
When Input Integers are Given in the Unary Numeral
Representation
Tomoyuki Yamakami1,∗,†

1Faculty of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan

Abstract
Many NP-complete problems take integers as part of their input instances. These input integers are gen-
erally binarized, that is, provided in the form of the “binary” numeral representation, and the lengths of
such binary forms are used as a basis unit to measure the computational complexity of the problems. In
sharp contrast, the “unarization” (or the “unary” numeral representation) of numbers has been known
to bring a remarkably different effect onto the computational complexity of the problems. When no
computational-complexity difference is observed between binarization and unarization of instances, on
the contrary, the problems are said to be strong NP-complete. This work attempts to spotlight an is-
sue of how the unarization of instances affects the computational complexity of various combinatorial
problems. We present numerous NP-complete (or even NP-hard) problems, which turn out to be easily
solvable when input integers are represented in unary. We then discuss the computational complexities
of such problems when taking unary-form integer inputs. We hope that a list of such problems signifies
the structural differences between strong NP-completeness and non-strong NP-completeness.

Keywords
unary numeral representation, unarization of integers, logarithmic-space computation, pushdown au-
tomata, log-space reduction

1. Background and Quick Overview

1.1. Unary Representations of Integer Inputs

The theory of NP-completeness has made great success in providing a plausible evidence to the
hardness of target computational problems when one tries to solve them in feasible time. The
proof of NP-completeness of those problems therefore makes us turn away from solving them
in a practical way but it rather guides us to look into the development of approximation or
randomized algorithms.

In computational complexity theory, we often attempt to determine the minimum amount
of computational resources necessary to solve target combinatorial problems. Such computa-
tional resources are measured in terms of the sizes of input instances given to the problems.
Many NP-complete problems, such as the knapsack problem, the subset sum problem, and the
integer linear programming problem, concern the values of integers and require various inte-
ger manipulations. When instances contain integers, these integers are usually expressed in
the form of “binary” representation. Thus, the computational complexities, such as running

The 24th Italian Conference on Theoretical Computer Science (ICTCS 2023), Palermo, Italy, September 13–15, 2023
∗Corresponding author.

TomoyukiYamakami@gmail.com (T. Yamakami)
© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:TomoyukiYamakami@gmail.com
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

time or memory space, are measured with respect to the total number of bits used for this
representation.

This fact naturally brings us a question of what consequences are drawnwhen input integers
are all provided in “unary” using the unary numeral system instead. How does the unary
representation affects the computational complexity of the problems? In comparison to the
binary numeral system, the unary numeral system is so distinctive, that we need to heed a
special attention in our study on the computational complexity of algorithms.

When input integers given to combinatorial problems are expressed in unary, a simple trans-
formation of the unary expression of input integers to their binary representations makes the
original input lengths look exponentially larger than their binary lengths. Thus, any algorithm
working with the unarized integer inputs seem to consume exponentially less time than the
same algorithm with binarized integer inputs. This turns out to be a quite short-sighted anal-
ysis.

We often observe that the use of the unary representation significantly alters the compu-
tational complexity of combinatorial problems. However, a number of problems are known
to remain NP-complete even after we switch binarized integer inputs to their corresponding
unarized ones (see [1, Section 4.2]). Those problems are said to be strong NP-complete1 and
this notion has been used to support a certain aspect of the robustness of NP-completeness
notion. Non-strong NP-complete problems are, by definition, quite susceptible to the change
of numeral representations of their input integers between the binary representation and the
unary representation. It is therefore imperative to study a structural-complexity aspect of those
non-strong NP-complete problems when input integers are provided in the form of the unary
numeral representation. In this work, we wish to look into the features of such non-strong
NP-complete problems.

Earlier, Cook [2] discussed the computational complexity of a unary-representation ana-
logue of the knapsack problem, called the unary 0-1 knapsack problem (UK), which askswhether
or not there is a subset of given positive integers, represented in unary, whose sum matches a
given target positive integer. This problem UK naturally falls in NL (nondeterministic logarith-
mic space) but he conjectured that UK may not be NL-complete. This conjecture is supported
by the fact that even an appropriately designed one-way one-turn nondeterministic counter
automaton can recognize UK (e.g., [3]). Jenner [4] introduced a variant of UK whose input
integers are given in a “shift-unary” representation, where a shift-unary representation [1𝑎 , 1𝑏]
represents the number 𝑎 ⋅ 2𝑏 . She then demonstrated that this variant is actually NL-complete.
We further expand such a shift-unary representation to amultiple shift-unary representation by
allowing a finite series of positive integers and to a general unary (numeral) representation by
taking all possible integers, including zero and negative ones. See Section 2.1 for their precise
definitions.

Driven by our great interest in the effect of the unarization of inputs, throughout this work,
we wish to study the computational complexity of combinatorial problems whose input inte-
gers are in part unarized by the unary representation.

1Originally, the strong NP-completeness has been studied in the case where all input integers are polynomially
bounded. This case is essentially equivalent to the case where all input integers are given in unary. See a discussion
in, e.g., [1, Section 4.2].

REG

1t12PDCA

1t1N2CA
1t2NCA

1t1NCA

2N3CA

1t2NPDCA

UK, AmbUK

1t22PDCA

1t1NPDCA

USVPmin
UCVPmin

SUK

U2PART, UASubSum
UBCP

UKEXC

USVPmax, UCVPmax

NP

LOGCFL = 2NPD3CA

NL = 2N4CA

EWPP, EPLP

L

1N6CA
Shift‐UK

Figure 1: Inclusion relationships among complexity classes with solid lines and membership relations
of numerous decision problems listed in small boxes to specific complexity classes.

For the succinctness of further descriptions, we hereafter refer to input integers expressed
in the unary numeral system as unary-form integers (or more succinctly, unarized integers) in
comparison to binary-form integers (or binarized integers).

1.2. New Challenges and Main Contributions

A simple pre-processing of converting a given unary-form input integer into its binary repre-
sentation provides obvious complexity upper bounds for target combinatorial problems but it
does not seem to be sufficient to determine their precise computational complexity.

Our goal is to explore this line of study in order to clarify the roles of the binary-to-unary
transformation in the theory of NP-completeness (and beyond it) and cultivate a vast research
area incurred by the use of unary-form integers. In particular, we plan to focus on several
non-strong NP-complete (or even NP-hard) problems and study how their computational com-
plexities can change when we replace the binary-form input integers to the unary-form ones.
Among various types of combinatorial problems taking integer inputs, we look into number
problems, graph-related problems, and lattice-related problems. It is desirable for us to deter-
mine the precise complexity of each combinatorial problem whose instances are unarized.

A brief summary of our results are illustrated in Figure 1. The detailed explanation of the
combinatorial problems and complexity classes listed in this figure will be provided in Sections
2–5. We remark that the underlying machines used to define those complexity classes are all
limited to run in polynomial time.

2. Basic Notions and Notation

2.1. Numbers, Sets, Languages

We assume that all polynomials have nonnegative integer coefficients. All logarithms are al-
ways taken to the base 2. The notations ℤ andℕ denote respectively the set of all integers and
that of all nonnegative integers. We further defineℕ+ to beℕ−{0}. As a succinct notation, we
use [𝑚, 𝑛]ℤ to denote the integer interval {𝑚, 𝑚 + 1,… , 𝑛} for two integers 𝑚 and 𝑛 with 𝑚 ≤ 𝑛.
In particular, [1, 𝑛]ℤ is abbreviated as [𝑛] whenever 𝑛 ≥ 1. Given 𝑛 ∈ ℕ+, we define the linear

order <[𝑛] on the set [𝑛]× [𝑛] as: (𝑖1, 𝑖2) <[𝑛] (𝑖2, 𝑗2) iff either 𝑖1 < 𝑖2 or 𝑖1 = 𝑖2 ∧ 𝑗1 < 𝑗2. Moreover,
ℝ denotes the set of all real numbers. Given a vector 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) in ℝ𝑛, the Euclidean
norm ‖𝑥‖2 of 𝑥 is given by (∑𝑖∈[𝑛] 𝑥2𝑖)1/2 and the max norm ‖𝑥‖∞ is done by max{|𝑥𝑖| ∶ 𝑖 ∈ [𝑛]},
where | ⋅ | indicates the absolute value. Given a set 𝐴, 𝑃(𝐴) denotes the power set of 𝐴.

Conventionally, we freely identify decision problems with their associated languages. We
write 1∗ (as a regular expression) for the set of strings of the form 1𝑛 for any 𝑛 ∈ ℕ. For
convenience, we define 10 to be the empty string 𝜀. Let 1+ denote the set 1∗ − {𝜀}. Similarly, we
use the notation 0∗ for {0𝑛 ∣ 𝑛 ∈ ℕ} with 00 = 𝜀.

Given a positive integer 𝑎, the unary representation of 𝑎 is of the form 1𝑎 (viewed as
a string) compared to its binary representation. Notice that the length of 1𝑎 is exactly
𝑎 rather than 𝑂(log(𝑎 + 1)), which is the length of the binary representation of 𝑎. A fi-
nite series (𝑎1, 𝑎2, … , 𝑎𝑛) of positive integers is expressed by the multiple unary representa-
tion of the form (1𝑎1 , 1𝑎2 , … , 1𝑎𝑛). When such an instance 𝑥 = (1𝑎1 , 1𝑎2 , … , 1𝑎𝑛) is given
to a machine, we explicitly assume that 𝑥 has the form of 1𝑎1#1𝑎2#⋯ #1𝑎𝑛 with a desig-
nated separator symbol #. For a series of such instances 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑚) with 𝑥𝑖 =
(1𝑎𝑖1 , 1𝑎𝑖2 , … , 1𝑎𝑖𝑛𝑖) for 𝑖 ∈ [𝑚] and 𝑛𝑖 ∈ ℕ+, we further assume that 𝑥 takes the form of
1𝑎11#1𝑎12#⋯ #1𝑎1𝑛1##1𝑎21#1𝑎22#⋯ #1𝑎2𝑛2##⋯ ##1𝑎𝑚1#1𝑎𝑚2#⋯ #1𝑎𝑚𝑛𝑚 . Moreover, for any positive
integer of the form 𝑎 = 𝑝 ⋅ 2𝑡 for nonnegative integers 𝑝 and 𝑡 , a shift-unary representation2

of 𝑎 is a pair [1𝑝 , 1𝑡], which is different from the unary representation 1𝑎 of 𝑎. The length of
[1𝑝 , 1𝑡] is 𝑂(𝑝 + 𝑡) but not 𝑎. We also use a multiple shift-unary representation, which has the
form [[1𝑎1 , 1𝑏1], [1𝑎2 , 1𝑏2], … , [1𝑎𝑛 , 1𝑏𝑛]] with the condition that 2𝑏𝑖+1 > 𝑎𝑖2𝑏𝑖 for all 𝑖 ∈ [𝑛 − 1].
This form represents the number ∑𝑛

𝑖=1 𝑎𝑖 ⋅ 2𝑏𝑖 . We intend to call an input integer by the name
of its representation. For this purpose, we call the expression 1𝑎 and [1𝑝 , 1𝑡] the unary-form
(positive) integer (or more succinctly, the unarized (positive) integer) and the shift-unary-form
(positive) integer, respectively.

To deal with “general” integers, including zero and negative integers, however, we intend to
express such an integer 𝑎 as a unary string by applying the following special encoding function
⟨⋅⟩. Let ⟨𝑎⟩ = 1 if 𝑎 = 0; ⟨𝑎⟩ = 2𝑎 if 𝑎 > 0; and ⟨𝑎⟩ = 2|𝑎| + 1 if 𝑎 < 0. We define the general unary
(numeral) representation of 𝑎 as 1⟨𝑎⟩. In a similar way, a general shift-unary representation of −𝑎
for 𝑎 > 0 is defined as a pair of the form [1⟨−𝑝⟩, 1⟨𝑡⟩], where 𝑝 and 𝑡 in ℕ must satisfy 𝑎 = 𝑝 ⋅ 2𝑡 .

2.2. Turing Machines and Log-Space Reductions

Our interest mostly lies on space-bounded computation. As a basic machinemodel, we thus use
deterministic/nondeterministic Turing machines (or DTMs/NTMs, for short), each of which is
equipped with a read-only input tape, a rewritable work tape, and (possibly) a write-once3

output tape.
The notation L (resp., NL) denotes the collection of all decision problems solvable on DTMs

(resp., NTMs) in polynomial time using logarithmic space (or log space, for short). A function

2Unlike the unary and binary representations, a positive integer in general has more than one shift-unary repre-
sentation. In most applications, the choice of such representations does not significantly affect the computational
resources of running machines.

3A tape is called write-once if its tape head never moves to the left and, whenever it writes a non-blank symbol, it
must move to the next blank cell.

𝑓 from Σ∗ to Γ∗ for two alphabets Σ and Γ is computable in log space if there is a DTM such that,
on input 𝑥 , it produces 𝑓 (𝑥) on a write-once output tape in |𝑥 |𝑂(1) time and 𝑂(log |𝑥 |) space.
The notation FL refers to the class of all such functions.

Let 𝐿1 and 𝐿2 denote two arbitrary languages. We say that 𝐿1 is L-m-reducible to 𝐿2 (denoted
𝐿1 ≤L𝑚 𝐿2) if there exists a function 𝑓 (called a reduction function) in FL such that, for any 𝑥 ,
𝑥 ∈ 𝐿1 iff 𝑓 (𝑥) ∈ 𝐿2. Given a language family 𝐹 , the notation LOG(𝐹) denotes the family of all
languages that are L-m-reducible to appropriately chosen languages in 𝐹 . We further say that
𝐿1 is L-tt-reducible to 𝐿2 (denoted 𝐿1 ≤L𝑡 𝑡 𝐿2) if there are a reduction function 𝑓 ∈ FL and a truth-
table 𝐸 ∶ {0, 1}∗ → {0, 1} in FL such that, for any string 𝑥 , (i) 𝑥 ∈ 𝐿1 iff 𝑓 (𝑥) = (𝑦1, 𝑦2, … , 𝑦𝑚)
with 𝑦𝑖 ∈ Σ∗ for any index 𝑖 ∈ [𝑚] and (ii) 𝐸(𝐿2(𝑦1), 𝐿2(𝑦2), … , 𝐿2(𝑦𝑚)) = 1, where 𝐿2(𝑦) = 1 if
𝑦 ∈ 𝐿2 and 𝐿2(𝑦) = 0 otherwise.

Before solving a given problem on an input (1𝑎1 , 1𝑎2 , … , 1𝑎𝑛) of unary-form numbers, it is
often useful to sort all entries (𝑎1, 𝑎2, … , 𝑎𝑛) of this input. Let us define the function 𝑓𝑜𝑟𝑑𝑒𝑟
making the following behavior: on input of the form (1𝑎1 , 1𝑎2 , … , 1𝑎𝑛) with 𝑎1, 𝑎2, … , 𝑎𝑛 ∈ ℕ+,
𝑓𝑜𝑟𝑑𝑒𝑟 produces a tuple (1𝑎𝑖1 , 1𝑎𝑖2 , … , 1𝑎𝑖𝑛) such that (1) 𝑎𝑖1 ≥ 𝑎𝑖2 ≥ ⋯ ≥ 𝑎𝑖𝑛 and (2) if 𝑎𝑖𝑗 = 𝑎𝑖𝑘 with
𝑖𝑗 ≠ 𝑖𝑘 , then 𝑖𝑗 < 𝑖𝑘 holds. Condition (2) is a useful property for one-way finite automata.

There is an occasion where, for a set of shift-unary-form integers
[1𝑝1 , 1𝑡1], [1𝑝2 , 1𝑡2], … , [1𝑝𝑛 , 1𝑡𝑛], we wish to compute the sum 𝑠 = ∑𝑛

𝑖=1 𝑝1 ⋅ 2𝑡𝑖 and output
the binary representation of 𝑠 in the reverse order. The notation 𝑓𝑠𝑢𝑚 denotes the function
that computes this value 𝑠. The following lemma is useful.

Lemma 2.1 The functions 𝑓𝑜𝑟𝑑𝑒𝑟 and 𝑓𝑠𝑢𝑚 are both in FL.

Those functions will be implicitly used for free when solving combinatorial problems in the
subsequent sections.

2.3. Multi-Counter Pushdown Automata

A one-way determinsitic/nondeterminitic pushdown automaton (or a 1dpda/1npda, for short) is
another computational model with a read-once input tape and a standard (pushdown) stack
whose operations are restricted to the topmost cell. A counter is a FILO (first in, last out)
memory device that behaves like a stack but its alphabet consists only of a “single” symbol,
say, 1 except for the bottom marker ⊥. A one-way nondeterministic 𝑘-counter automaton (or a 𝑘-
counter 1ncta) is a one-way nondeterministic finite automaton (1nfa) equipped with 𝑘 counters.
We write 1N𝑘CA to denote the family of all languages recognized by appropriate 𝑘-counter
1ncta’s running in polynomial time. We further expand 1N𝑘CA to 1NPD𝑘CA by supplementing
𝑘 counters to 1npda’s. These specific machines are called one-way nondeterministic 𝑘-counter
pushdown automata (or 1npdcta’s). When tape heads of multi-counter automata and pushdown
automata are allowed to move in all directions, we call such polynomial-time machines by
2ncta’s and 2npdcta’s, respectively. With the use of these 2ncta’s and 2npdcta’s, we respectively
obtain 2N𝑘CA and 2NPD𝑘CA.

An alternating machine must use two groups of inner states: existential states and universal
states. We are concerned with the number of times that such a machine switches between
existential and universal inner states. When this number is upper-bounded by 𝑘 (𝑘 ≥ 0) along
all computation paths of𝑀 on any input 𝑥 , the machine is said to have at most 𝑘+1 alternations.

For any 𝑘 ≥ 1, the complexity class 1Σ𝑘PDCA (resp., 2Σ𝑘PDCA) is composed of all languages
recognized by one-way (resp., two-way) alternating 1-counter pushdown automata running in
polynomial time with at most 𝑘 alternations starting with existential inner states. Note that
1Σ1PDCA coincides with 1NPDCA.

The notion of turns was studied initially by Ginsburg and Spanier [5]. Turn-restricted
counter automata were called reversal bounded in the past literature. A 1ncta is said to make
a turn along a certain accepting computation path if the stack height (i.e., the size of stack’s
content) changes from nondecreasing to decreasing exactly once. A 1-turn 1ncta is a 1ncta
that makes at most one turn during each computation. We add the prefix “1t” to express the
restriction that every underlying machine makes at most one turn. For example, we write
1t1NCA when all underlying 1ncta’s in the definition of 1NCA are 1-turn 1ncta’s. Similarly,
we define, e.g., 1t2NPDCA and 1t2Σ𝑘PDCA by requiring all stacks and counters to make at
most one turn. It follows that REG ⊆ 1t1NCA ⊆ 1NCA ⊆ CFL, where REG (resp., CFL) denotes
the class of all regular (resp., context-free) languages. Notice that CFL = 1NPD. It also follows
that L ⊆ LOG(1t1NCA) ⊆ LOG(1NCA) = NL. Conventionally, we write LOGCFL instead of
LOG(CFL).
Lemma 2.2 For any 𝑘 ≥ 1, 2N𝑘CA ⊆ NL, 2NPD𝑘CA ⊆ LOGCFL, and 2Σ2PD𝑘CA ⊆ NP.

Proof Sketch. For any index 𝑗 ∈ ℕ+, we define 2Σ𝑗AuxPDATI,SP(𝑡(𝑛), 𝑠(𝑛)) to be the col-
lection of all decision problems solvable by two-way alternating auxiliary pushdown automata
running within time 𝑡(𝑛) using space at most 𝑠(𝑛) with at most 𝑗 alternations starting with
existential inner states. When 𝑗 = 1, such machines are succinctly called 2aux-npda’s, which
will be used in the proof of Proposition 2.3. It is known that 2Σ1AuxPDATI,SP(𝑛𝑂(1), 𝑂(log 𝑛))
coincides with LOGCFL [6] and 2Σ2AuxPDATI,SP(𝑛𝑂(1), 𝑂(log 𝑛)) coincides with NP [7]. More-
over, it is possible to simulate the polynomial time-bounded behaviors of 𝑘 counters using an
𝑂(log 𝑛)-space bounded auxiliary work tape. From these facts, the lemma follows immediately.
2

Proposition 2.3 NL = 2N4CA and LOGCFL = 2NPD3CA.

Proof Sketch. Following an argument of Minsky [8], given a log-space NTM (or a log-space
2aux-npda), we first simulate the behavior of an 𝑂(log 𝑛)-space auxiliary work tape by two
stacks whose alphabets are of the form {0, 1, ⊥}. Since the heights of such stacks are upper-
bounded by 𝑂(log 𝑛), the stacks can be further simulated by multiple counters whose heights
are all 𝑛𝑂(1)-bounded. Let 𝑀 denote the obtained 2ncta (or 2npdcta) running in polynomial
time.

We remark that Minsky’s method of reducing the number of counters down to two does not
work for machines with few computational resources. Thus, we need to seek other methods.
For this purpose, we review the result of [9], which makes it possible to simulate two counters
by one counter with the heavy use of an appropriately defined “pairing” function.

Claim 1 [9] There exists a fixed deterministic procedure by which any single move of push/pop
operations on two counters of 𝑀 can be simulated by a series of 𝑛𝑂(1) push/pop operations on one
counter with the help of 3 extra counters. These 3 extra counters are emptied after each simulation

and thus they are reusable for any other purposes. If a stack is further available, then one extra
counter can be simulated by this stack.

The recursive applications of this simulation procedure eventually reduce the number of
counters down to four. If we freely use a stack during the procedure, then we can further
reduce the number of counters down to three.

The first part of the proposition then follows by combining the above claim with Lemma 2.2.
If we use one counter as a stack, then we can further reduce 4 counters to 3 counters. This
proves the second part of the proposition. 2

3. Combinatorial Number Problems

We study the computational complexity of decision problems whose input instances are com-
posed of unarized positive integers.

3.1. Variations of the Unary 0-1 Knapsack Problem

The starting point of our study on the computational analyses of decision problems with unar-
ized integer inputs is the unary 0-1 knapsack problem, which was introduced in 1985 by Cook
[2] as a unary analogue of the knapsack problem.

Unary 0-1 Knapsack Problem (UK):

∘ Instance: (1𝑏 , 1𝑎1 , 1𝑎2 , … , 1𝑎𝑛), where 𝑛 ∈ ℕ+ and 𝑏, 𝑎1, 𝑎2, … , 𝑎𝑛 are all positive integers.

∘ Question: is there a subset 𝑆 of [𝑛] satisfying ∑𝑖∈𝑆 𝑎𝑖 = 𝑏?
It seems more natural to view UK as a unary analogue of the subset sum problem, which is

closely related to the 2-partition problem. Let us consider a unary analogue of this 2-partition
problem.

Unary 2 Partition Problem (U2PART):

∘ Instance: (1𝑎1 , 1𝑎2 , … , 1𝑎𝑛), where 𝑛 ∈ ℕ+ and 𝑎1, 𝑎2, … , 𝑎𝑛 are all positive integers.

∘ Question: is there a subset 𝑆 of [𝑛] such that ∑𝑖∈𝑆 𝑎𝑖 = ∑𝑖∈𝑆 𝑎𝑖, where 𝑆 = [𝑛] − 𝑆?
The original knapsack problem and the subset sum problem are both proven in 1972 by Karp

[10] to be NP-complete. The problems UK and U2PART, in contrast, situated within NL.

Lemma 3.1 (1) UK is in 1t1NCA. (2) U2PART is in both 1NCA and 1t1N2CA.

We further introduce two variants of UK and U2PART, called AmbUK and UASubSum as
follows.

Ambiguous UK Problem (AmbUK):

∘ Instance: ((1𝑏1 , 1𝑏2 , … , 1𝑏𝑚), (1𝑎1 , 1𝑎2 , … , 1𝑎𝑛)), where 𝑛, 𝑚 ∈ ℕ+ and
𝑏1, 𝑏2, … , 𝑏𝑚, 𝑎1, 𝑎2, … , 𝑎𝑛 are all positive integers.

∘ Question: are there an index 𝑗 ∈ [𝑚] and a subset 𝑆 of [𝑛] satisfying 𝑏𝑗 = ∑𝑖∈𝑆 𝑎𝑖?

Unary Approximate Subset Sum Problem (UASubSum):

∘ Instance: ((1𝑏1 , 1𝑏2), (1𝑎1 , 1𝑎2 , … , 1𝑎𝑛)), where 𝑛 ∈ ℕ+ and 𝑏1, 𝑏2, 𝑎1, 𝑎2, … , 𝑎𝑛 are positive
integers.

∘ Question: is there a subset 𝑆 of [𝑛] such that 𝑏1 ≤ ∑𝑖∈𝑆 𝑎𝑖 ≤ 𝑏2?
Lemma 3.2 (1) AmbUK is in 1t1NCA. (2) UASubSum is in 1t1N2CA.

Under two different types of log-space reductions, the computational complexities of
U2PART, AmbUK, and UASubSum are all equal to that of UK.

Proposition 3.3 (1) UK ≡L𝑚 U2PART. (2) UK ≡L𝑡 𝑡 AmbUK. (3) UK ≡L𝑚 UASubSum.

Proof Sketch. (1) We begin with showing that UK ≡L𝑚 U2PART. Our first goal is to prove
that UK ≤L𝑚 U2PART by constructing an L-m-reduction function 𝑓 . Let 𝑥 = (1𝑏 , 1𝑎1 , … , 1𝑎𝑛)
and let 𝑐 = ∑𝑖∈[𝑛] 𝑎𝑖. (a) If 𝑏 = 𝑐/2, then we set 𝑓 (𝑥) = 𝑥 . (b) If 𝑏 < 𝑐/2, then we add a new
entry 𝑎𝑛+1 = 𝑐 − 2𝑏 and set 𝑓 (𝑥) = (1𝑎1 , … , 1𝑎𝑛 , 1𝑎𝑛+1). (c) If 𝑏 > 𝑐/2, then we exchange between
𝑏 and 𝑐 − 𝑏 and apply (b). Our second goal is to show that U2PART ≤L𝑚 UK. Letting 𝑐 = ∑𝑖 𝑎𝑖, if
𝑐 is odd, then we set 𝑓 (𝑥) to be any fixed rejected input. Otherwise, we set 𝑏 = 𝑐/2 and define
𝑓 (𝑥) = (1𝑏 , 1𝑎1 , … , 1𝑎𝑛).

(2) It is obvious that UK ≤L𝑚 AmbUK by setting 𝑚 = 1 in the definition of AmbUK.
Next, we show that AmbUK ≤L𝑡 𝑡 UK. Let 𝑤 = ((1𝑏1 , 1𝑏2 , … , 1𝑏𝑚), (1𝑎1 , 1𝑎2 , … , 1𝑎𝑛)) be any in-
stance of AmbUK. We define an L-tt-reduction function 𝑓 as 𝑓 (𝑤) = (𝑓1(𝑤), 𝑓2(𝑤), … , 𝑓𝑚(𝑤)),
where 𝑓𝑖(𝑤) = (1𝑏𝑖 , 1𝑎1 , … , 1𝑎𝑛). Clearly, 𝑓 belongs to FL. We also define a truth table 𝐸 as
𝐸(𝑒1, 𝑒2, … , 𝑒𝑚) = ⋁𝑚

𝑖=1 𝑒𝑖. It then follows that 𝑤 ∈ AmbUK iff there exists an index 𝑖 ∈ [𝑚] for
which 𝑓𝑖(𝑤) ∈ UK iff 𝐸(𝑓1(𝑤), 𝑓2(𝑤), … , 𝑓𝑚(𝑤)) = 1. Therefore, AmbUK ≤L𝑡 𝑡 UK follows.

(3) To show that UK ≤L𝑚 UASubSum, it suffices to set 𝑏1 = 𝑏2 = 𝑏 and define the desired re-
duction function 𝑓 to map (1𝑏 , 1𝑎1 , … , 1𝑎𝑛) to ((1𝑏1 , 1𝑏2), (1𝑎1 , … , 1𝑎𝑛)). On the contrary, we wish
to verify that UASubSum ≤L𝑚 UK. Let 𝑤 = ((1𝑏1 , 1𝑏2), (1𝑎1 , … , 1𝑎𝑛)) be any input to UASubSum.
If 𝑏1 = 𝑏2, then the reduction is trivial. In the case of 𝑏1 > 𝑏2, it suffices to define 𝑓 (𝑤) = (1, 12)
since 𝑤 ∉ UASubSum. In what follows, we assume that 𝑏1 < 𝑏2. For any 𝑆 ⊆ [𝑛], we de-
fine 𝑎𝑆 = ∑𝑖∈𝑆 𝑎𝑖. If 𝑎[𝑛] < 𝑏1, then we construct 𝑓 (𝑤) = (1, 12), which is obviously not in
UASubSum. If 𝑏1 ≤ 𝑎[𝑛] ≤ 𝑏2, then we define 𝑥 = (1, 1). Next, we assume that 𝑏2 < 𝑎[𝑛]. Let
us define 𝑎𝑛+𝑖 = 𝑎[𝑛] + 𝑖 − 1 for any 𝑖 ∈ [𝑏2 − 𝑏1 + 1] and let 𝑏𝑚𝑎𝑥 = 𝑏2 + 𝑎[𝑛]. We then set
𝑓 (𝑤) = (1𝑏𝑚𝑎𝑥 , 1𝑎1 , 1𝑎2 , … , 1𝑎𝑛 , 1𝑎𝑛+1 , 1𝑎𝑛+2 , … , 1𝑎𝑛+𝑏2−𝑏1+1). This concludes that 𝑤 ∈ UASubSum iff
𝑓 (𝑤) ∈ UK. 2

Jenner [4] studied a variant of UK, which we intend to call by the shift-unary 0-1 knapsack
problem (shift-UK) in order to signify the use of the shift-unary representation. She proved that
this problem is actually NL-complete.

Shift-Unary 0-1 Knapsack Problem (shift-UK):

∘ Instance: [1𝑞 , 1𝑠] and a series ([1𝑝1 , 1𝑡1], [1𝑝2 , 1𝑡2], … , [1𝑝𝑛 , 1𝑡𝑛]) of nonnegative integers
represented in shift-unary, where 𝑞, 𝑝1, 𝑝2, … , 𝑝𝑛 are all positive integers and 𝑠, 𝑡1, 𝑡2, … , 𝑡𝑛
are all nonnegative integers.

∘ Question: is there a subset 𝑆 of [𝑛] such that ∑𝑖∈𝑆 𝑝𝑖2𝑡𝑖 = 𝑞2𝑠?

In a similar way, we can define the shift-unary representation versions of AmbUK,
UASubSum, and U2PART, denoted by shift-AmbUK, shift-UASubSum, and shift-U2PART, re-
spectively.

Lemma 3.4 The problem shift-UK is in 1N6CA.

Proposition 3.5 shift-UK ≡L𝑚 shift-U2PART ≡L𝑚 shift-AmbUK ≡L𝑚 shift-UASubSum.

Proof Sketch. We abbreviate the set {shift-U2PART, shift-AmbUK, shift-UASubSum} as 𝑆.
It is easy to obtain, by modifying the proof of Proposition 3.3, that shift-UK ≤L𝑚 𝐶 for any
𝐶 ∈ 𝑆. To show that 𝐶 ≤L𝑚 shift-UK for any 𝐶 ∈ 𝑆, it suffices to show that 𝐶 belongs to
NL because the L-m-completeness of shift-UK [4] guarantees that 𝐶 ≤L𝑚 shift-UK. In the
case of 𝐶 = shift-UASubSum, we consider the following algorithm. On input of the form
(([1𝑞1 , 1𝑠1], [1𝑞2 , 1𝑠2]), ([1𝑝1 , 1𝑡1], … , [1𝑝𝑛 , 1𝑡𝑛])), we nondeterministically choose a number 𝑘 ∈ [𝑡]
and indices 𝑖1, 𝑖2, … , 𝑖𝑘 ∈ [𝑛] and check that 𝑞12𝑠1 ≤ ∑𝑖∈𝑆 𝑝𝑖2𝑡𝑖 ≤ 𝑞22𝑠2 . Note that, by Lemma 2.1,
the sum ∑𝑖∈𝑆 𝑝𝑖2𝑡𝑖 can be computed using only log space. Hence, 𝐶 is in NL. The other cases
can be similarly handled. 2

From Proposition 3.5, since shift-UK is NL-complete under L-m-reductions [4], we immedi-
ately obtain the following corollary.

Corollary 3.6 The problems shift-U2PART, shift-AmbUK, and shift-UASubSum are all NL-
complete.

For later references, we introduce another variant of UK. This variant requires a prohibition
of certain successive choices of unarized integer inputs.

UK with Exception (UKEXC):

∘ Instance: (1𝑏 , 1𝑎1 , 1𝑎2 , … , 1𝑎𝑛) and 𝐸𝑋𝐶 ⊆ {(𝑖, 𝑗) ∣ 𝑖, 𝑗 ∈ [𝑛], 𝑖 < 𝑗} given as a set of pairs
(1𝑖, 1𝑗), where 𝑛 ∈ ℕ+ and 𝑏, 𝑎1, 𝑎2, … , 𝑎𝑛 are in ℕ+.

∘ Question: is there a subset 𝑆 = {𝑖1, 𝑖2, … , 𝑖𝑘} of [𝑛] with 𝑘 ∈ ℕ+ and 𝑖1 < 𝑖2 < ⋯ < 𝑖𝑘
such that (i) ∑𝑖∈𝑆 𝑎𝑖 = 𝑏 and (ii) no 𝑗 ∈ [𝑘 − 1] satisfies (𝑖𝑗 , 𝑖𝑗+1) ∈ 𝐸𝑋𝐶?

Note that, when 𝐸𝑋𝐶 = ∅, UKEXC is equivalent to UK.

Lemma 3.7 UKEXC is in 2N3CA.

Proof Sketch. We nondeterministically choose 1𝑎𝑖 by reading an input from left to right. We
use two counters to remember the index 𝑖 (in the form of 1𝑖) for checking that the next possible
choice, say, 1𝑎𝑗 satisfies (𝑖, 𝑗) ∉ 𝐸𝑋𝐶 . The third counter is used to store 1𝑏 and then sequentially
pop 1𝑎𝑖 for the chosen indices 𝑖. 2

We also introduce another variant of UK, which concerns simultaneous handling of input
integers.

Simultaneous Unary 0-1 Knapsack Problem (SUK):

∘ Instance: (1𝑏1 , 1𝑎11 , 1𝑎12 , … , 1𝑎1𝑛), … , (1𝑏𝑚 , 1𝑎𝑚1 , 1𝑎𝑚2 , … , 1𝑎𝑚𝑛), where 𝑚, 𝑛 ∈ ℕ+ and 𝑏𝑖 and
𝑎𝑖𝑗 (𝑖 ∈ [𝑛], 𝑗 ∈ [𝑚]) are all positive integers.

∘ Question: is there a subset 𝑆 ⊆ [𝑛] such that ∑𝑗∈𝑆 𝑎𝑖𝑗 = 𝑏𝑖 for all indices 𝑖 ∈ [𝑚]?
The complexity class 1t1Σ2PDCA is the one-way restriction of 1t2Σ2PDCA.

Lemma 3.8 The problem SUK is in 1t1Σ2PDCA.

Proof Sketch. To recognize SUK, let us consider a one-way alternating counter push-
down automaton (or a 1apdcta) that behaves as follows. Given an input 𝑥 of the form
(1𝑏1 , 1𝑎11 , 1𝑎12 , … , 1𝑎1𝑛), … , (1𝑏𝑚 , 1𝑎𝑚1 , 1𝑎𝑚2 , … , 1𝑎𝑚𝑛), we call each segment (1𝑏𝑖 , 1𝑎𝑖1 , 1𝑎𝑖2 , … , 1𝑎𝑖𝑛) of
𝑥 by the 𝑖th block of 𝑥 .

In existential inner states, we first choose a string 𝑤 ∈ {0, 1}∗ and push it into a stack, where
𝑤 = 𝑒1𝑒2⋯ 𝑒𝑛 indicates that, for any 𝑗 ∈ [𝑛], we select the 𝑗th entry from every block exactly
when 𝑒𝑗 = 1. Let 𝐴𝑤 = {𝑗 ∈ [𝑛] ∣ 𝑒𝑗 = 1}. In universal inner states, we then check whether
𝑏𝑖 = ∑𝑗∈𝐴𝑤 𝑎𝑖𝑗 holds for all 𝑖 ∈ [𝑚]. This last procedure is achieved by first storing 1𝑏𝑖 into a
counter. As popping the values 𝑒𝑗 one by one from the stack, if 𝑗 ∈ 𝐴𝑤 , then we decrease the
counter by 𝑎𝑖𝑗 . Otherwise, we do nothing. When either the stack gets empty or the assigned
block (1𝑎𝑖1 , … , 1𝑎𝑖𝑛) of 𝑥 is finished, if the stack is empty and the counter becomes 0, then we
accept 𝑥 ; otherwise, we reject 𝑥 . Note that the stack and the counter make only 1-turns and
the input-tape head moves only in one direction. 2

3.2. Unary Bounded Correspondence Problem

We turn our attention to the bounded Post correspondence problem (BPCP), which is a well-
known problem of determining whether, given a set {(𝑎𝑖, 𝑏𝑖)}𝑖∈[𝑛] of binary string pairs and a
number 𝑘 ≥ 1, a certain sequence (𝑖1, 𝑖2, … , 𝑖𝑡) of elements in [𝑛]with 𝑡 ≤ 𝑘 satisfies 𝑎𝑖1𝑎𝑖2 ⋯𝑎𝑖𝑡 =𝑏𝑖1𝑏𝑖2 ⋯𝑏𝑖𝑡 . This problem is known to be NP-complete [11]. When we replace binary strings 𝑎𝑖
and 𝑏𝑖 by unary strings, we obtain the following “unary” variant of PCP.

Unary Bounded Correspondence Problem (UBCP):

∘ Instance: ((𝑎1, 𝑏1), (𝑎2, 𝑏2), … , (𝑎𝑛, 𝑏𝑛)) for unary strings 𝑎1, 𝑎2, … , 𝑎𝑛, 𝑏1, 𝑏2, … , 𝑏𝑛 ∈ 1+
and 1𝑘 for 𝑘 ∈ ℕ+.

∘ Question: is there a sequence (𝑖1, 𝑖2, … , 𝑖𝑡) of elements in [𝑛] with 𝑡 ∈ [𝑘] satisfying
𝑎𝑖1𝑎𝑖2 ⋯𝑎𝑖𝑡 = 𝑏𝑖1𝑏𝑖2 ⋯𝑏𝑖𝑡 ?

Since 𝑎𝑖 and 𝑏𝑖 are unary strings, the above requirement 𝑎𝑖1 ⋯𝑎𝑖𝑡 = 𝑏𝑖1 ⋯𝑏𝑖𝑡 is equivalent to
∑𝑗∈𝑆 |𝑎𝑗 | = ∑𝑗∈𝑆 |𝑏𝑗 |, where |𝑎𝑗 | and |𝑏𝑗 | mean the lengths of strings 𝑎𝑗 and 𝑏𝑗 , respectively.
Lemma 3.9 UBCP belongs to 1t1N2CA.

Proposition 3.10 UK ≤L𝑚 UBCP ≤L𝑚 AmbUK.

Proof Sketch. Here, we only show the last reduction UBCP ≤L𝑚 AmbUK. Let 𝑤 =
((𝑎1, 𝑏1), … , (𝑎𝑛, 𝑏𝑛)) be any instance to UBCP. Assume that, for any 𝑖 ∈ [𝑛], 𝑎𝑖 = 1𝑘𝑖 and 𝑏𝑖 = 1𝑙𝑖
for certain numbers 𝑘𝑖, 𝑙𝑖 ∈ ℕ+. Let 𝑚 = max{∑𝑖∈[𝑛] 𝑘𝑖, ∑𝑖∈[𝑛] 𝑙𝑖}. Note that |𝑆| ≤ ∑𝑖∈𝑆 𝑘𝑖 ≤ 𝑚 and
|𝑆| ≤ ∑𝑖∈𝑆 𝑙𝑖 ≤ 𝑚 for any 𝑆 ⊆ [𝑛]. We then set 𝑐𝑖 = 𝑚 − (𝑘𝑖 − 𝑙𝑖) for each 𝑖 ∈ [𝑛]. We remark that
∑𝑖∈𝑆 𝑐𝑖 = 𝑚|𝑆| − (∑𝑖∈𝑆 𝑘𝑖 − ∑𝑖∈𝑆 𝑙𝑖) ≥ 𝑚|𝑆| − (𝑚 − |𝑆|) = 𝑚(|𝑆| − 1) + |𝑆| ≥ 0 for any nonempty

subset 𝑆 of [𝑛]. If 𝑤 ∈ UBCP, then there is a nonempty set 𝑆 ⊆ [𝑛] such that ∑𝑖∈𝑆 𝑘𝑖 = ∑𝑖∈𝑆 𝑙𝑖,
that is, ∑𝑖∈𝑆(𝑘𝑖 − 𝑙𝑖) = 0. It then follows that ∑𝑖∈𝑆 𝑐𝑖 = 𝑚|𝑆|.

We also check if ∑𝑖∈[𝑛] 𝑘𝑖 = ∑𝑖∈[𝑛] 𝑙𝑖 or if 𝑘𝑖0 = 𝑙𝑖0 for a certain index 𝑖0 ∈ [𝑛]. If this is true,
then we know that 𝑆 = [𝑛] or {𝑖0}. Otherwise, we set 𝑑𝑖 = 𝑖 ⋅ 𝑚 for each 𝑖 ∈ [2, 𝑛 − 1]ℤ and then
define 𝑢 = ((1𝑑2 , 1𝑑3 , … , 1𝑑𝑛−1), (1𝑐1 , 1𝑐2 , … , 1𝑐𝑛)). It follows that 𝑤 ∈ UBCP iff 𝑢 ∈ AmbUK. 2

Corollary 3.11 UK ≡L𝑡 𝑡 UBCP.

4. Graph Problems

We look into decision problems that are related to graphs, in particular, weighted graphs in
which either vertices or edges are labeled with “weights”. Here, we study the computational
complexity of these specific problems.

We begin with edge-weighted path problems, in which we search for a simple path whose
weight matches a target unarized number, which is given in unary. We consider, in particular,
directed acyclic graphs (or dags) whose edges are further labeled with weights, which are given
in unary.

For the purpose of this work, a dag 𝐺 = (𝑉 , 𝐸) given as part of inputs to an under-
lying machine is assumed to satisfy that 𝑉 is a subset of ℕ+, e.g., 𝑉 = {𝑖1, 𝑖2, … , 𝑖𝑛} for
𝑖1, 𝑖2, … , 𝑖𝑛 ∈ ℕ+. We also use the following specific encoding of 𝐺. Given a vertex 𝑖, we
write 𝐸[𝑖] for the set of all adjacent vertices entering from 𝑖, namely, {𝑗 ∈ 𝑉 ∣ (𝑖, 𝑗) ∈ 𝐸}.
When 𝐸[𝑖] equals {𝑗1, 𝑗2, … , 𝑗𝑛} with 𝑗1 < 𝑗2 < ⋯ < 𝑗𝑛, we express it in the “multi-unary”
form of (1𝑖, 1𝑗1 , 1𝑗2 , … , 1𝑗𝑛). The unary adjacency list representation 𝑈𝐴𝐿𝐺 of 𝐺 is of the form
((1𝑖1 , 1𝑗𝑖1,1 , 1𝑗𝑖1,2 , … , 1𝑗𝑖1,𝑘1), … , (1𝑖𝑛 , 1𝑗𝑖𝑛 ,1 , 1𝑗𝑖𝑛 ,2 , … , 1𝑗𝑖𝑛 ,𝑘𝑛)) with 𝑘𝑖 ∈ ℕ if 𝑉 = {𝑖1, 𝑖2, … , 𝑖𝑛} with
𝑖1 < 𝑖2 < ⋯ < 𝑖𝑛 and 𝐸[𝑖𝑠] = {𝑗𝑖𝑠 ,1, 𝑗𝑖𝑠 ,2, … , 𝑗𝑖𝑠 ,𝑘𝑠 } with 𝑗𝑖𝑠 ,1 < 𝑗𝑖𝑠 ,2 < ⋯ < 𝑗𝑖𝑠 ,𝑘𝑠 for any 𝑠 ∈ [𝑛].

Edge-Weighted Path Problem (EWPP)

∘ Instance: a dag 𝐺 = (𝑉 , 𝐸) with 𝑉 ⊆ ℕ+ given in the form of 𝑈𝐴𝐿𝐺 , a vertex 𝑠 ∈ 𝑉
given as 1𝑠 , edge weights 𝑤(𝑖, 𝑗) ∈ ℕ+ given as 1𝑤(𝑖,𝑗) for all edges (𝑖, 𝑗) ∈ 𝐸, and 1𝑐 with
𝑐 ∈ ℕ+, provided that edges are enumerated according to the linear order <[𝑛].

∘ Question: is there a vertex 𝑣 ∈ 𝑉 such that the total edge weight of a path from 𝑠 to 𝑣
equals 𝑐?

In comparison, the graph connectivity problem for directed “unweighted” graphs (DSTCON)
is known to be NL-complete [12].

Lemma 4.1 EWPP is in NL.

When each edge weight is 1, the total weight of a path is the same as the length of the path.
This fact makes us introduce another decision problem. A sink of a directed graph is a vertex
of outdegree 0 in the graph.

Exact Path Length Problem (EPLP)

∘ Instance: a dag 𝐺 = (𝑉 , 𝐸) with 𝑉 ⊆ ℕ+ given as 𝑈𝐴𝐿𝐺 , a vertex 𝑠 ∈ 𝑉 given as 1𝑠 , and
1𝑐 with 𝑐 ∈ ℕ+.

∘ Question: is there a sink 𝑣 of 𝐺 such that a path from 𝑠 to 𝑣 has length exactly 𝑐?
Proposition 4.2 EWPP ≡L𝑚 EPLP.

Proof Sketch. Firstly, we show that EPLP ≤L𝑚 EWPP. Given an instance 𝑥 = (𝐺, 𝑠, 1𝑐) of
EPLP with 𝐺 = (𝑉 , 𝐸), we define another instance, say, 𝑦 of EWPP as follows. For every leaf
𝑣 of 𝐺, we add a new vertex ̄𝑣 and a new edge (𝑣 , ̄𝑣) to 𝐺 and obtain the new vertex set 𝑉 ′
and the new edge set 𝐸′. Consider the resulting graph 𝐺′ = (𝑉 ′, 𝐸′). Let 𝑛 = |𝑉 ′|. We define
𝑤(𝑢, 𝑣) = 1 for all pairs (𝑢, 𝑣) ∈ 𝐸 and additionally we set 𝑤(𝑣, ̄𝑣) = 𝑛 + 1 for any old leaf 𝑣 ∈ 𝑉 .
Let 𝑐′ = 𝑐 + 𝑛 + 1. We define 𝑦 = (𝐺′, {𝑤(𝑒)}𝑒∈𝐸′ , 1𝑐′). We want to verify that (*) 𝑥 ∈ EPLP iff
𝑦 ∈ EWPP.

To prove (*), let us assume that 𝑥 ∈ EPLP. We then take a length-𝑐 path 𝛾 = (𝑣0, 𝑣1, … , 𝑣𝑐) of
𝐺 with 𝑣0 = 𝑠 and 𝑣𝑐 is a leaf. Consider 𝑦 and 𝛾 (+) = (𝑣0, 𝑣1, … , 𝑣𝑐 , ̄𝑣𝑐). The total weight of 𝛾 (+)
in 𝐺′ is 𝑐 + 𝑤(𝑣𝑐 , ̄𝑣𝑐) = 𝑐 + 𝑛 + 1 = 𝑐′. Hence, 𝑦 is in EWPP. Conversely, assume that 𝑦 ∈ EWPP
and consider a path 𝛾 = (𝑣0, 𝑣1, … , 𝑣𝑘) of 𝐺′ with 𝑣0 = 𝑠 satisfying ∑𝑘

𝑖=0 𝑤(𝑣𝑖, 𝑣𝑖+1) = 𝑐′. Since
𝑛 = |𝑉 ′|, 𝛾 must include a leaf. Hence, 𝑣𝑘 must be ̄𝑣𝑘−1. Moreover, 𝑘 − 1 = 𝑐 follows. The path
𝛾 (−) = (𝑣0, 𝑣1, … , 𝑣𝑘−1) is a path from 𝑠 to a leaf of 𝐺 and its length is exactly 𝑐. This implies
that 𝑥 ∈ EPLP.

Secondly, we show that EWPP ≤L𝑚 EPLP. Let 𝑥 = (𝐺, 𝑠, {𝑤(𝑒)}𝑒∈𝐸 , 1𝑐) be any in-
stance of EWPP. We construct an instance of EPLP as follows. For each (𝑢, 𝑣) ∈ 𝐸
with 𝑤(𝑢, 𝑣) = 1𝑘 , we introduce 𝑘 + 1 extra vertices { ̄𝑣 , 𝑢′1, 𝑢′2, … , 𝑢′𝑘} and extra edges
{(𝑢, 𝑢′1), (𝑢′1, 𝑢′2), … , (𝑢′𝑖 , 𝑢′𝑖+1), (𝑢′𝑘 , 𝑣), (𝑢′𝑘 , ̄𝑣) ∣ 𝑖 ∈ [𝑘 − 2]}. Those edges form two paths from 𝑢
to 𝑣 and 𝑢 to ̄𝑣 of length exactly 𝑘. Notice that ̄𝑣 becomes a new leaf. Let 𝑉 ′ and 𝐸′ denote the
extended sets of 𝑉 and 𝐸, respectively, and set 𝐺′ = (𝑉 ′, 𝐸′). For the instance 𝑦 = (𝐺′, 𝑠, 1𝑐), it
is possible to prove that 𝑥 ∈ EWPP iff 𝑦 ∈ EPLP. 2

We then obtain the following NL-completeness result.

Proposition 4.3 EWPP and EPLP are both L-m-complete for NL.

Proof Sketch. Here, we wish to prove (*) 𝐿 ≤L𝑚 EPLP for any language 𝐿 in 1NCA. If this is
true, then all languages in NL are L-m-reducible to EPLP since LOG(1NCA) = NL. Moreover,
since EWPP belongs to NL by Lemma 4.1, EPLP is also in NL. Therefore, EPLP is L-m-complete
for NL. Since EWPP ≡L𝑚 EPLP by Proposition 4.2, we also obtain the NL-completeness of
EWPP.

To show the statement (*), let us take any 1ncta𝑀 and consider surface configurations of𝑀
on input 𝑥 . Note that, since surface configurations have size 𝑂(log |𝑥|), we can express them
as unary-form positive integers. Between two surface configurations, we define a single-step
transition relation ⊢𝑀 . We then define a computation graph 𝐺𝑥 = (𝑉𝑥 , 𝐸𝑥) of 𝑀 on the input
𝑥 . The vertex set 𝑉𝑥 is composed of all possible surface configurations of 𝑀 on 𝑥 . We further
define 𝐸𝑥 to be the set of all pairs (𝑣1, 𝑣2) of surface configurations satisfying 𝑣1 ⊢𝑀 𝑣2. The
root 𝑠 of 𝐺𝑥 is set to be the initial surface configuration of 𝑀 . It then follows that 𝑥 ∈ 𝐿(𝑀) iff
(𝑈𝐴𝐿𝐺𝑥 , 1𝑠 , 1|𝑥 |+2) ∈ EPLP. 2

Let us argue how EWPP is related to UKEXC and UK. To see the desired relationships,
we introduce two restricted variants of EWPP. We say that a dag 𝐺 = (𝑉 , 𝐸) with 𝑉 ⊆ ℕ+ is

topologically ordered if, for any two vertices 𝑖, 𝑗 ∈ 𝑉 , (𝑖, 𝑗) ∈ 𝐸 implies 𝑖 < 𝑗. We define TO-EWPP
as the restriction of EWPP onto instances that are topologically ordered. A dag 𝐺 = (𝑉 , 𝐸) is
edge-closed if, for any three vertices 𝑢, 𝑣 , 𝑤 ∈ 𝑉 , (1) (𝑢, 𝑣) ∈ 𝐸 and (𝑣 , 𝑤) ∈ 𝐸 imply (𝑢, 𝑤) ∈ 𝐸
and (2) (𝑢, 𝑤) ∈ 𝐸 and (𝑣 , 𝑤) ∈ 𝐸 imply either (𝑢, 𝑣) ∈ 𝐸 or (𝑣 , 𝑢) ∈ 𝐸. We write EC-EWPP for
TO-EWPP whose instance graphs are all edge-closed.

Proposition 4.4 (1) TO-EWPP ≡L𝑚 UKEXC. (2) EC-EWPP ≡L𝑚 UK.

Proof Sketch. In what follows, we focus only on (1). We first show that UKEXC ≤L𝑚
TO-EWPP. Given an instance 𝑥 = ((1𝑏 , 1𝑎1 , … , 1𝑎𝑛), 𝐸𝑋𝐶) of UKEXC, we construct an as-
sociated instance, say, 𝑦 of TO-EWPP as follows. We then define 𝑉 = {𝑠, 𝑣1, 𝑣2, … , 𝑣𝑛} and
𝐸 = {(𝑣𝑖, 𝑣𝑗) ∣ 𝑖, 𝑗 ∈ [𝑛], 𝑖 < 𝑗, (𝑖, 𝑗) ∉ 𝐸𝑋𝐶} ∪ {(𝑠, 𝑣𝑗) ∣ 𝑗 ∈ [𝑛]}. It follows that 𝐺 = (𝑉 , 𝐸) is di-
rected, acyclic, and topologically ordered. Furthermore, we define edge weights as 𝑤(𝑣𝑖, 𝑣𝑗) = 𝑎𝑖
and 𝑤(𝑠, 𝑣𝑗) = 1 for any (𝑣𝑖, 𝑣𝑗), (𝑠, 𝑣𝑗) ∈ 𝐸. Finally, we set 𝑐 = 𝑏 + 1. Let us consider
𝑦 = (𝐺, {1𝑤(𝑒)}𝑒∈𝐸 , 1𝑐). It is possible for us to verify that 𝑥 ∈ UKEXC iff 𝑦 ∈ TO-EWPP. This
implies UKEXC ≤L𝑚 TO-EWPP.

Conversely, we intend to verify that TO-EWPP ≤L𝑚 UKEXC. Assume that 𝑥 =
(𝐺, 𝑠, {1𝑤(𝑒)}𝑒∈𝐸 , 1𝑐) with 𝐺 = (𝑉 , 𝐸) is any instance of TO-EWPP. An associated instance 𝑦
of UKEXC is constructed as follows. Firstly, we assume that 𝐺 is acyclic because, otherwise,
we convert 𝐺 to an acyclic graph 𝐺′ = (𝑉 ′, 𝐸′) by setting 𝑉 ′ = {((𝑖, 𝑣) ∣ 𝑖 ∈ [|𝑉 |], 𝑣 ∈ 𝑉 }
and 𝐸′ = {((𝑖, 𝑢), (𝑖 + 1, 𝑣)) ∣ 𝑖 ∈ [|𝑉 | − 1], (𝑢, 𝑣) ∈ 𝐸}. For simplicity, we further assume that
𝑉 = [2, 𝑛]ℤ and 𝑠 is vertex 2. We define an encoding ⟨𝑖, 𝑗⟩ of two distinct vertices 𝑖, 𝑗 ∈ [𝑛]
as ⟨𝑖, 𝑗⟩ = (𝑖 − 1)𝑛 + 𝑗. We consider only a unique connected component including 𝑠 because
any other connected component is irrelevant. Hereafter, we assume that this connected com-
ponent contains all vertices in 𝑉 . We expand 𝐺 to 𝐺′ = (𝑉 ′, 𝐸′) by setting 𝑉 ′ = 𝑉 ∪ {1} and
𝐸′ = 𝐸 ∪ {(1, 𝑗) ∣ 𝑗 ∈ [2, 𝑛]ℤ}. As for new weights, we set 𝑤 ′(𝑖, 𝑗) = 𝑤(𝑖, 𝑗) for any (𝑖, 𝑗) ∈ 𝐸 and
𝑤 ′(1, 𝑗) = 𝑤∗ + 1 for any 𝑗 ∈ [2, 𝑛]ℤ, where 𝑤∗ = ∑(𝑖,𝑗)∈𝐸 𝑤(𝑖, 𝑗).

We further set 𝑎⟨𝑖,𝑗⟩ = 𝑤(𝑖, 𝑗) if (𝑖, 𝑗) ∈ 𝐸. Moreover, let 𝑎⟨1,𝑗⟩ = 𝑤∗ + 1 for any 𝑗 ∈ [2, 𝑛]ℤ.
For any other pair (𝑖, 𝑗), the value 𝑎⟨𝑖,𝑗⟩ is not defined. Let 𝐴 denote the set of all 𝑎⟨𝑖,𝑗⟩’s that are
defined. Assume that 𝐴 has the form {𝑎𝑘1 , 𝑎𝑘2 , … , 𝑎𝑘𝑚 } with 𝑚 ≤ 𝑛2, where 𝑘1 < 𝑘2 < ⋯ < 𝑘𝑚.
We write 𝐾 for the set {𝑘1, 𝑘2, … , 𝑘𝑚}. The set 𝐸𝑋𝐶 is defined to be the union of the following
sets: {(⟨𝑖, 𝑗⟩, ⟨𝑖′, 𝑗′⟩) ∣ 𝑖, 𝑗, 𝑖′, 𝑗′ ∈ [𝑛], (⟨𝑖, 𝑗⟩ ≮ ⟨𝑖′, 𝑗′⟩ ∨ 𝑗 ≠ 𝑖′ ∨ 𝑖 = 𝑗′), (𝑖, 𝑣) ∈ 𝐸, (𝑖′, 𝑗′) ∈ 𝐸},
{(⟨𝑖, 𝑗⟩, ⟨𝑖′, 𝑗′⟩) ∣ 𝑖, 𝑖′, 𝑗, 𝑗′ ∈ [𝑛], ⟨𝑖, 𝑗⟩ < ⟨𝑖′, 𝑗′⟩, ((𝑖, 𝑗) ∉ 𝐸 ∨ (𝑖′, 𝑗′) ∉ 𝐸)}, and {(⟨𝑖, 𝑗⟩, ⟨1, 𝑗′⟩) ∣ 𝑖, 𝑗, 𝑗′ ∈
[2, 𝑛]ℤ}. Let 𝑏 = 𝑐 + 𝑤∗ + 1.

We define the desired instance 𝑦 as 𝑦 = ((1𝑏 , 1𝑎𝑘1 , 1𝑎𝑘2 , … , 1𝑎𝑘𝑚), 𝐸𝑋𝐶). For this instance 𝑦 ,
we can prove that 𝑥 ∈ TO-EWPP iff 𝑦 ∈ UKEXC. 2

5. Lattice Problems

Let us discuss lattice problems. A lattice is a set of integer linear combinations of basis vectors.
Here, we deal only with the case where bases are taken from ℤ𝑛 for a certain 𝑛 ∈ ℕ+. The
decision version of the closest vector problem (CVP) is known to be NP-complete [13]. We
then consider a variant of CVP. To fit into our setting of unary-form integers, a simple norm

notion of the max norm ‖ ⋅ ‖∞ from Section 2.1. In a syntactic similarity, we further introduce
the notation ‖𝑣‖min to express min{|𝑣𝑖| ∶ 𝑖 ∈ [𝑛]} for any real-valued vector 𝑣 = (𝑣1, 𝑣2, … , 𝑣𝑛).
Notice that ‖𝑣‖min does not serve as a true “distance”. For convenience, 𝐿(𝑣1, 𝑣2, … , 𝑣𝑚) denotes
the lattice spanned by a given set {𝑣1, 𝑣2, … , 𝑣𝑚} of basis vectors.

Unary Max-Norm Closest Vector Problem (UCVPmax):

∘ Instance: 1𝑏 for a positive integer 𝑏, a tuple (1⟨𝑣𝑖[1]⟩, 1⟨𝑣𝑖[2]⟩, … , 1⟨𝑣𝑖[𝑛]⟩) for a set
{𝑣1, 𝑣2, … , 𝑣𝑚} of lattice bases with 𝑣𝑖 = (𝑣𝑖[1], 𝑣𝑖[2], … , 𝑣𝑖[𝑛]) ∈ ℤ𝑛, and a tuple
(1⟨𝑥0[1]⟩, 1⟨𝑥0[2]⟩, … , 1⟨𝑥0[𝑛]⟩) for a target vector 𝑥0 = (𝑥0[1], 𝑥0[2], … , 𝑥0[𝑛]) ∈ ℤ𝑛.

∘ Question: is there a lattice vector 𝑤 in 𝐿(𝑣1, 𝑣2, … , 𝑣𝑚) such that the max norm ‖𝑤 −𝑥0‖∞
is at most 𝑏?

In the above definition of UCVPmax, we replace ‖ ⋅ ‖∞ by ‖ ⋅ ‖𝑚𝑖𝑛 and then obtain UCVPmin.
For simplicity, in what follows, we intend to write ̄𝑣 for (1⟨𝑣[1]⟩, 1⟨𝑣[2]⟩, … , 1⟨𝑣[𝑛]⟩) if 𝑣 =

(𝑣[1], 𝑣[2], … , 𝑣[𝑛]).
Proposition 5.1 SUK ≤L𝑚 UCVPmax.

Proof Sketch. In a similar way to obtaining SUK from UK, we can introduce a variant of
U2PART, called the simultaneous unary 2 partition problem (SU2PART). It is possible to prove
that SUK ≤L𝑚 SU2PART. It therefore suffices to verify that SU2PART ≤L𝑚 UCVPmax.

Let 𝑥 = (𝑎1, 𝑎2, … , 𝑎𝑚) with 𝑎𝑗 = (1𝑎𝑗1 , 1𝑎𝑗2 , … , 1𝑎𝑗𝑛) for any 𝑗 ∈ [𝑚] be any instance of
SU2PART. Let 𝑑𝑗 = ∑𝑖∈[𝑛] 𝑎𝑗𝑖 for each 𝑗 ∈ [𝑚] and set 𝑑𝑚𝑎𝑥 = max𝑗∈[𝑚]{𝑑𝑗}. Given any
𝑗 ∈ [𝑚] and 𝑖 ∈ [𝑛], we further set 𝑎′𝑗𝑖 = 𝑑𝑚𝑎𝑥𝑎𝑗𝑖 and 𝑑′𝑗 = 𝑑𝑚𝑎𝑥𝑑𝑗 . Let us define 𝑛 vectors
𝑣1, 𝑣2, … , 𝑣𝑛 as 𝑣1 = (𝑎′11, 𝑎′21, … , 𝑎′𝑚1, 2, 0, 0, … , 0), 𝑣2 = (𝑎′21, 𝑎′22, … , 𝑎′2𝑛, 0, 2, 0, … , 0), …, 𝑣𝑛 =
(𝑎′𝑛1, 𝑎′𝑛2, … , 𝑎′𝑛𝑚, 0, 0, 0, … , 0, 2). Moreover, we set 𝑥0 = (⌊𝑑′1/2⌋, ⌊𝑑′2/2⌋, … , ⌊𝑑′𝑚/2⌋, 1, 1, … , 1) and
𝑏 = 1. We then define 𝑦 to be (1𝑏 , ̄𝑣1, ̄𝑣2, … , ̄𝑣𝑛, ̄𝑥0). Clearly, 𝑦 is an instance of UCSPmax. It then
follows that 𝑥 ∈ U2PART iff 𝑦 ∈ UCVCmax. 2

Lemma 5.2 (1) UCVPmax ∈ 1t2Σ2PDCA. (2) UCVPmin ∈ 1t2NCA.

It is not clear that UCVPmax belongs to 1t2NPDCA or even P.
Next, we look into another relevant problem, known as the shortest vector problem. We

consider its variant.

Unary Max-Norm Shortest Vector Problem (USVPmax):

∘ Instance: 1𝑏 with 𝑏 ∈ ℕ+ and a tuple (1⟨𝑣𝑖[1]⟩, 1⟨𝑣𝑖[2]⟩, … , 1⟨𝑣𝑖[𝑛]⟩) for a set {𝑣1, 𝑣2, … , 𝑣𝑚}
of lattice bases with 𝑣𝑖 = (𝑣𝑖[1], 𝑣𝑖[2], … , 𝑣𝑖[𝑛]) ∈ ℤ𝑛.

∘ Question: is there a “non-zero” lattice vector 𝑤 in 𝐿(𝑣1, 𝑣2, … , 𝑣𝑚) such that the max
norm ‖𝑤‖∞ is at most 𝑏?

Similarly, we can define USVPmin by replacing ‖ ⋅ ‖∞ with ‖ ⋅ ‖min. In a way similar to prove
Lemma 5.2, we can prove that USVPmax ∈ 1t2Σ2PDCA. Moreover, the following relations hold.

Lemma 5.3 USVPmin ≤L𝑡 𝑡 UCVPmin and USVPmax ≤L𝑡 𝑡 UCVPmax.

We do not know if USVPmin ≡L𝑡 𝑡 UCVPmin and USVPmax ≡L𝑡 𝑡 UCVPmax.

References

[1] M. R. Garey, D. S. Johnson, Computers and Interactability: A Guide to the Theory of
NP-Completeness, W. H. Freeman and Company, New York, NY, 1979.

[2] S. A. Cook, A taxonomy of problems with fast parallel algorithms, Information and
Control 64 (1985) 2–22.

[3] S. Cho, D. T. Huynh, On a complexity hierarchy between L and NL, Information Process-
ing Letters 29 (1988) 177–182.

[4] B. Jenner, Knapsack problems for NL, Information Processing Letters 54 (1995) 169–174.
[5] G. Ginsburg, E. H. Spanier, Finite-turn pushdown automata, SIAM Journal on Control 4

(1966) 429–453.
[6] I. H. Sudborough, On the tape complexity of determinsitic context-free languages, Journal

of ACM 25 (1978) 405–414.
[7] B. Jenner, B. Kirsg, Characterizing the polynomial hierarchy by alternating pushdown

automata, RAIRO–Theoretical Informatics and Applications 23 (1989) 87–99.
[8] M. L. Minsky, Computation: Finite and InfiniteMachines, Prentice-Hall, Englewood Cliffs,

NJ, 1967.
[9] T. Yamakami, Strengths and weaknesses of nonuniform families of multi-counter push-

down automata of polynomial state-stack complexity, Manuscript, 2023. Submitted to an
international conference.

[10] R. M. Karp, Reducibility among combinatorial problems, in: R. E. Miller, J. W. T. (eds.)
(Eds.), Complexity of Computer Computations, Plenum Press, New York, NY, 1972, pp.
85–103.

[11] R. L. Constable, H. B. H. III, S. Sahni, On the computational complexity of scheme equiva-
lence, Technical Report No. 74-201, Depaerment of Computer Science, Cornell University,
1974.

[12] N. D. Jones, Y. E. Lien, W. T. Laaser, New problems complete for nondeterministic log
space, Mathematical Systems Theory 10 (1976) 1–17.

[13] P. van Emde Boas, Another NP-complete partition problem and the complexity of com-
puting short vectors in a lattice, Technical Report No. 81-04, Department of Mathematice,
University of Amsterdam, 1981.

	1 Background and Quick Overview
	1.1 Unary Representations of Integer Inputs
	1.2 New Challenges and Main Contributions

	2 Basic Notions and Notation
	2.1 Numbers, Sets, Languages
	2.2 Turing Machines and Log-Space Reductions
	2.3 Multi-Counter Pushdown Automata

	3 Combinatorial Number Problems
	3.1 Variations of the Unary 0-1 Knapsack Problem
	3.2 Unary Bounded Correspondence Problem

	4 Graph Problems
	5 Lattice Problems

