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Abstract

In the last decades, one of the main drivers for organizational success has been data-driven decision-making: strategic
decisions are based on data analysis and interpretation. In this scenario, relying on dependable results becomes imperative.
Therefore we must ensure that input data have good quality and the algorithms on which the analysis is based are fair: in
general, Data Quality (DQ) and Data Ethics (DE) should be guaranteed.

However, maximizing DQ and DE simultaneously is non-trivial, since DQ improvement techniques can negatively affect
DE and vice versa. Discovering which relationships exist between DQ and DE and thoroughly analyzing it is therefore
of paramount importance. The goal of this paper is to study whether, in a given context, there is a trade-off between DQ
and DE: specifically, we consider the Completeness dimension of DQ, and the Fairness dimension of DE. The results of our
experiments, based on two real-world well-known datasets, provided details about this trade-off and allowed us to draw some

guidelines.
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1. Introduction

In the last decades, data-driven culture spread in several
domains. The availability of large amounts of data and
algorithms has made our lives more efficient and easier,
and strategic decisions are made based on data analysis
and interpretation; therefore, relying on dependable re-
sults becomes imperative. We need to be sure that the
data sources have good quality and the algorithms on
which the analysis is based are fair and do not introduce
bias in the decision process.

In fact, on the one hand, the performance of Machine
Learning (ML) algorithms may be, for example, seriously
affected by the poor quality of the training data [1]: in-
accurate, incomplete, and inconsistent data may produce
poor analysis results. Therefore, in addition to the well-
known storage and processing problems related to data
collection, addressing Data Quality (DQ) has become a
fundamental issue [2, 3]. The most used DQ dimensions
are Accuracy, Completeness, Consistency, and Timeli-
ness [2]: Accuracy is the extent to which data are correct,
reliable and certified; Completeness is the degree to which
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a given data collection includes the data describing the
corresponding set of real-world objects; Consistency is
the satisfaction of semantic rules defined over a set of
data items; and Timeliness expresses how current the
data are for the task at hand.

On the other hand, when Data Science is used to build
decision-making tools that impact people’s lives, the
problem of Data Ethics (DE) becomes critically important.
Even the most accurate application for collecting data
might be affected by ethical issues since also high-quality
data might lead to unfair outcomes. In [4], the authors
note that, for Data Science to be reliable, DQ should also
include some ethical dimensions because, in many critical
fields, data can be considered of good quality only if com-
pliant with high ethical standards. The authors propose
to include the most common ethical requirements among
the dimensions of quality, grouped in an Ethics Cluster:
Fairness, defined as the lack of bias, since an algorithmic
bias might result from training a system with biased data;
Transparency, the possibility to control the knowledge
extraction process to verify the reasons of the results;
Diversity, the degree to which different kinds of objects
are represented in a dataset; and finally, Data Protection
that concerns the ways to protect data, algorithms, and
models from unauthorized access.

It is already well known that there may be contrasting
objectives also among the dimensions of DE, for instance,
between Transparency and Data Protection. In the same
way, the relationship between the DQ dimensions [2],
and the ethical ones is complex. For example, commonly
used DQ improvement techniques —e.g., imputing miss-
ing values using the mean value— might modify the over-
all distribution of values in the dataset, leading to a reduc-
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tion of Fairness; on the other hand, some Bias Mitigation
techniques modify real data values to remove unfairness,
thus lowering Accuracy, which is a fundamental dimen-
sion of DQ. However, there are also contexts in which
the user does not care about Fairness, like in the analysis
of sensors data or in forecasting raw-material prices. In
these cases, we do not have protected attributes (e.g., sex,
race, ethnicity, etc.) and not even proxy ones (e.g., edu-
cation, zip code, etc.). Moreover, in some applications,
differences in treatment and outcomes among different
groups are justified and explained: for example, dispro-
portional recruitment rates for males and females might
be explained by the fact that more males have higher
education [5], thus not always Fairness is an issue.

This research aims to study if, in a given context, a
trade-off between Data Quality and Data Ethics exists
and, in this case, give guidelines to the user according to
that specific context. In this paper, we focus on the Com-
pleteness dimension of DQ, and on the Fairness dimension
of DE. To this aim, we have designed experiments that
take a dataset as input and perform an assessment of
these dimensions before and after applying some oper-
ations that should improve them. The rest of the paper
is organized as follows: Section 2 summarizes related
work, while Section 3 introduces preliminary concepts of
both areas of Data Quality and Data Ethics and describes
the method we used to analyze the relationship between
Completeness of DQ and the Fairness dimension of DE;
Section 4 presents the experiments we conducted on a
real-world dataset, and Section 5 concludes the paper.

2. Related Work

Research studies on the relationship between DQ and
DE are in a very preliminary phase. In this section, we
will first present seminal works on Fairness and then
introduce two first attempts at studying its important
relationship with Completeness. We do not focus on DQ
systems since, in this paper, we will resort to well-known
and established DQ definitions and techniques [2].

In the literature, one of the most notable solutions
aiming to measure and enforce Fairness is Al Fairness
360 [6], an open-source framework. It aims to mitigate
data bias, quantified using different statistical measures,
by exploiting pre-processing (i.e., procedures that, before
the application of a prediction algorithm, make sure that
the learning data are fair) techniques and statistical mea-
sures to solve bias in the dataset. Similarly, Fairlearn [7],
another pre-processing, open-source, community-driven
project, aims to help data scientists improve Fairness of
their ML systems by means of statistical Fairness metrics.
Both papers focus on techniques that manipulate the data
to make them fairer; however, they do not consistently
consider the impact that their techniques have on DQ.

A system that considers also DQ is described in the
paper by Abraham et al. [8], who proposed FairLOF, a
Fairness-aware outlier-detection framework. This work
starts from the fact that underrepresented groups, al-
though relevant in the dataset, could be identified as out-
liers, and specifically, on calibrating the so-called local
outlier factor, by means of which a fairer outlier detec-
tion is possible. Though this system actually focuses on
a specific problem, it can be considered a starting point
for studying the relationship between DQ and DE. A
similar system has been presented by Biswas et al. [9],
whose goal is to investigate the impact of data prepa-
ration pipelines on algorithmic Fairness, focusing on
deep-learning techniques. The authors conduct a de-
tailed evaluation of several Fairness metrics applied to
different deep-learning applications and discover that
many data preparation actions can introduce bias in the
data and, consequently, in the final prediction. However,
they do not employ any Fairness improvement technique
inside their pipelines, considering only how DQ tech-
niques impact Fairness, and not vice versa.

Guha et al. [10] conducted a study to investigate
whether errors, e.g., missing values, outliers, and la-
bel noise, can be related to demographic characteristics.
Moreover, they investigate if automated data cleaning
actions could impact Fairness. In their study, they dis-
covered that tuples related to disadvantaged groups were
more affected by the presence of missing values; instead,
the number of mislabeled data was lower in the disadvan-
taged groups w.r.t the privileged ones. Moreover, they
proved that, in general, the probability that automated
data cleaning contributes to worsening Fairness is higher
w.r.t. improving it. Finally, there is a work on the specific
relationship between Fairness and missing values [11].
We discuss our diverse settings in Section 4.2.3.

3. Experiment Design

This section presents the method we used to investigate
the relationship between DE w.r.t. Fairness, and the DQ,
w.r.t. the Completeness. Figure 1 schematizes the typical
Data Science pipeline used to derive knowledge from data.
The pipeline begins with the Acquisition and Extraction
step: the information relevant to the data-science task is
collected. The second step of the pipeline aims to solve
the Data Quality issues: DQ Improvement and Annotation
procedures are used to “sanitize” the data sources in such
a way as to make them complete, correct and consistent.
In the third phase, if needed, Data Integration provides a
unified view of the data sources acquired in the first phase.
Finally, in the last two steps, the predictive models are
learned (Analysis and Modeling), and data and results are
visualized (Visualization and Evaluation). We position
our solution between the first and second step of the
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Figure 1: Data Science Pipeline

Data Science pipeline. Before describing the work, we
introduce some preliminary theoretical concepts related
to various DQ and DE aspects.

3.1. Preliminaries

Data Quality (DQ) is defined as “fitness for use,” i.e.,
the ability of a data collection to meet the user require-
ments [12]. Data Quality is a multi-dimensional concept:
a DQ model is composed of DQ dimensions representing
the different aspects to be considered (i.e., errors, du-
plicates, format errors, typos, or missing values). The
experiments concentrate on the Completeness DQ di-
mension. Completeness characterizes the extent to which
a dataset represents the corresponding real-world. For
instance, in a relational database, Completeness is strictly
related to the presence of null values. A simple way to
assess the Completeness of a table is to calculate the ratio
between the number of non-null values and the number
of cells in the table. It is important to specify that we also
use the Accuracy dimension to evaluate the resulting data
correctness. Accuracy is, in fact, defined as the closeness
between a data value v and a data value v’, considered as
the correct representation of the real-life phenomenon
that the value v aims to represent. It is associated with
syntactic and semantic issues that might create a discrep-
ancy between the value stored in the dataset and the
correct value. How each of these two dimensions is used
will be explained in the description of the method.
Fairness whose most used definition is: “the absence
of any prejudice or favoritism toward an individual or
a group based on their inherent or acquired characteris-
tics” [13, p.100], is one of the most important dimensions
of Data Ethics (DE). Fairness is based on the concept of
protected or sensitive attribute. A protected attribute is
a characteristic for which non-discrimination should be
established, such as religion, race, sex, and so on [14]. A
protected group is a set of individuals identified by hav-
ing the same value of a protected attribute (e.g.: females,
young people, Hispanic people). There is no unique met-
ric of Fairness, but many facets exist, and a model is con-
sidered fair if it satisfies some or all these metrics. The

most used technique to identify unfairness in datasets is
to train a classification algorithm to predict the binary
value of the target class that can be a positive outcome
like obtaining a loan or having a high income, or a nega-
tive outcome like not obtaining a loan or having a low
income; and then use Fairness metrics to understand
whether the prediction of this model encompasses dis-
crimination for the protected group: if the metrics re-
sults show discrimination, we can conclude that also the
dataset contains unfair behaviors since the model learned
the bias from it. Specifically, we measure the importance
of protected attributes in determining the result of the
model. The following statistical metrics study how spe-
cific values of the protected attributes impact the result of
the prediction algorithm (e.g., women are very frequently
associated with salaries lower than 50k$/year, while men
earn more than 50k$/year). Informally: Disparate Impact
Ratio is the probability to get a positive outcome regard-
less of whether the person is in the protected group [15];
Predictive Parity Ratio evaluates if both protected and
unprotected groups have equal probability that a group
member with positive predictive value belongs to the
negative class [14]; False Positive Ratio: evaluates if the
probability of having a false positive prediction is the
same for all protected groups [14].

3.2. A Method to analyze the DQ and DE
tradeoff

This section presents the two pipelines we defined to
execute the experiments. In the first one, which can be
applied to datasets affected by ethical issues and ethics-
compliant datasets, we injected errors in the input dataset,
causing data quality issues, and then applied DQ improve-
ments techniques, measuring their impact on DE. In the
second pipeline, we applied DE improvement techniques
to a dataset affected by ethical problems and measured
their impact on DQ. Through these results, we studied
the trade-off between DQ and DE. In our experiments,
we considered the trade-off between the Completeness
DQ dimension and the Fairness DE dimension, while the
Accuracy DQ dimension is used to evaluate the final DQ
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Figure 2: The method adopted

level in both pipelines. We used the Adult Census Income
dataset! and the German Credit dataset® and considered
‘sex’ as the protected attribute. Since the Adult Census
Income dataset already contains bias w.r.t. the income of
US citizens, injecting further bias to perform the experi-
ments was not necessary, therefore, we used it in both
pipelines. The German Credit dataset, instead, is not af-
fected by bias - thus, we could not apply Bias Mitigation
techniques, and we tested it only in the first pipeline.
The first operation, performed in both pipelines, is the
Ethical Evaluation, in our case based on a classification
algorithm that computes the Fairness level of the dataset.
For the DQ level, we already knew that it was 100% for
both datasets. We now describe the two pipelines shown
in Figure 2.

DQ-Oriented Experiments. The input dataset was free
of DQ problems. For this reason, we had to inject errors
in order to evaluate the impact of the DQ improvement
techniques. In our case, to affect Completeness, we re-
placed existing values with null values. By injecting a
different percentage of uniformly distributed DQ errors®
(from 90% to 0%, with a decreasing step of 10%) the Error
Injection phase generates ten instances of the original
dataset, at different levels of quality. These ‘dirty’ ver-
sions are the input of the DQ Improvement phase, in
which a DQ improvement technique is applied. In our
case, an Imputation technique was selected. The ten re-
paired datasets obtained as output were analyzed in the
Final Evaluation phase, to check the impact of the DQ
improvement on the Fairness and Accuracy measures,
used to evaluate respectively the lack of bias and the data
correctness. This procedure was repeated for different

Thttps://archive.ics.uci.edu/ml/datasets/adult

%https://archive.ics.uci.edu/ml/datasets/statlog+(german-+credit+
data)

3Related to a specific DQ dimension

Imputation methods. The pipeline output is the Suggested
DQ Improvement step in which we suggest the best DQ
improvement technique based on Accuracy and Fairness
results. The final users can choose the Imputation tech-
nique with the minimum impact on Fairness according
to their preferred trade-off.

DE-Oriented Experiments. Also in this case the input
dataset was free of DQ problems. As regards Fairness, we
did not have an error-injection phase since, this time, the
considered dataset (Adult Census Income) was already
biased. The DE Improvement phase consisted of applying
a Bias Mitigation Technique to remove unfairness. Also
here, the repaired dataset was analyzed in the Final Eval-
uation phase, both Fairness and Accuracy are measured,
repeating this phase for all the selected Bias Mitigation
techniques. Some of these techniques, since they act
by directly replacing the data values with other (fake)
values, also allow controlling the amount of bias repair
executed. For example, Correlation Remover [7], fully de-
scribed in the next section, modifies the actual values to
minimize the correlation between the feature attributes
and the sensitive ones. The output of the pipeline is the
Suggested DE Improvement step in which we propose the
best DE improvement technique based on both DQ and
DE evaluation results. The final users can choose the
Bias Mitigation technique having the minimum impact
on Accuracy according to their preferred trade-off.

4. Experiments

In this section, we first introduce the experimental setup
and then describe the results, both from the DQ and the
DE perspectives.
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4.1. Experimental setup

DQ Improvement phase. In this paper, we consider
three Data Imputation techniques: Density-based, where
missing values are imputed for each feature with the same
distribution of the non-empty values; Mode Imputation,
where the most frequent value is imputed; and Rare-
based, where the less frequent value is imputed.

Bias Mitigation phase. Three Bias Mitigation tech-
niques are proposed to remove the unfairness from data.
The first one, Correlation Remover [7], removes the neg-
ative correlation between the protected attribute and the
classification label by modifying the non-protected at-
tributes that are in turn correlated with the protected one:
mathematically speaking, it poses a minimization prob-
lem on the correlation between the feature attributes
and the sensitive ones by centering the sensitive val-
ues, training a linear regressor on the non-sensitive ones
and reporting the residual. The second one is Learn-
ing Fair Representation [6], which maps each data tuple
(corresponding to an individual) to a ‘prototype’, an ar-
tificial representation of the data containing the same
protected attribute but with modified values for the other
features, to remove the correlation between the protected
attributes and the target ones. To do so, this method uses
a neural network with the objective of retaining as much
information as possible. The last one, Optimized Pre-
processing [6], solves an optimization problem with the
objective of minimizing the difference between the modi-
fied distribution and the original one; specifically, it aims
to reduce the discrimination by mapping different feature
attributes to the classification labels of the individuals
inside the dataset, while keeping the protected attributes
unchanged, to limit the dependency of the prediction on
the sensitive attributes. In all three cases, the techniques
involve only the numerical features.

Evaluation Metrics. To evaluate the DQ level of the
dataset, during the Evaluation phase, the Accuracy metric
has been selected. To this aim, the distance between the
original and the final dataset has been computed. Thus,
we extracted the number Ny, of values that correspond
to each other in the original and the final dataset, and

Npate .
mach \rhere Njy is the total
Noot

measured the Accuracy as

number of cells.

Since there is no standard system for measuring Fair-
ness, we used two different systems. For the DQ-Oriented
Experiments, we measured Fairness by means of a set of
already defined formulas. Instead, for the DE-Oriented
Experiments, we computed the Fairness metrics offered
by the Fairlearn [7] mitigation tool. The two results
are comparable since there is a very small delta be-
tween the two. For the DQ-Oriented Experiments, the
three metrics, taken from [14, 15], selected to evalu-
ate Fairness (see Section 3) are expressed as: Disparate

P(Y=1|G=discr) .
P(Y=1|G=priv)’

tio (PPR): w; False Positive Ratio (FPR)
P(Y=0|Y=1,G=priv)

P(}f:m/:—()’czm; where G is a protected attribute that
P(Y=1]Y=0,G=priv)

has two values discr (=discriminated), priv (=privileged);
Y is the actual classification result, two values (or labels)
0 or 1; and Y is the algorithm-predicted decision for the
individual, two values of the outcome 0 (negative out-
come) or 1 (positive outcome). The ideal value for all
three metrics is 1, which means both groups are treated
equally. If the value is between 0 and 1 — ¢, the discrim-
inated group is treated unfairly, whereas if the value is
greater or equal to 1 + t, the privileged group is treated
unfairly. Parameter ¢ is a threshold value that must be set
by an expert. In our experiment we set the ¢ parameter
equal to 0.2.

Dataset and classification algorithm. As explained in
Section 3, we considered two datasets. The first one is
the Adult Census Income dataset, typically used to pre-
dict whether the income of an individual exceeds 50k$
per year. It comprises 48842 tuples, described by 15 at-
tributes, including the target class. This dataset contains
more than one protected attribute (‘race’, ‘sex’, and ‘na-
tive country’), but our study considered only the attribute
‘sex’. The second one is the German Credit dataset, which
collects information on individuals that are classified
based on the fact that they are deemed good or bad pay-
ers when asking for a loan. It comprises 1000 tuples,
consisting of 20 attributes, including the target class. The
sensitive attribute is ‘personal-status-sex’, i.e., the marital
status, from which the protected attribute ‘sex’ can be
derived. Differently from the previous one, this dataset is
not affected by bias with respect to ‘sex’. Finally, we used
as classification algorithm the Decision Tree Classifier
offered by the scikit-learn Python library.

Impact Ratio (DIR) Predictive Parity Ra-

4.2. Result evaluation

This section presents the main results we obtained. In
Figure 3, the x-axis represents the Completeness level;
instead, in Figure 4, the x-axis shows the degree of Bias
Mitigation. In both figures, the y-axis represents the level
of the evaluated metrics.

4.2.1. DQ-Oriented Experiments

The plots shown in Figure 3 focus on the DQ-Oriented Ex-
periments in which the Accuracy and Fairness results are
compared for the three Imputation techniques explained
in Section 4.1.

Biased dataset. The three plots at the top of Figure 3
show the results for the Adult dataset. In general, the
Mode and the Density-based Imputations reach higher
Accuracy with respect to the Rare-based one, since the
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Figure 3: DQ-Oriented Experiments: effects of Data Imputation

latter modifies the original distribution of values more
than the others. From the Fairness point of view, we can
observe that the Predictive Parity Ratio (PPR) metric can
assume values greater than 1+, i.e., 1.2. This means that
the privileged class (men) is treated unfairly for that spe-
cific Fairness aspect; i.e., the probability of belonging to
class 0 (low income) for a man that instead was predicted
to class 1 (high income) is lower than the probability
of belonging to class 0 for a woman predicted to class
1. On the contrary, False Positive Ratio (FPR) always
takes opposite values with respect to PPR. These two
metrics are symmetrical since they represent opposite
Fairness aspects: FPR evaluates whether the probability
of predicting class 1 is the same both for men and women
belonging to class 0.

As we can notice, in this specific experiment, the Mode
Imputation introduces minimal changes to the Fairness
metrics since imputing the most frequent value does not
affect the distribution of the original ones.

Instead, the Density-based Imputation is much better:
in fact, as the percentage of injected errors increases,
Fairness increases for all three metrics. This is related
to a vast majority of the class 0 in the dataset; since the
Imputation follows the value distribution, it means that
those labels (class 0) have a higher probability of being
assigned to men (who are over-represented). In this way,
the dataset will be balanced. We can conclude that the
application of this Imputation method improves Fairness.
Finally, when applying the Rare-based Imputation, when
Completeness varies between 100% and 40%, the Fairness
increases; for Completeness values below 40%, Fairness

decreases very quickly. In this specific case, this happens
because, by imputing the less frequent values, the dataset
will be more balanced in favor of the protected class. As
the percentage of injected errors grows, the rare values
become too many, unbalancing the dataset again.
Unbiased dataset. The three plots at the bottom of
Figure 3 show the results for the German dataset. Since
the two datasets have a similar distribution, after the
application of the Imputation techniques, the Accuracy
takes similar values as in the previous case.
Since the dataset is already fair, FPR and DIR metrics
assume values around 1, while the PPR is almost 2. After
applying the Imputation techniques, FPR and DIR are
not affected, while the value of PPR is closer to 1 (i.e.,
the probability of belonging to class 0 (bad credit) for
a man predicted to class 1 (good credit) is lower than
the probability of belonging to class 0 for a woman pre-
dicted to class 1), therefore the PPR has improved with
respect to its initial value. In this case, the Imputation
techniques balanced the PPR, improving it as much as
they modify the original distribution of the values. In
fact, Rare-based Imputation, which modifies the original
distribution more, introduces unbalance, causing further
deterioration of Fairness over the 60% injected errors.
From these results, we can notice a trade-off between Ac-
curacy and Fairness; from the DQ-Oriented Experiments
we see that this trade-off can be more or less emphasized
depending on the DQ improvement technique applied.
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4.2.2. DE-Oriented Experiments

The plots shown in Figure 4 focus on the DE-Oriented
Experiments. We compared the Accuracy and Fairness
results for the Bias Mitigation techniques explained in
Section 4.1. The results of the experiments conducted on
the entire dataset are represented at the top of Figure 4.
The Bias Mitigation techniques we used focus only on
numerical attributes, thus, the results shown at the bot-
tom of Figure 4 show the same experiments based only
on the numerical features. We now present our results
by analyzing one Bias Mitigation technique at a time.

Correlation Remover. When applying Correlation Re-
mover for a partial Bias Mitigation between 0 and 1, the
Fairness metrics (DIR, FPR, and PPR) slightly improve,
but with an important loss in Accuracy (from 1.0 to 0.6).
This happens because the removal of correlation strongly
modifies the data, greatly affecting Accuracy. Consid-
ering the case in which only the numerical features are
involved, the Fairness metrics are negatively affected.
This represents a case of over-correction. By modifying
the entire dataset, data are too far from the original ones,
and the results are no longer reliable.

Learning Fair Representation. Applying Learning Fair
Representation, we have the same loss in Accuracy as
for Correlation Remover, since it modifies the numerical
features in order to remove correlations. However, this
technique also aims to minimize information loss, thus,
does not cause such a radical modification as the previous
method. Therefore, Fairness improvement is minimal
considering the full dataset, while considering only the
numerical features, two metrics over three improve (DIR
and FPR).

Optimized Preprocessing. Using Optimized Preprocess-

After Mitigation

Before Mitigation After Mitigation

ing, the Accuracy remains unchanged before and after the
mitigation process. This happens because there is no data
modification, but only weights are given to the numerical
features in order to reduce the correlation between the
protected attribute and the prediction. However, apply-
ing this technique to the full dataset is not sufficient to
improve Fairness because the categorical features still
affect the prediction. Moreover, applying this technique
considering only the numerical features improves one
Fairness metric (FPR) over three.

In the DE-Oriented Experiments we detected a trade-off
between Accuracy and Fairness, and this relationship can
be more or less strong depending on the Bias Mitigation
technique that is applied.

4.2.3. A brief comparison

We can now summarize the differences between our work
and the approach of [11] presented in Section 2: in [11]
the authors studied only the Completeness dimension of
DQ, while we also evaluate the results using Accuracy;
the Fairness metric studied in [11] is only one, while we
studied two more metrics; in [11] the initial dataset used
for the experiments is an unclean one, while we control
the process by applying error injection to a previously
cleaned dataset; finally, in [11] the Imputation techniques
used are only Mode and Mean, while we also apply Rare
and Density-based Imputation techniques.

5. Conclusions

Takeaway message. From our experiments, we have
noticed that the application of Data Imputation tech-
niques, in some particular cases, e.g., Density-based Im-



putation and Rare-based imputation on the Adult dataset,
can contribute to improving Fairness. Moreover, in the
experiments, starting from unbiased data, Fairness was
not affected by the application of the Imputation tech-
niques. In most cases, we noticed a trade-off: the Bias
Mitigation technique that less affects the Accuracy, in
general the Optimized Preprocessing technique, is not the
one that improves Fairness the most, and vice versa; for
these cases, we can deduce that techniques that succeed
in preserving both Accuracy and Fairness do not exist.
Therefore, as a takeaway message, we can affirm that the
best Data Imputation/Bias Mitigation technique to
apply strictly depends on the analysis goal. If users
are more interested in preserving Fairness aspects, they
will concentrate on a subset of techniques at the cost of
losing DQ; if the major interest is to optimize the im-
provement of the DQ, they will apply a subset of DQ
improvement tasks that could affect Fairness. It is worth
noting that situations may also exist in which Accuracy
and Fairness are not in conflict; however, this is strictly
context-dependent.

Conclusions. In this work, we analyzed the relationship
between Data Quality (DQ) and Data Ethics (DE). Specif-
ically, we focus on the Completeness dimension of DQ,
and on the Fairness dimension of DE. Through a series of
experiments, we demonstrated that between DQ and DE
a trade-off is present. In fact, the experiments showed us
that the application of Fairness improvement operations
can lead to a deterioration of Accuracy, used to evaluate
the DQ, and vice versa. Analyzing the experiments more
in detail, we can also state that the amount of Accuracy
deterioration after Fairness improvements depends on
the Bias Mitigation technique, as well as the deteriora-
tion of Fairness can depend on the selected Imputation
technique. Future work will focus on the definition of
clear guidelines to recommend the best choice of DQ/DE
improvement techniques to be applied depending on the
scope of the analysis. Moreover, we could enrich the
gathered knowledge with more datasets, DQ and DE di-
mensions, and Bias Mitigation techniques [16, 17].
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