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Abstract
Sensors that collect data from complex systems generate a stream of measurements, for example, measuring CPU utilization
of machines in a data center, gathering meteorological data like atmospheric pressure and humidity levels across the USA,
or tracking the occupancy of taxis in a large city. Downstream systems use the streamed data in a variety of applications,
including training machine learning models and making data-driven decisions as part of automation. This makes data quality
critical and requires detecting significant, unexpected, and rapid changes in indicative features of the streaming data. This
can be done by detecting change points in the stream – points where the underlying distribution of a statistical feature of the
stream fundamentally changes. In this paper, we discuss different types of change points in the data stream – changes that
indicate a potential data quality problem. We present a modular method for combining operations on data streams to examine
data quality in a flexible and adaptable way. Experiments over real-world and synthetic data streams show the effectiveness
of the modular approach in comparison to traditional anomaly detection methods.
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1. Introduction
When monitoring complex systems like cellular net-
works, data centers, cloud infrastructures and content
delivery networks, the monitoring system generates a
data stream of telemetry, such as processing times, data
transfer times, communication latency, CPU utilization,
memory usage, network throughput, and other statistics
that can help to track the health of the system. Moni-
toring is also used for collecting meteorological data for
weather forecasting, traffic data to regulate and mitigate
congestion in highways and highly-used roads, tracking
the operation of machines and facilities, and continuously
gathering data for real-time systems.

Data streams are often analyzed to detect anomalies
and irregularities. Anomalies and irregularities in the
stream may indicate a problem in the underlying system
or may reveal an event that requires intervention. Since
the data in the stream is the basis for critical decisions,
poor data quality may affect those decisions. In addition,
collected data sets are often used for training machine
learning models. The models are trained to learn the
expected behavior of systems and applications. Thus, the
data that is fed into these models in the training process
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should be accurate and representative. This requires
high data quality. Otherwise, the trained models could
be biased or yield inaccurate results. The impact of data
quality on machine learning is discussed in [1].

Maintaining high-quality data is crucial when criti-
cal applications depend on the monitored system or on
models that are trained over the data. This is essential
in applications for forecasting events, and for detecting
security attacks, frauds, outages, and the effect of natural
events like storms on infrastructures and services.

Data quality has many aspects, including complete-
ness (no missing data), consistency (the data does not
lead to contradictory inferences), cleanliness (no noise),
conformity (complying with standards and rules), and
continuity (uniformity in the arrival of the data). Some of
these aspects can be evaluated using standard anomaly
detection tools, but only to a limited extent. Therefore,
there is a need to combine a variety of tools for effective
data-quality assurance.

There are many tools and methods for detecting
anomalies (outliers) in streaming data [2]. Anomalies
are values in the data stream that are significantly dif-
ferent from the values that are expected based on pre-
vious observations. Often, anomalies can indicate that
the system does not function properly. However, most
anomalies are ephemeral and can be ignored because by
the time that they are noticed the system is already back
to normal. So, it is often essential to focus on lasting
changes in the data stream, detect them, and alert on
them. This raises several questions. First, what type of
changes should the system detect? Second, how should
changes be detected? Third, how should the changes be
reported to users in a way that is effective and actionable,
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without overwhelming the user with too many alerts but
also without missing critical alerts?

In this paper our focus is on detection of change points,
that is, points where the underlying distribution of a sta-
tistical feature of the stream changes in a significant, non-
ephemeral, and unexpected way. We present a modular
architecture for change point detection over streaming
data, to provide flexibility and adaptability for a large
variety of data streams and diverse use cases.

The paper is organized as follows. In Section 2 we
discuss related work. Section 3 introduces quality mea-
sures for data streams. In Section 4 we present methods
for detection of change points. Section 5 describes our
modular architecture and its benefits. Section 6 presents
the results of our experimental evaluation. In Section 7
we discuss our conclusions and future work.

2. Related Work
The study in this paper is related to the following three re-
search areas: data quality, anomaly detection and change
point detection. These areas were studied extensively,
however, the approach of a modular change point detec-
tion, which we present in this paper, is novel.

Data quality. Quality measures for data streams have
been studied in different contexts [3, 4, 5, 6]. Klein [7] ex-
amined data quality in sensor data streaming. Karkouch
et al. [8] explored data quality in streams produced by IoT
devices. Brown et al. [9] studied methods for coping with
glitches in spatiotemporal streams by applying smooth-
ing and imputation to data streams produced by spatially
distributed sensors. The importance of empiricism in
data quality studies has been emphasized in [10].

Anomaly detection. Anomaly detection in time series
has received a lot of attention in the literature. Many
different anomaly detection methods have been devel-
oped and tested [11, 12, 13]. See Schmidl et al. [2] for
a recent comparison of many methods. However, point
anomalies are often ephemeral and do not reflect signifi-
cant changes in the stream or data-quality issues. Some
studies of anomalies considered anomalous subsequences
rather than point anomalies. Boniol et al. [14, 15] studied
a method for finding subsequences of a time series that
are the farthest from a normal distribution. However,
their assumption of normal distribution in the data does
not hold in many real-world data streams, like those that
we explore. Moreover, these studies do not focus on data
quality or on change point detection.

Change point detection. Change detection has been
studied for time series [16] and data streams [17, 18, 19],
however, these methods were not designed for data qual-
ity measures and do not explore the modular approach
that we present in this paper.

3. Quality Measures over Streams
In this section we provide formal definitions and present
the problem of discovering changes in the underlying dis-
tribution of quality measures over a data stream. Unlike
time series with a bounded number of points, streams
often have high volume, velocity, variety and veracity,
so quality measurements should be adapted to streams,
accordingly [20]. We present examples and illustrate
our method based on real data taken from the Numenta
Anomaly Benchmark1, e.g., a sequence from a stream of
Taxi occupancy in The Twin Cities.

A data stream is a sequence of measurements 𝑆 =
𝑚1,𝑚2, . . . where each measurement 𝑚𝑖 = (𝑡𝑖, 𝑥𝑖) is
a pair of valid time 𝑡𝑖 and measured value 𝑥𝑖. The valid
time 𝑡𝑖 is the time when the value 𝑥𝑖 was measured. The
time when the measurement is processed as part of the
stream is considered as transaction time. The delay 𝛿𝑖 of
measurement 𝑚𝑖 is the difference between the valid time
and the transaction time.

For a time series where all the measurements are given
a priori, computing statistics like mean and variance is
simple. But for streaming data, new values arrive contin-
uously and the statistics changes frequently. So, values
like mean and variance should be based on recent values
in the stream, not on the entire history. This can be done
using a sliding window [21] or a decaying mean [22, 23].

Sliding window. When using a sliding window 𝑊
of size 𝑤, at time 𝑖 ≥ 𝑤, the sub-sequence 𝑆𝑖[𝑤] =
𝑥𝑖−𝑤+1, 𝑥𝑖−𝑤+2, . . . , 𝑥𝑖 of the stream 𝑆 comprises the
most recent 𝑤 values in the stream up to measurement
𝑚𝑖. The mean 𝜇𝑖, variance 𝜎2

𝑖 , standard deviation 𝜎𝑖,
median 𝜈𝑖, and other statistics of 𝑆𝑖[𝑤] are computed in
the usual way. Since for each measurement 𝑚𝑖 there is a
different window, the statistics of 𝑆𝑖[𝑤] may be different
from the statistics of 𝑆𝑖′ [𝑤

′] when 𝑖 ̸= 𝑖′ or 𝑤 ̸= 𝑤′.

Decaying mean and variance. A decaying mean 𝜇𝑖 is
computed with a decay parameter 0 < 𝛼 ≤ 1, such that
𝜇1 = 𝑥1 and for 𝑖 > 1, 𝜇𝑖 = 𝛼𝑥𝑖 + (1 − 𝛼)𝜇𝑖−1. We
refer to the residual at time 𝑖 as the difference 𝑥𝑖 − 𝜇𝑖,
where 𝑥𝑖 is the measured value at time 𝑖 and 𝜇𝑖 is the
decaying mean at that point. The decaying variance at
time 𝑖 is the average over the squared residuals, that is,
𝜎2
1 = 0 and for 𝑖 > 1, 𝜎2

𝑖 = 𝛼(𝑥𝑖−𝜇𝑖)
2+(1−𝛼)(𝜎2

𝑖−1).

Point outlier. A point outlier is a value that significantly
exceeds the expected value, e.g., a value 𝑥𝑖 that is above
or below the mean by more than 2.5 standard deviations,
|𝑥𝑖 − 𝜇𝑖| > 2.5𝜎𝑖. Outliers could indicate a volatile
data quality problem. In Fig. 1, the red dots are outliers
returned by the kNN outlier detection method.

Data quality. Various data quality issues can be detected
based on changes in the statistical properties of a data

1https://github.com/numenta/NAB
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Figure 1: A sequence of streaming data with the occupancy
of taxis in New York City. Outliers are marked by red dots.

stream. Some of the characteristics of the stream can
be measured using the moments of the distribution, of
the measured values, or of the delays. Commonly, for a
random variable 𝑋 , the 𝑛-th moment is 𝐸[(𝑋−𝜇)𝑛]

𝜎𝑛 , i.e.,
the normalized expectancy of the residuals to the power
of 𝑛. The following are measurable changes in a data
stream that can be evaluated using moments.

∙ Level Shift in Value (first moment). A significant change
in the values of measurements can be the result of a data-
quality problem. For example, in a system that monitors
temperatures, an unexpected lasting increase or decrease
in the measured values can be the result of a calibration
issue or malfunction of sensors. In Fig. 1, there is a level
shift around the date of September 12.

∙ Level Shift in Variance (second moment). A significant
change in the variance of measurements can be the result
of noise. The noise could affect measurement accuracy
and impact the data quality. For example, noise could be
the result of partial interference to a sensor.

∙ Level Shift in Skewness (third moment). The skew mea-
sures the symmetry of the distribution. It can be mea-
sured as the distribution of the differences 𝜇𝑖 − 𝜈𝑖 be-
tween the mean and median values. It may reflect bias
that affects data quality.

∙ Changes in Volume. The volume is the number of mea-
surements that arrive at each time interval. Unexpected
changes in the volume may indicate that some measure-
ments are missing, duplicated or arrive from data sources
that should not be included in the stream.

∙ Delayed Data (first moment). The measurements may
arrive one by one or in a batch. The delay is the difference
between the valid time and the transaction time of the
measurement. A significant increase in the difference
may indicate that something is delaying the data arrival,
which may lead to missing data, data points that arrive
out of order or measurements that arrive too late for
some online applications.

∙ Varying Delay (second moment). A change in the vari-
ance of the delay indicates that measurements are ar-
riving inconsistently. This can often cause data loss or
improper data processing by downstream applications.

∙ Skewness of Delay (third moment). The delay may be-
have somewhat like an asymmetric wave and the skew
will indicate whether the problem is increasing or de-
creasing.

∙ Outlier Rate. In many cases, the rate of point outliers
is an indicator of data quality problems, e.g., jitter in a
communication network. In some systems it is expected
to have a few glitches and anomalies from time to time.
But a major increase in the rate or concentration of point
outliers is regarded as a data quality issue.

The goal is to apply data quality measurements in an
effective and modular way and raise an alert when there
are significant changes in the stream for the relevant data
quality measures.

4. Detecting Changes in a Stream
Data streams and their statistical properties vary and
depend on the application. In this paper we suggest
a modular approach for anomaly detection over data
streams. Each module receives a stream of data items and
returns a stream of data items. A modular architecture
is achieved by combining different modules such that
the output stream of one module is the input of the next
module. In this section we define some of the modules
and their composition.

Value extraction. Given the initial stream 𝑆, the first
module extracts the statistical values that we want to
measure. For example, we can extract from the stream of
measurements a stream of values 𝑥1, 𝑥2, . . ., a stream of
delays 𝛿1, 𝛿2, . . ., a stream of mean values 𝜇1, 𝜇2, . . ., a
stream of variance or skew for measured values or delays,
a stream of point outliers, and so on. The residuals for
computing the mean, the variance or the skew can be
based on a sliding window or a decaying mean.

Smoothing and imputation. In some cases, we may
want to apply smoothing or convolution to emphasize
certain features of the stream. Smoothing can be done in
different ways, e.g., by replacing values with smoothed
values 𝑠1, 𝑠2, . . . based on a moving average and a trend
factor 𝛽, where 𝑠1 = 𝑥1, 𝑙1 = 𝑥2−𝑥1, 𝑠𝑖 = 𝛼𝑥𝑖+(1−
𝛼)(𝑠𝑖−1 + 𝑙𝑖−1) and 𝑙𝑖 = 𝛽(𝑠𝑖 − 𝑠𝑖−1) + (1 − 𝛽)𝑙𝑖−1

for some 0 < 𝛼 < 1 and 0 < 𝛽 < 1. Seasonality can
also be included in the smoothing using Holt Winters
smoothing [24]. Smoothing can also be executed using
Kernel Density Estimation (KDE) [25], by applying a
kernel function to the stream.

Predicted values using a moving average, Holt Winters
exponential smoothing, ARIMA and other forecasting
methods can be used for imputation of missing values
to create a stream that is more complete if the next step
of the processing is by a method that does not cope well
with missing values.



Figure 2: Consecutive windows for distribution comparison.

Figure 3: The Earth Mover’s Distance for sliding consecutive
windows over the sequence in Fig. 2.

Figure 4: Applying rolling Z-score to the Earth Mover’s Dis-
tance in Fig. 3. Outliers are depicted as red dots.

Distribution comparison with moving windows. A
comparison of the underlying distribution is executed
for two consecutive moving windows. By measuring
the distance between the distributions, we get a new
stream of values. Formally, given the stream 𝑆, let
𝑥𝑖+1−𝑤, 𝑥𝑖+2−𝑤, . . . , 𝑥𝑖 be 𝑤 values of window 𝑆𝑖[𝑤],
and let 𝑥𝑖+1, 𝑥𝑖+2, . . . , 𝑥𝑖+𝑤 be 𝑤 values of window
𝑆𝑖+𝑤[𝑤]. Note that 𝑆𝑖[𝑤] and 𝑆𝑖+𝑤[𝑤] are consecu-
tive windows. The distributions 𝐷𝑖[𝑤] and 𝐷𝑖+𝑤[𝑤] of
the values in the windows 𝑆𝑖[𝑤] and 𝑆𝑖+𝑤[𝑤] are com-
pared by computing the distance between them. It can be
done using Earth Mover’s Distance (EMD), also known as
Wasserstein distance, Jensen–Shannon divergence, Kull-
back–Leibler divergence, etc. For every 𝑖, the difference
between the distributions 𝐷𝑖[𝑤] and 𝐷𝑖+𝑤[𝑤] yields a
value 𝑑𝑖, and the result is a sequence 𝑑𝑖, 𝑑𝑖+1, 𝑑𝑖+2, . . .,
that is, a stream of differences between the distribu-
tions. Extreme values in this stream indicate a significant

Figure 5: Change in variance for the taxi occupancy stream
around September 12.

Figure 6: The kNN outliers over the rolling variance for the
sequence in Fig. 5.

Figure 7: EMD of sliding windows over the sequence in Fig. 5.

change in the distribution, i.e., a change point.

Rolling Z-score. In each stream, including the stream
that is produced by the comparison of distributions over
the sliding windows, we can find extreme values by using
Z-score with respect to the moving average, or by some
other anomaly detection method. The extreme values are
clustered, to prevent a burst of alerts. In Fig. 4 we see the
rolling Z-score as the blue line and the extreme values as
a cluster of red dots.

Combining modules. In figures 5-8 we see how a com-
position of modules is applied to detect a level shift in
the variance. Fig. 7 shows the stream that is produced by
applying EMD to the two rolling consecutive windows.
Note that there are two large peaks or elevated parts
of the sequence. One is at the beginning of the change
and the other is at the end of it. Fig. 8 shows the rolling
Z-score and the extreme values when applied to the se-
quence in Fig. 7. We can see the effectiveness of detecting
the change point in comparison to ordinary anomaly de-
tection, e.g., kNN anomaly detection as depicted in Fig. 6.

Early detection. The comparison of two windows of
size 𝑤 may lead to a delay in detection. For measurement
𝑚𝑖 = (𝑡𝑖, 𝑥𝑖), the comparison of the window 𝑆𝑖[𝑤] of 𝑤
values that precede 𝑚𝑖 and the 𝑤 values of 𝑆𝑖+𝑤[𝑤] that



Figure 8: Change point detection by computing rolling Z-
score over the EMD sequence of Fig. 7.

Figure 9: Composition of components into a chain to discov-
ers change points in the data stream.

follow 𝑚𝑖, requires waiting for 𝑤 measurements to be
delivered in the stream after seeing 𝑚𝑖. This delay can
be mitigated by computing an estimation of the distance
between the distributions and issuing a warning if the
estimation indicates high likelihood for a change point.

Let 𝑓𝑑(𝑊1,𝑊2) be a function that computes the dif-
ference in distribution for two windows. To assess
the distance early, we define function 𝑒(𝑖, 𝑗) that esti-
mates 𝑓𝑑(𝑆𝑖[𝑤], 𝑆𝑖+𝑤[𝑤]) after seeing measurements
𝑚𝑖, . . . ,𝑚𝑗 , for 𝑖 < 𝑗 < 𝑖+ 𝑤. The estimated value is
the distance between the window 𝑆𝑖[𝑤] and the window
𝑊𝑖,𝑗 = 𝑆𝑖+𝑗 [𝑗] that contains the values 𝑥𝑖+1, . . . , 𝑥𝑗 .
Earlier estimations are based on fewer values so they are
less accurate. But they may provide an early indication
of the change and trigger a warning that there is high
likelihood for a change point.

5. Modular Architecture
In this paper we suggest a modular architecture for
change point detection. In a modular architecture, the
components receive a stream of values and produce a
stream of values, so components can be composed in
different ways, dynamically. Typically, processing is in a
chain-like structure where the first component receives
a stream of measurements as the input and the last com-
ponent yields a stream of alerts, as illustrated in Fig. 9
and Fig. 10.

There are several benefits to the modular approach.

Figure 10: Examples of chains of components, as in Fig. 9.

One is reusing components, e.g., in Section 4, modules
for computing EMD or rolling Z-score were applied to
measurement values and to variance values. Hence, the
same modules can be reused in different change point
detection tasks.

Another benefit of the modular approach is dynamic
composition of components. Modules can be added, ad-
justed or removed from a chain to accommodate changes
in the streaming data. For example, consider two chains
𝐶1 and 𝐶2 of components. Chain 𝐶1 designed for de-
tecting level shift comprises (1) extracting measurement
values 𝑥1, 𝑥2, . . . from the stream, (2) applying EMD to
the extracted values, and (3) using rolling Z-score for
finding change points. Chain 𝐶2 is the same as 𝐶1 ex-
cept that in the first step it extracts the residual values
|𝑥1 − 𝜇1|, |𝑥2 − 𝜇2|, . . . and finds change points for the
variance. In this case, if a significant increase in the vari-
ance is detected by 𝐶2, the system can add an initial
component to 𝐶1 for smoothing the values 𝑥1, 𝑥2, . . .
before applying level-shift detection. This reduces the
noise caused by the large variance to prevent an unde-
sirable effect on the level-shift detection. If a detection
of missing values is applied, a detected increase in miss-
ing values may lead to adding an imputation module to
chain 𝐶2 so that the missing values will not affect the
monitoring of the variance.

In some cases, we could have trees instead of linear
chains, where the stream of a component can be directed
to two or more branches (sub-chains). A composition
may form a DAG when some components aggregate or
combine the results of two or more streams.

Selecting the components and the order in which they
are composed can be done based on a labeled ground
truth. The system architect will examine typical data
quality issues in the use case the system is built for
and will try different combinations of modules, to find
the combination that provides the best detection accu-
racy. This process can be automated so that the system
could check the detection chains periodically against the
ground truth and the best combination of modules will
be selected and used.

We implemented the modules in Python on top of
Databricks, to utilize the large distributed storage and
computation capacity of Spark and have the flexibility
of Python and Databricks notebooks. The modular ap-



Figure 11: EMD and Z-score over the CPU utilization stream.

Figure 12: kNN over the CPU utilization stream.

proach can also be implemented over stream processing
systems like Apache Flink [26] by leveraging the stream
processing API they provide. This would automatically
add data-quality capabilities to these systems.

6. Experimental Evaluation
We conducted an experimental evaluation to (1) show
the effectiveness of our method for change point detec-
tion, in comparison to ordinary outlier detection, and
(2) demonstrate the benefits of the modular design when
combining and reusing components.

Data. In the experiments we used real data from Nu-
menta Anomaly Benchmark and streamed the measure-
ments. To have ground truth, we inserted data-quality
issues into the time series, like adding to selected regions
a level shift, noise, outliers, gaps, delays, etc. This gave
us the ability to distinguish between true positive cases,
at a change point, and false positive cases, not near a
change point. We present experiments with two data
sets. (1) Taxi is real taxi occupancy data collected in
2015, in the Twin Cities Metro area, Minnesota. (2) CPU
Util. is CPU utilization at an AWS cluster.

Methods. We used different combinations of compo-
nents. As a baseline we used kNN – the kNN unsupervised
outlier detection method. It finds the closest 𝑘 nearest
neighbors for every data point and measures the average

distance. The points with the largest distance from the
population are the selected outliers. We executed kNN
with a contamination rate of 0.05, that is, under the as-
sumption that about 5% of the points are outliers. EMD
and JSD are Earth Mover’s distance and Jensen Shannon
Divergence. They were executed with two sliding win-
dows of size 𝑤 = 100. Z-score is a rolling of Z-score
based on a moving average. ARIMA is an ARIMA predic-
tion model trained on the first 15% points of the data. As
an outlier detection method, ARIMA returns the points
where there is a large distance between the prediction
and the observed value.

Evaluation. We computed for the different methods
their precision (the percentage of correct detection cases
out of all detection cases), recall (the percentage of cor-
rect detection cases out of all the true cases), percentage
of false positive cases out of all positive cases, and the
number of false positive cases. This shows how many
false alerts could be raised. Note that too many alerts can
lead to a case where alerts are ignored [27], i.e., an alert
fatigue, so we want to avoid false alerts.

Results. The results show the effectiveness of detecting
change points using the combined components. Table 1
shows that by executing EMD combined with Z-score on
the modified CPU stream (Fig. 11) the detection has much
higher accuracy than kNN (Fig. 12). Note that kNN has a
large number of false detection cases, because it detects
point outliers that are not part of a change point.

In most of our tests all the change points were detected,
i.e., an alert was raised at or near the change point. In
these cases the recall was 1. Note that change points
are noticeable in the time series that we explored, so
preventing false positive cases in these tests is a greater
challenge than preventing false negative cases. The mod-
ular approach can be used to create chains with varying
sensitivity to false positive or false negative, according
to the application and the features of the data stream.

The results for detecting variance shifts are presented
in Table 2. Note that for variance level shift, kNN gener-
ates too many false alerts. When using EMD combined
with Z-score, the detection has high precision and high
recall, however, with JSD the combined method does not
detect the level shift and has low recall, because JSD is
designed for categorical data and not for metric data.

Table 3 presents the results of detection of a shift in
the frequency of point outliers. We can see in Table 3 that
applying a rolling window for counting the frequency of
outliers detected by kNN combined with Z-score does not
have high accuracy. This is because kNN generates too
many anomalies, not just near the change point. When
executing ARIMA as an outlier detection, the accuracy
is still low. However, when executing a rolling window
that counts the outlier frequency detected by ARIMA and
applying Z-score to the result we get a precision of 0.85.



Table 1
Detection of a level shift.

Data set Method Precision FP rate Recall False Alerts

CPU Util. kNN 0.52 0.04 1 95
CPU Util. EMD/Z-score 1 0 1 0
Taxi kNN 0.86 0.02 1 28
Taxi EMD/Z-score 1 0 1 0

Table 2
Detection of a variance level shift.

Data set Method Precision FP rate Recall False Alerts

Taxi var/kNN 0.05 0.06 1 145
Taxi var/EMD/Z-score 1 0 1 0
Taxi var/JSD/Z-score 0 0 0 0

7. Discussion
Detecting data quality issues in streaming data is chal-
lenging because (1) the data can frequently change, (2) not
all of the data is available while it is streaming and (3) data
quality can be affected by delays or changes in the under-
lying distribution of data arriving from the applications
that generate the data. However, many data quality issues
can be discovered as change points in the distribution of
a statistical measure.

There are different types of statistical measures, data
types, and data quality issues. Instead of developing a
completely independent method for each case, we sug-
gest a modular approach in which basic statistical com-
ponents over streams can be combined and reused for
detection of change points. We show in this paper that
the combined components are much more effective than
traditional methods for point outliers. We show results
for kNN but we also tested other outlier detection meth-
ods, including ARIMA, Z-score, and Histogram-Based
Outlier Scoring (HBOS), and got similar results. When
using traditional outlier detection methods over real data
there are too many outliers and creating an alert when-

ever an outlier is detected could overwhelm the users
and make them ignore alerts (“The Boy Who Cried Wolf”
effect [27]). Thus, it is essential to only raise alerts when
there are significant change points. In this paper we
show that our modular approach is effective at detecting
change points without raising too many false alerts.

One of the limitations of change point detection is that
it may miss concept drifts (changes over time in unfore-
seen ways) [28]. Detection of concept drifts may require
a complementary method, so further study is needed.

While the modular method presented in this paper
provides a promising direction for the detection of data
quality issues over streaming data, more study is needed
over a larger variety of data streams and for additional
use cases. Future work includes the development of a
method that could help users select the best combination
of components and of parameters for their streaming
data use cases. Future work also includes exploring the
approach of ranking alerts based on the length and com-
plexity of the chain used for the detection. The premise is
that simpler chains may detect more noticeable changes,
and thus, changes detected by simple chains should have
higher priority than detections by complex chains.

Table 3
Detection of a level shift in the outlier rate.

Data set Method Precision Recall FP rate

Taxi kNN/freq/Z-score 0.19 1 0.04
Taxi ARIMA/Z-score 0.27 1 0.01
Taxi ARIMA/Z-score/freq/Z-score 0.85 1 0.01
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