A Digital Twin prototype for traffic sign recognition of
a learning-enabled autonomous vehicle

Mohamed AbdEISalam’, Loai Ali**, Saddek Bensalem?, Weicheng He?,
Panagiotis Katsaros’, Nikolaos Kekatos?, Doron Peled?, Anastasios Temperekidis® and
Changshun Wu?

'Siemens EDA, Cairo, Egypt
2Université Grenoble Alpes, VERIMAG, Grenoble, France
3 Aristotle University of Thessaloniki, Thessaloniki, Greece

*Bar Ilan University, Ramat Gan, Israel

Abstract

In this paper, we present a novel digital twin prototype for a learning-enabled self-driving vehicle. The pri-
mary objective of this digital twin is to perform traffic sign recognition and lane keeping. The digital twin
architecture relies on co-simulation and uses the Functional Mock-up Interface and SystemC Transaction
Level Modeling standards. The digital twin consists of four clients, i) a vehicle model that is designed in
Amesim tool, ii) an environment model developed in Prescan, iii) a lane-keeping controller designed
in Robot Operating System, and iv) a perception and speed control module developed in the formal
modeling language of BIP (Behavior, Interaction, Priority). These clients interface with the digital twin
platform, PAVE360-Veloce System Interconnect (PAVE360-VSI). PAVE360-VSI acts as the co-simulation
orchestrator and is responsible for synchronization, interconnection, and data exchange through a server.
The server establishes connections among the different clients and also ensures adherence to the Ethernet
protocol. We conclude with illustrative digital twin simulations and recommendations for future work.

Keywords

digital twin, co-simulation, FMI, SystemC, lane keeping, perception, YOLOX, autonomous vehicle

1. Introduction

Digital Twins (DTs) [1] have gained significant attention in both academia and industry. Typically
defined as a virtual representation of a physical asset, process, and system, a DT serves diverse
purposes [2]. DT applications have been found in various domains, like product lifecycle
management and manufacturing [3]. The main objective of a DT is to generate virtual/digital
models of physical objects to simulate their behaviors [2]. Conventionally, DTs involve three
elements: i) a physical entity, i.e. an artifact like a vehicle, a product, a process, or a system
in real space, ii) a virtual entity, i.e. a virtual representation of the physical entity, and iii) a
channel that links these two entities and can transfer information from one to the other.

Companion Proceedings of the 16th IFIP WG 8.1 Working Conference on the Practice of Enterprise Modeling and the 13th
Enterprise Design and Engineering Working Conference, November 28 — December 1, 2023, Vienna, Austria
*Corresponding author.

& mohamed.abdelsalam@siemens.com (M. AbdElSalam); loai.ali@siemens.com (L. Ali);
saddek.bensalem@univ-grenoble-alpes.fr (S. Bensalem); weicheng.he@univ-grenoble-alpes.fr (W. He);
katsaros@csd.auth.gr (P. Katsaros); nkekatos@csd.auth.gr (N. Kekatos); doron.peled@gmail.com (D. Peled);
anastemp@csd.auth.gr (A. Temperekidis); changshun.wu@univ-grenoble-alpes.fr (C. Wu)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR-WS.org/Vol-3645/dte3.pdf

CEUR
E Workshop
Proceedings

mailto:mohamed.abdelsalam@siemens.com
mailto:loai.ali@siemens.com
mailto:saddek.bensalem@univ-grenoble-alpes.fr
mailto:weicheng.he@univ-grenoble-alpes.fr
mailto:katsaros@csd.auth.gr
mailto:nkekatos@csd.auth.gr
mailto:doron.peled@gmail.com
mailto:anastemp@csd.auth.gr
mailto:changshun.wu@univ-grenoble-alpes.fr
https://creativecommons.org/licenses/by/4.0

The digital twin concept enables creating and refining a virtual counterpart before the physical
one exists [4]. If the digital system meets specific requirements, the physical product can be
manufactured and linked to its DT using sensors, often referred to as a digital twin prototype
(DTP) [5]. The DTP includes all the necessary models and processes for realizing the physical
entity [6].

Digital twins are increasingly applied in the automotive domain [7, 8, 9, 10], with ongoing
development in new DT technologies and frameworks [11, 12, 13, 14, 15]. In this work, we
present our design of a digital twin of a learning-enabled autonomous vehicle. The motivation for
this DT stems from the FOCETA project, with its high-level schematic and intended functionality
outlined in [16]. Our specific contributions in this paper involve:

« developing a complete digital twin prototype of a learning-enabled autonomous vehicle
that seamlessly integrates and interconnects multiple components and subsystems. We
leverage the PAVE360-VSI digital twin platform and Ethernet protocol.

« designing a 15 Degrees of Freedom (15DoF) vehicle model in Amesim. The model is
exported as a Functional Mock-up Unit (FMU) for interoperability purposes.

« generating an environment model in Prescan that specifies the road path, the sensors,
and the driving scenario.

« creating a perception module, based on the YOLOX algorithm, which can detect and
classify traffic signs.

- implementing a steering controller in the Robot Operating System (ROS) for lane keeping.

The rest of the paper is structured as follows. In Section 2, we introduce the key technologies,
standards, and tools employed in the co-simulation and digital twin architecture. In Section 3,
we present all the DT components and building blocks designed to execute DT simulations. The
paper concludes in Section 4.

2. Key enabling technologies for Digital Twins

Co-simulation. Co-simulation is a practical technique for simulating heterogeneous systems.
It permits the modeling and simulation of different components of a system using various tools
and methods. The global simulation of a coupled system can then be achieved by composing
the simulations of its parts. Co-simulation also allows the joint simulation of loosely coupled
stand-alone sub-simulators. To guarantee that the submodels and sub-simulators can work
seamlessly together, standardized interfaces are commonly used [17, 18, 19].

Functional Mock-up Interface (FMI). A widely used standard for co-simulation is the FMI
standard [20, 21]. The FMI standard defines an Application Programming Interface (API) and
the model elements referred to as Functional Mock-up Units (FMUs), which adhere to this APL
Each FMU can be seen as a black box that implements the methods defined in the FMI API. To
run a group of interconnected FMUs, an orchestrator, also called a master algorithm or FMI
Master, is required. Its purpose is to manage and synchronize their execution.

Transaction Level Modeling (TLM). The SystemC-TLM 2.0 standard simplifies commu-
nication and computation in industrial simulation models by using channels. These channels
abstract unnecessary details, resulting in faster simulations and facilitating high-level design
validation. Transactions are initiated through the functions in the channel model interface.

The primary focus of the TLM transaction API is the versatile generic payload transaction,
which can be adapted to various application domains [22]. TLM is suitable for a wide range of
domains, including digital and analog simulations, as well as digital communication protocols
like CAN, Ethernet, AXI, and PCle.

Behavior, Interaction, Priority (BIP). BIP is a modeling framework for rigorous system
design [23]. In BIP, complex systems are constructed by coordinating the behavior of atomic
components. BIP atomic components are transition systems with ports and variables. An atomic
component may contain control locations, variables, communication ports, and transitions.
Composite components are built by composing multiple atomic components. Interactions
between components are defined by connectors, which specify sets of interactions.

During the execution of a BIP interaction, all components that participate in the interaction,
i.e., have an associated port that is part of the interaction, must execute their corresponding
transitions simultaneously. All components that do not participate in the interaction, do not
execute any transition and thus remain in the same control location.

Digital Twin platform. PAVE360-Veloce System Interconnect (PAVE360-VSI) [24] is a digital
twin platform with network interconnect and hardware emulation capabilities. It can be used
for verifying hardware and software control systems of autonomous systems. It offers cyber-
physical ports that support diverse client connections and allows both protocol-agnostic and
protocol-aware connections between mixed-fidelity models. These connections can be shared
for Model-in-the-Loop (MiL), Software-in-the-Loop (SiL), and Hardware-in-the-Loop (HiL)
verification. Digital Twins (DTs) are particularly valuable for pre-silicon verification [25].

PAVE360-VSI provides a co-simulation architecture for DTs, which complies with Func-
tional Mock-up Interface (FMI) and Transaction-Level Modeling (TLM) standards. Simulations
advance in discrete time steps, leveraging a server/client structure within the PAVE360-VSI
architecture. This design ensures interoperability among DT components, synchronizes network
communication and facilitates data transfer using multiple protocols.

The basic assumption is that every external simulator and foreign model can be integrated
with a third-party API customized for the application’s needs. This API is then linked to a TLM
fabric portal interface known as the "Gateway" [26]. The Gateway serves as an entry point to
the digital twin backplane, facilitating transactional communication and ensuring coordinated
time advancement.

Each external simulator or foreign model is a client process connected to the shared DT
backplane. This backplane acts as the timekeeper, overseeing all time advancement operations
to maintain synchronization among client processes and ensure deterministic behavior.

PAVE360-VSI has been extended to facilitate formal modeling. A "BIP Gateway" has been cre-
ated as part of the architecture in [27]. Runtime verification can be used within the architecture
via FMI [28].

3. Developing a Digital Twin for traffic sign recognition and lane
keeping

The digital twin comprises four heterogeneous components that communicate through the
PAVE360-VSI platform. Figure 1 presents the overall DT prototype of our learning-enabled
vehicle with lane-keeping and traffic sign recognition capabilities. Each component has a
different role, i.e., vehicle modeling, environment modeling, lane keeping, traffic sign recognition
and speed regulation, each detailed in separate sections.

Data exchange among these components occurs via the Ethernet protocol. Gateways play a
crucial role in converting data into simulated Ethernet frames. These exchanged frames adhere
to the structure of a typical (physical) Ethernet network connection, incorporating familiar
fields such as MAC headers, payloads, and checksums. The payload of the exchanged Ethernet
frames consists of a serialized bitstream representing the data to be exchanged between the
communicating entities. This payload is designed to accommodate various data types, such as
floats, integers, strings, and other relevant data structures. This flexibility enables the digital
twin to exchange a diverse range of information, facilitating a comprehensive simulation of the
ego vehicle’s behavior and its interactions with the environment.

u
vSensor2DTEthernet
Gateway

FMU2DTEthernet
Gateway

Ros2DtEthernet
Gateway
| |

C++2DtEthernet
Gateway

Figure 1: Digital twin prototype for traffic sign recognition of a learning-enabled vehicle. Architecture:
PAVE360-VSI DT platform containing a server and four clients/components; a vehicle model modeled in
AMESIM, a control ROS subsystem, a control module modeled in BIP, and a Prescan model. All tools
are co-simulated and interconnected via gateways.

3.1. Vehicle model: Amesim

The vehicle is described by a high-fidelity dynamical model (with 15 degrees of freedom) in
Amesim. It is adapted from the Simrod SIEMENS model [29]. It is encapsulated as an FMU to
connect with the interconnect and we use an FMU to ethernet gateway.

The FMU to ethernet gateway has a dual role and it supports the bi-directional transfer

SIMROD
| Steering
(FMU)
| Brake
fﬂ ey

Figure 2: Vehicle Model in Amesim; the left part shows the inputs and outputs of the FMU client, while
the right part displays a visual representation of the Simrod Amesim FMU.

of data from the FMU to the interconnect and vice versa. In this case, its primary task is to
receive an ethernet frame that contains information about the ego vehicle’s coordinates, brake,
and throttle commands. The gateway decapsulates this information from the ethernet frame
(keeping only the payload) and feeds it into the FMU model. The payload consists of three float
variables representing the ego vehicle’s coordinates, brake, and throttle commands. This model
maintains a representation of the ego-vehicle dynamics. Within the FMU, we execute a step,
advancing the simulation by a fixed time step. Figure 2 provides some details of the Amesim
model and consists of two parts. The left part shows a visual representation at a top level for
the FMU client representing its inputs/outputs, while the right part shows the Simrod Amesim
FMU.

3.2. Steering control: ROS

The Robot Operating System (ROS) client plays a key role in the navigation of the ego vehicle.
It receives real-time coordinates of the ego vehicle’s position, providing a continuous update of
its location within the Prescan environment. The ROS gateway works as follows. It receives
an ethernet frame that encapsulates the current coordinates of the ego-vehicle. The payload
of the received ethernet frame is a stream of bytes for three float variables representing the
ego vehicle’s coordinates, the ego vehicle’s speed, and acceleration. The ROS gateway then
decodes the data from the frame and sends this information to other ROS nodes. These nodes
are designed with a specific algorithm for steering the car. They process the positional data
and convert it into actionable steering commands. These steering commands are subsequently
published by the ROS nodes. The ROS gateway receives these commands, encapsulates them
within an Ethernet frame, and transmits this information. The payload of the transmitted
Ethernet frame contains a float variable representing the new steering value of the ego vehicle.
This ensures that the ego vehicle navigates smoothly and accurately through the virtual world,
responding appropriately to the changing conditions and scenarios.

Figure 3 shows how ROS subsystem is structured and containerized in Docker. The left part
shows a visual representation at a top level for the ROS client representing its inputs/outputs,
while the right part shows the ROS subsystem.

Docker host

o receptacle daemon

7\
& Docker Ubuntu 18.04 container ~ Steering Control

~

EEEEE—— Vehicle Position/Orientation

ROS — |

Ros2DtEthernet
Gateway

(Steering Control ECU) |

Vehicle Speed
Vehicle Commands
J RGB Camera
Image

Figure 3: Digital Twin component - ROS client - steering control module.

3.3. Environment model: Prescan

The Prescan client serves as a digital representation of a real-world environment, designed
to mirror actual driving conditions. This virtual world includes roads, traffic signs, and other
elements typically encountered during a drive.

The main actor of this Prescan scenario is the ego vehicle, a digital representation of a
real-world vehicle. This vehicle is equipped with an advanced RGB camera sensor, which
captures video frames of the surrounding environment. These frames provide visual data that
is disseminated to various clients within the network. This continuous stream of information
forms the basis for decision-making processes in other clients, enabling them to react and adapt
in real time to the changing conditions within the Prescan environment.

The vSensor (virtual sensor) to Ethernet gateway, implemented as an S-function within
the Prescan client, plays a key role in this process. It encapsulates the video frame captured
by the RGB camera sensor mounted on top of the ego-vehicle inside an Ethernet frame and
transmits it. The video frames that are sent in the Ethernet frame are represented by a stream
of bytes representing the RGB values of the pixels of the image that is captured by the RGB
camera sensor. In addition, the gateway sends another Ethernet frame containing the current
coordinates and speed of the ego-vehicle, conveyed as float variables in the payload. Finally, the
gateway receives two Ethernet frames containing the steering angle, brake, and throttle values.

In Figure 4, we show the Prescan scenario under study. The left part shows a visual represen-
tation at a top level for the prescan client representing its inputs/outputs, while the right part
shows the Prescan experiment setup and also the ego-vehicle used.

3.4. Perception and speed control module: BIP

The BIP client, another DT component, serves two essential functions for the ego vehicle. Firstly,
it employs a YOLOX deep learning model [30] to process video frames received from the ego
vehicle’s RGB camera sensor. These frames, transmitted as an Ethernet frame from the Prescan
client, pass through the C++ to Ethernet gateway within the BIP client. The video frame within
the Ethernet frame is represented as a byte sequence capturing RGB values of the pixels. The

Scenario Under Test
(SuT) Srr—

Sensors Models) [——.

® e

GEEE e

(&

Figure 4: Digital Twin component - Prescan scenario - environment model and driving track.

22

EnvironmentModel

Perception LEC RGB image
A

BIP -

(Controller & Perception ECU) |em—————

- /

Controller Component VehicleModel

LEAS BIP Prescan/Simulink

Figure 5: Digital Twin component - BIP module - speed control regulation and perception with YOLOX.

gateway decapsulates this data and forwards it to YOLOX. The YOLOX model has been trained
to detect speed limits and identify Prescan traffic signs.

The second function of the BIP client is to regulate the velocity of the ego vehicle based on
the detected speed limit and the current speed of the ego vehicle. The current speed of the ego
vehicle is a float variable received via the C++ to Ethernet gateway. A Proportional-Integral
(PI) controller then uses both pieces of information to apply either brake or throttle commands
based on the difference between the detected speed limit and the vehicle’s current speed.

Figure 5 provides a visual representation of the key functionalities of the BIP client. The left
part illustrates the client’s inputs/outputs, while the right part outlines the internal interactions
within the BIP client.

3.5. Orchestration: PAVE360-VSI platform

The PAVE360-VSI platform serves as the cornerstone for co-simulation and digital twin orches-

tration, offering functions that seamlessly integrate all clients.

In this work, to realize the digital twin prototype, we employed a simulated Ethernet switch
within the PAVE360-VSI digital twin platform for data exchange. All four clients connect to
this switch through gateways, responsible for encapsulating and decapsulating data into/from
Ethernet frames. The orchestrator’s switch then takes control, routing data to the appropriate
client (see Figure 6). The orchestrator is also responsible for synchronizing all clients based on a
given message sequence diagram. It ensures that all components operate on the same simulated
time, maintaining safe and stable operation and coordination within the system. Figure 7 depicts

the message state sequence we designed and implemented.

g 4 44

Virtual Ethernet Port

Docker host

* receptacle daemon
dacker '+ o
s

EGO Vehicle Dynamics
co-simulation FMU

y—

Veloce System Interconnect
L]

ETH
Switch

& Docker Ubuntu 18.04 container
e

T

Vehicle Position/Orientation

Vehicle Speed

Vehicle Commands

P
Virtual Ethernet Port

Simcenter Prescan/Simulink

L =g

Virtual Ethernet Port

Virtual Ethernet Port

FY Docker Ubuntu 18.04 container
4
r/’ -\\

‘ BIP — LEC (DUT) ‘

Learning Enabled Component (Formal
Analysis)

Figure 6: Architecture of the digital twin showing all clients’ connections.

Prescan Prescan ROS ROS BIP | BIP EGO Vehicle
i y y Subsystem Gateway Model L_FMU Model
Reactive. Model ! Synch; Model Synch.iModel Synch, Model
Loop (e/simulation step until scenario’s end) |
Read Video Frame and
Gurrent Speed
___________________ >
Send [Video Frame - Current Spekd]
Video Frame
Send [PosX — PosY — Yawi— Speed —
—TsHazara 2 Video Frame] Speed Limit, Brake &
Send [Brake —Throftle] Send Brake
Brake, Throttle
Advanced
Publish ROS messages, Simulation
Advance ROS clogk Step) *
Receive ROS messages
end ROS Outputs
Steering Send ROS Outputs [Steefing]
Advaned
Simulation
Step
Advancsd |
Simulation
Step

Figure 7: Message sequence diagram of the digital twin showing the order of the component calls.

[Demo_LaneKeeping - HumanView_1 - Prescan Viewer - Simulation - a x

View Help File Edit View Search Terminal Help

[d_fni2setreal, amesim_interface.steering = -2.258609 (input variable 2)

[d_fmi2SetReal called at t= ©.000000000000000000e+00 s with 1 value(s)

e rollback is not allowed
[Received new steering at EGO Vehicle]: -4.66699
Received new speed value from Prescan: 41.5518 km/h.
Received video frame from Prescan..

[Speed limit = 40.00 km/h

% Current speed: 41.55 km/h

Sl [Received new brake at EGO Vehicle]: 29.2662
Pressing brake! VALUE: 29.27 Bar

Received new speed value from Prescan: 41.2689 km/h.
Received video frame from Prescan..

--- @3.000000 sec

Pos X = -23.349 m, Pos Y = -31.4448 m

Yaw = 89.6832 deg, isHazard = 0

Vehicle speed = 41.5518 km/h

Vehicle acceleration = ©.0529782 m/s"2

Steering angle = -9.62342 deg

[Received new steering at EGO Vehicle]: -9.62342
[Received new speed value from Prescan: 41.0943 km/h.
Received video frame from Prescan..

Figure 8: Digital twin simulation of a learning-enabled vehicle showcasing a successful detection
40 km/h speed limit sign.

3.6. Digital Twin simulation

module = fmuInstance, log level = INFO: [debug][FMU status:0K] SimRod Dugoff Final Cosim_impro|
module = fmuInstance, log level = INFO: [debug][FMU status:OK] SimRod Dugoff Final Cosim_impro
module = fmuInstance, log level = ERROR: [stepping] [FMU status:Error] SimRod Dugoff Final Cosi

limproved_fmi2DoStep: Current communication point (2.900000000000001243e+80 s) does not match
st evaluation time (0.000000000000000000€+00 s) within tolerance 1.000000000000000048e-04. T|

of a

In this section, we conduct simulations of the digital twin, highlighting key moments through
screenshots captured from a 3D-simulated Prescan video. Figure 8 shows the successful detection
of a traffic sign and the specific 40km/h speed limit. Figure 9 shows the successful detection
of another traffic sign, this time of and a 60km /h speed limit. Figure 10 captures a successful

maneuver on a road with a sharp curvature.

@ Demo_LaneKeeping - Human\View_1 - Prescan Viewer - Simulation - o X o

Ve el File Edit View Search Terminal Help

[module = fmuInstance, log level = INFO: [debug] [FMU status:OK] SimRod_Dugoff Final Cosim_impro|
d_fmi2setReal, amesim_interface.steering = 62.691310 (input variable 2)

[module = fmuInstance, log level = INFO: [debug][FMU status:OK] SimRod_Dugoff Final Cosim_improl
d_fnizsetReal called at t- 0.000000000000000000e+00 5 with 1 value(s)

module = fmuInstance, log level = ERROR: [stepping] [FMU status:Error] SimRod Dugoff Final Cosi]
[improved fmi2DoStep: Current communication point (8.899999999999984368e+00 5) does not match
st evaluation time (©.000000000000000000e+00 s) within tolerance 1.000000000000000048e-04. T|
e roltback is not allowed

[Received new steering at EGO Vehicle]: 57.9261

[Received new speed value from Prescan: 36.4823 km/h.

[Received video frame from Prescan..

Speed Limit = 60.00 kn/h

Current speed: 36.48 kn/h

[Received new brake at EGO Vehiclel: ©

Pr t)

Received new speed value from Prescan: 36.8074 km/h.
[Received video frame from Prescan..

--- @9.000000 sec

Pos X = 15.6011 m, Pos Y = -2.25603 m

Yaw = -1.79592 deg, isHazard = @

Vehicle speed = 36.4823 km/h

Vehicle acceleration = 1.55261 m/s"2

Steering angle = 51.7711 deg

[Received new steering at EGO Vehicle]: 51.7711
Received new speed value from Prescan: 37.1802 km/h.
Received video frame from Prescan..

Figure 9: Digital twin simulation of a learning-enabled vehicle showcasing a successful detection of a
60 km/h speed limit sign.

el e e e = o x) ' R

Vo Help File Edt View Search Terminal Help
st evaluation time (©.000000000000000000e+00 s) within tolerance 1.000000000000000048e-04. T|
e roltback is not allowed
[Received new brake at EGO Vehicle]: 0
Received new speed value from Prescan: 36.4491 km/h.
[Received video frame from Prescan..
--- @6.700000 sec

Pos X = -6.60607 m, Pos Y = -4.63855 m

Yaw = 38.0395 deg, isHazard =

Vehicle speed = 36.4672 kn/h

Vehicle acceleration = 1.3678 m/s"2

Steering angle = -212.907 deg

Imodule = fmuInstance, log level = INFO: [debug] [FMU status:0K] SimRod Dugoff Final Cosim_impro|
#d fmi2SetReal, amesim_interface.brake = 0.000000 (input variable @)
Inodule = fmuInstance, log level = INFO: [debug] [FMU status:0K] SimRod_Dugoff_Final_Cosim_impro|
ld_fmi2setReal called at t= 0.000000000000000000e+00 5 with 1 value(s)

nodule = fmuInstance, log level = INFO: [debug][FMU status:OK] SimRod Dugoff Final Cosim_impro
d_fmi2setReal, amesim interface.steering = -152.691597 (input variable 2)

nodule = fmulnstance, log level = INFO: [debug] [FMU status:OK] SimRod_Dugoff_Final_Cosim_impro
ld_fmi2setReal called at t= 0.000000000000000000e+00 5 with 1 value(s)

nodule = fmuInstance, log level = ERROR: [stepping] [FMU status:Error] SimRod Dugoff Final Cosi
[inproved_fmi2DoStep: Current communication point (6.699999999999992184e+60 s) does not match
st evaluation time (0.000000000000000000e+60 s) within tolerance 1.000000000000000048e-04. T|
le rollback is not allowed

[Received new steering at EGO Vehicle]: -212.907
JReceived new speed value from Prescan: 36.4326 km/h.
Received video frame from Prescan..

Figure 10: Digital twin simulation of a learning-enabled vehicle showcasing successful lane keeping on
a curvy road.

4. Conclusion

In this paper, we introduced a digital twin prototype of a learning-enabled self-driving vehicle.
The prototype comprises four clients, each representing subsystems/models, collectively
contributing to the simulation of real-world driving scenarios. The Amesim client describes the
ego vehicle model, the Prescan client constructs a virtual environment, the ROS client guides
the ego vehicle through this environment, and the BIP client manages both the perception
module and the vehicle’s speed control. The digital twin orchestrator ties all these components
together, ensuring efficient data routing and synchronization. We opt for the PAVE360-VSI
digital twin platform as it supports both FMI and SystemC-TLM open standards. Alternative
platforms, such as VICO [31], MAESTRO [32], MAESTRO2 [33], DESYRE [34], DIGITBrain [35],
and HUBCAP [36], also offer options for FMI-based co-simulation or SystemC co-simulation of
digital twins.

This DT prototype system highlights the potential of digital twins of learning-enabled au-
tonomous vehicles, demonstrating their ability to replicate and analyze complex real-world
scenarios. A promising future direction involves the seamless integration of learning-enabled
components in the DTs without imposing large computational burdens. Techniques such as
neural network abstraction and compression could offer viable solutions, as discussed in works
like[37, 38]. Another research direction entails the efficient integration of formal verification
methods to facilitate reasoning about the conditions under which the DTs satisfy given safety,
security, or performance specifications. Depending on the DT task and application, exhaustive
methods [39, 40, 41, 42, 43] or non-exhaustive but lightweight methods [28, 27, 44, 45] can be
considered.

References

[1] M. Grieves, Origins of the digital twin concept, Florida Institute of Technology 8 (2016).

[2] M. W. Grieves, Virtually intelligent product systems: Digital and physical twins, Complex
Systems Engineering: Theory and Practice (2019). URL: https://api.semanticscholar.org/
CorpusID:202478997.

[3] M. Grieves, Digital Twin: Manufacturing Excellence through Virtual Factory Replication-A
Whitepaper by Dr. Michael Grieves, White Paper (2015) 1-7.

[4] M. Grieves, J. Vickers, Digital twin: Mitigating unpredictable, undesirable emergent
behavior in complex systems, Transdisciplinary perspectives on complex systems: New
findings and approaches (2017) 85-113.

[5] M. W. Grieves, Digital twins: Past, present, and future, in: The Digital Twin, Springer,
2023, pp. 97-121.

[6] D. Jones, C. Snider, A. Nassehi, J. Yon, B. Hicks, Characterising the digital twin: A
systematic literature review, CIRP Journal of Manufacturing Science and Technology 29
(2020) 36-52.

[7] J. P. Allamaa, P. Patrinos, H. Van der Auweraer, T. D. Son, Sim2real for autonomous vehicle
control using executable digital twin, IFAC-PapersOnLine 55 (2022) 385-391.

[8] D. Piromalis, A. Kantaros, Digital twins in the automotive industry: The road toward
physical-digital convergence, Applied System Innovation 5 (2022) 65.

[9] H. Esen, B. H.-C. Liao, Simulation-based safety assurance for an avp system incorporating
learning-enabled components, arXiv preprint arXiv:2311.03362 (2023).

[10] M.F. Tettrup, E. C. Hu, B. A. Kramer, H. D. Macedo, L. Esterle, Using INTO-CPS Tools in the
Development of a Digital Twin for the FITENTH Race Car, in: International Conference
on Software Engineering and Formal Methods, Springer, 2022, pp. 200-209.

[11] A. Chaudhuri, G. Pash, D. A. Hormuth, G. Lorenzo, M. Kapteyn, C. Wu, E. A. Lima,
T. E. Yankeelov, K. Willcox, et al., Predictive digital twin for optimizing patient-specific
radiotherapy regimens under uncertainty in high-grade gliomas, Frontiers in Artificial
Intelligence 6 (2023).

[12] D. Hartmann, H. Van der Auweraer, The executable digital twin: merging the digital and
the physics worlds, arXiv preprint arXiv:2210.17402 (2022).

[13] M. Torzoni, M. Tezzele, S. Mariani, A. Manzoni, K. E. Willcox, A digital twin framework for

https://api.semanticscholar.org/CorpusID:202478997
https://api.semanticscholar.org/CorpusID:202478997

[14]

[15]

[16]

[28]

[29]

civil engineering structures, Computer Methods in Applied Mechanics and Engineering
418 (2024) 116584.

M. Frasheri, H. Ejersbo, C. Thule, C. Gomes, J. L. Kvistgaard, P. G. Larsen, L. Esterle,
Addressing time discrepancy between digital and physical twins, Robotics and Autonomous
Systems 161 (2023) 104347.

M. Deakin, M. Vanin, Z. Fan, D. Van Hertem, Smart energy network digital twins: Findings
from a uk-based demonstrator project, arXiv preprint arXiv:2311.11997 (2023).
S.Bensalem, P. Katsaros, D. Nickovi¢, B. H.-C. Liao, R. R. Nolasco, M. AbdElISalam, T. Beyene,
F. Cano, A. Delacourt, H. Esen, A. Forrai, W. He, X. Huang, N. Kekatos, B. Kénighofer,
M. Paulitsch, D. Peled, M. Ponchant, L. Sorokin, S. Tong, C. Wu, Continuous engineering
for trustworthy learning-enabled autonomous systems, in: B. Steffen (Ed.), Bridging the
Gap Between Al and Reality, Springer Nature Switzerland, Cham, 2024, pp. 256-278.

C. Gomes, C. Thule, D. Broman, P. G. Larsen, H. Vangheluwe, Co-simulation: State of the
art, arXiv preprint arXiv:1702.00686 (2017).

C. Gomes, C. Thule, P. G. Larsen, J. Denil, H. Vangheluwe, Co-simulation of continuous
systems: a tutorial, arXiv preprint arXiv:1809.08463 (2018).

P. Talasila, C. Gomes, P. H. Mikkelsen, S. G. Arboleda, E. Kamburjan, P. G. Larsen, Digital
Twin as a Service (DTaaS): A Platform for Digital Twin Developers and Users, arXiv
preprint arXiv:2305.07244 (2023).

T. Blockwitz, M. Otter, J. Akesson, M. Arnold, C. Clauss, H. Elmqvist, M. Friedrich, A. Jung-
hanns, J. Mauss, D. Neumerkel, et al., Functional mockup interface 2.0: The standard for
tool independent exchange of simulation models, in: Proceedings of the 9th International
Modelica Conference, Munich, Germany, 2012, pp. 173-184.

A. Junghanns, C. Gomes, C. Schulze, K. Schuch, R. Pierre, M. Blaesken, I. Zacharias,
A. Pillekeit, K. Wernersson, T. Sommer, et al., The functional mock-up interface 3.0-new
features enabling new applications, in: Modelica conferences, 2021, pp. 17-26.

G. Frank, Transaction-Level Modeling with SystemC: TLM Concepts and Applications for
Embedded Systems, Springer (2005).

A. Basu, S. Bensalem, M. Bozga, P. Bourgos, J. Sifakis, Rigorous system design: the BIP
approach, in: International doctoral workshop on mathematical and engineering methods
in computer science, Springer, 2011, pp. 1-19.

Siemens EDA, Veloce®, Available at: https://eda.sw.siemens.com/en-US/ic/veloce/, 2023.
M. AbdElSalam, K. Khalil, J. Stickley, A. Salem, B. Loye, Verification of advanced driver
assistance systems and autonomous vehicles with hardware emulation-in-the-loop a case
study with multiple ecus, IJAE (2019).

Adam Erickson, John Stickley, UVM-Connect primer, Available at: https://
verificationacademy.com/courses/uvm-connect, 2023.

A. Temperekidis, N. Kekatos, P. Katsaros, W. He, S. Bensalem, H. AbdElSabour, M. AbdEl-
Salam, A. Salem, Towards a digital twin architecture with formal analysis capabilities for
learning-enabled autonomous systems, in: International Conference on Modelling and
Simulation for Autonomous Systems, Springer, 2022, pp. 163-181.

A. Temperekidis, N. Kekatos, P. Katsaros, Runtime verification for FMI-based co-simulation,
in: International Conference on Runtime Verification, Springer, 2022, pp. 304-313.
Siemens PLM Software, Simcenter Amesim, Available at: https://www.plm.automation.

https://eda.sw.siemens.com/en-US/ic/veloce/
https://verificationacademy.com/courses/uvm-connect
https://verificationacademy.com/courses/uvm-connect
https://www.plm.automation.siemens.com/en/products/lms/imagine-lab/amesim/
https://www.plm.automation.siemens.com/en/products/lms/imagine-lab/amesim/

[33]

[36]
[37]

[38]

[41]

[42]

[43]

siemens.com/en/products/Ims/imagine-lab/amesim/, 2023.

Z.Ge, S. Liu, F. Wang, Z. Li, J. Sun, Yolox: Exceeding yolo series in 2021, arXiv preprint
arXiv:2107.08430 (2021).

L. I. Hatledal, Y. Chu, A. Styve, H. Zhang, Vico: An entity-component-system based
co-simulation framework, Simulation Modelling Practice and Theory 108 (2021) 102243.
C. Thule, K. Lausdahl, C. Gomes, G. Meisl, P. G. Larsen, Maestro: the into-cps co-simulation
framework, Simulation Modelling Practice and Theory 92 (2019) 45-61.

S. T. Hansen, C. Thule, C. Gomes, K. G. Lausdahl, F. P. Madsen, G. Abbiati, P. G. Larsen,
Co-simulation at different levels of expertise with Maestro2, Journal of Systems and
Software (2023) 111905.

A. Mignogna, L. Mangeruca, B. Boyer, A. Legay, A. Arnold, Sos contract verification using
statistical model checking, arXiv preprint arXiv:1311.3632 (2013).

P. Talasila, D.-C. Craciunean, P. Bogdan-Constantin, P. G. Larsen, C. Zamfirescu, A. Scovill,
Comparison between the hubcap and digitbrain platforms for model-based design and
evaluation of digital twins, in: International Conference on Software Engineering and
Formal Methods, Springer, 2021, pp. 238-244.

H. D. Macedo, C. Sassanelli, P. G. Larsen, S. Terzi, Facilitating model-based design of
cyber-manufacturing systems, Procedia CIRP 104 (2021) 1936-1941.

R. Mishra, H. P. Gupta, T. Dutta, A survey on deep neural network compression: Challenges,
overview, and solutions, arXiv preprint arXiv:2010.03954 (2020).

C. Eleftheriadis, N. Kekatos, P. Katsaros, S. Tripakis, On neural network equivalence
checking using smt solvers, in: International Conference on Formal Modeling and Analysis
of Timed Systems, Springer, 2022, pp. 237-257.

T. Wright, C. Gomes, J. Woodcock, Formally verified self-adaptation of an incubator
digital twin, in: International Symposium on Leveraging Applications of Formal Methods,
Springer, 2022, pp. 89-1009.

L. D. Couto, S. Basagiannis, E. H. Ridouane, A. E.-D. Mady, M. Hasanagic, P. G. Larsen,
Injecting formal verification in fmi-based co-simulations of cyber-physical systems, in:
Software Engineering and Formal Methods, Springer, 2018, pp. 284-299.

G. Frehse, N. Kekatos, D. Nickovic, J. Oehlerking, S. Schuler, A. Walsch, M. Woehrle, A
toolchain for verifying safety properties of hybrid automata via pattern templates, in: 2018
Annual American Control Conference (ACC), IEEE, 2018, pp. 2384-2391.

N. Kekatos, Formal verification of cyber-physical systems in the industrial model-based
design process, Ph.D. thesis, Université Grenoble Alpes, 2018.

F. Lisboa Malaquias, G. Giantamidis, S. Basagiannis, S. Fulvio Rollini, I. Amundson, Towards
amethodology to design provably secure cyber-physical systems, ACM SIGAda Ada Letters
43 (2023) 94-99.

[44] J. Dobaj, A. Riel, T. Krug, M. Seidl, G. Macher, M. Egretzberger, Towards digital twin-

enabled devops for cps providing architecture-based service adaptation & verification at
runtime, in: Proceedings of the 17th Symposium on Software Engineering for Adaptive
and Self-Managing Systems, 2022, pp. 132-143.

K. Havelund, D. Peled, D. Ulus, First-order temporal logic monitoring with bdds, Formal
Methods in System Design 56 (2020) 1-21.

https://www.plm.automation.siemens.com/en/products/lms/imagine-lab/amesim/
https://www.plm.automation.siemens.com/en/products/lms/imagine-lab/amesim/
https://www.plm.automation.siemens.com/en/products/lms/imagine-lab/amesim/

	1 Introduction
	2 Key enabling technologies for Digital Twins
	3 Developing a Digital Twin for traffic sign recognition and lane keeping
	3.1 Vehicle model: Amesim
	3.2 Steering control: ROS
	3.3 Environment model: Prescan
	3.4 Perception and speed control module: BIP
	3.5 Orchestration: PAVE360-VSI platform
	3.6 Digital Twin simulation

	4 Conclusion

