform reasoning operations over ontology-based annotations

in an acceptable response time. In this paper we have first described the current
state of the art of OBDBs that allow to store both ontology descriptions and
instance data in a database. If some OBDB architectures scale quite well for
various applications, reasoning capabilities are mainly provided by representing
explicitly all the facts that may be deduced by a reasoner. This may lead to a
strong storage overhead for real-world applications. As an alternative we have
proposed an approach that consists in enriching the ontology instances used as
annotations with new property values in order to replace deductive reasoning by
numeric (or string-oriented) query processing.

The kind of reasoning we have addressed is both transitive reasoning over
partially ordered sets and reasoning over composition of two properties, the sec-
ond one being transitive. These cases encompass evaluation of taxonomy-valued
properties, subsumption reasoning and spatial and temporal inclusion reason-
ing. We have proposed a framework that allows to characterize such cases at the
ontology level allowing OBDB systems to implement dynamically numeric rea-
sonings when such ontologies are loaded. This framework consists of three pieces
of information, each of them corresponding to extension of existing ontology
models:

– the fact that a property defines an order i.e, transitive, reflexive and anti-
symmetric, or a tree-order i.e, also inverse functional;

– the fact that one property may be propagated by another property that is
transitive;

– a labeling scheme allowing to specify what kind of labeling should be used
to replace deductive reasoning by numeric (or string-valued) reasoning.

Two kinds of labeling scheme exist. Topological labeling schemes correspond
to the various labeling schemes already proposed for tree structured or DAG-
structured data. Such labels may be computed by the OBDB system. Our ap-
proach allows both to specify in a declarative way which particular scheme must
be used for a particular property and to define which default scheme must be
used when no scheme is specified. Geometrical labeling schemes are used for
spatial or temporal reasoning. The labels values must be provided to the system
as properties, but our approach allows to specify which properties must be used
as labels. In both case, the OBDB query interpreter may automatically rewrite
query to make profit of the labeling. This approach has been implemented in the
OntoDB OBDB and we have presented the two approaches that may be used
for rewriting queries.

Acknowledgment. The research described in this project was supported by
ANR under Grant 05RNTL02706, eWok-Hub. The authors want to thanks all
members of the project for fruitful discussions. A particular thanks to Eric
Sardet, CRITT Informatique, who contributed to the design and implementation
on OntoDB.

References

1. Pan, Z., Heflin, J.: DLDB: Extending Relational Databases to Support Semantic
Web Queries. In: Proceedings of the 1st International Workshop on Practical and
Scalable Semantic Systems (PSSS’03). (2003) 109–113

2. Abadi, D.J., Marcus, A., Madden, S.R., Hollenbach, K.: Scalable Semantic Web
Data Management Using Vertical Partitioning. In: Proceedings of the 33rd Inter-
national Conference on Very Large Data Bases (VLDB’07). (2007) 411–422

3. Alexaki, S., Christophides, V., Karvounarakis, G., Plexousakis, D., Tolle, K.: The
ICS-FORTH RDFSuite: Managing Voluminous RDF Description Bases. In: Pro-
ceedings of the 2nd International Workshop on the Semantic Web (SemWeb’01).
(2001) 1–13

4. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A Generic Architecture
for Storing and Querying RDF and RDF Schema. In: Proceedings of the 1st
International Semantic Web Conference (ISWC’02). (2002) 54–68

5. Ma, L., Su, Z., Pan, Y., Zhang, L., Liu, T.: RStar: an RDF Storage and Query
System for Enterprise Resource Management. In: Proceedings of the 30th Interna-
tional Conference on Information and Knowledge Management (CIKM’04). (2004)
484–491

6. Park, M.J., Lee, J.H., Lee, C.H., Lin, J., Serres, O., Chung, C.W.: An efficient
and scalable management of ontology. In: Proceedings of the 12th International
Conference on Database Systems for Advanced Applications (DASFAA’07). (2007)
975–980

7. Dehainsala, H., Pierra, G., Bellatreche, L.: OntoDB: An Ontology-Based Database
for Data Intensive Applications. In: Proceedings of the 12th International Con-
ference on Database Systems for Advanced Applications (DASFAA’07). (2007)
497–508

8. Theoharis, Y., Christophides, V., Karvounarakis, G.: Benchmarking Database
Representations of RDF/S Stores. In: Proceedings of the 4th International Seman-
tic Web Conference (ISWC’05). (2005) 685–701

9. Mei, J., Ma, L., Pan, Y.: Ontology query answering on databases. In: Proceedings
of the 5th International Semantic Web Conference (ISWC’06). (2006) 445–458

10. Volz, R., Staab, S., Motik, B.: Incrementally Maintaining Materializations of On-
tologies Stored in Logic Databases. Journal of Data Semantics II 3360 (2005)
1–34

11. Borgida, A., Brachman, R.J.: Loading data into description reasoners. SIGMOD
Record 22(2) (1993) 217–226

12. Agrawal, R., Somani, A., Xu, Y.: Storage and Querying of E-Commerce Data.
In: Proceedings of the 27th International Conference on Very Large Data Bases
(VLDB’01). (2001) 149–158

13. Christophides, V., Plexousakis, D., Scholl, M., Tourtounis, S.: On labeling schemes
for the semantic web. In: Proceedings of the 12th International World Wide Web
Conference (WWW’03). (2003) 544–555

14. Harris, S., Gibbins, N.: 3store: Efficient Bulk RDF Storage. In: Proceedings of the
1st International Workshop on Practical and Scalable Semantic Systems (PSSS’03).
(2003) 1–15

15. Wilkinson, K., Sayers, C., Kuno, H., Reynolds, D.: Efficient RDF Storage and
Retrieval in Jena2. In: Proceedings of the 1st International Workshop on Semantic
Web and Databases (SWDB’03). (2003) 131–150

16. Chong, E.I., Das, S., Eadon, G., Srinivasan, J.: An Efficient SQL-based RDF
Querying Scheme. In: Proceedings of the 31st international conference on Very
Large Data Bases (VLDB’05). (2005) 1216–1227

17. Petrini, J., Risch, T.: SWARD: Semantic Web Abridged Relational Databases. In:
Proceedings of the 18th International Conference on Database and Expert Systems
Applications (DEXA’07). (2007) 455–459

18. Pierra, G., Dehainsala, H., Aı̈t-Ameur, Y., Bellatreche, L.: Base de Données à Base
Ontologique : principes et mise en œuvre. Ingénierie des Systèmes d’Information
10(2) (2005) 91–115

19. Hayes, P.: RDF Semantics. World Wide Web Consortium. (2004) http://www.w3.
org/TR/rdf-mt/.

20. Wirth, N.: Type extensions. ACM Transactions on Programming Languages and
Systems (TOPLAS) 10(2) (1988) 204–214

21. Jean, S., Aı̈t-Ameur, Y., Pierra, G.: Querying Ontology Based Database Using
OntoQL (an Ontology Query Language). In: Proceedings of On the Move to
Meaningful Internet Systems 2006: CoopIS, DOA, GADA, and ODBASE, OTM
Confederated International Conferences (ODBASE’06). Volume 4275 of Lecture
Notes in Computer Science., Springer (2006) 704–721

