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Abstract
Predictive monitoring can support students during the semester by motivating them if they are not
performing well enough in a lecture or exercise. Furthermore, supervisor can create additional exercise
sheets or can adapt their lectures and exercises to the needs (i.e. knowledge gaps) of the students. To
realise this, three different regression algorithms (i.e. Neuronal Networks, Decision Trees, and Random
Forest) are implemented to continuously predict further exercise points and the final grade during a
semester. These algorithms are trained and tested based on student points and grades from previous
semesters. A total of 17,136 predictions were determined, analysed, and compared. In several exercise
sheets, all algorithms achieve between 91% and 96% correct predictions with a variance of 10% (i.e. up to
2.5 points at the exercise sheet). With 15% variance, up to 98.5% of corrected predictions are possible.
The prediction of grades with a variance of 0.3 (i.e. one grade level) with the Decision Tree and the
Random Forest only achieves 32% to 35% correctness.
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1. Introduction

Some students are overwhelmed by the number of lectures and exercises at the beginning of
their time at a university. Others underestimate the exams and do not invest enough effort and
performance in the exercises and learning during the semester. Predictive Process Monitoring
aims to predicting the results (e.g. grades) of a running and uncompleted business process
(e.g. lecture during a semester) [1]. To motivate students to prepare for the upcoming exams
during the semester, perform the exercises, and study the lecture material continuously we will
predict their grades and points of upcoming exercises based on the already gained exercise
points. Moreover, a supervisor of a lecture may provide additional exercises to support the
students, when the algorithm predicts worse grades. For this, the regression algorithms Neuronal
Networks, Decision Trees, and Random Forest are implemented and tested. To train and test
the algorithm a data set of 334 students (i.e. 266 for training and 68 for testing) including their
exercise points and grades is used. In total, 17,136 predictions are determined, evaluated, and
compared with each other.
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The remainder of this paper is structured as follows. Section 2 explains the basics of the
three machine learning algorithms. In Section 3 the initialisation and implementation of the
algorithms is presented. Section 4 evaluates the results of the prediction and compares them
with each other. Related work is discussed in Section 5 and Section 6 concludes the paper.

2. Background

In the context of this paper, the following three machine learning algorithms for the continuous
prediction of grades and exercise points for students during a semester are implemented. The
fundamentals of the three algorithms are explained in this section.

The Neuronal Network [2, 3] comprises a large number of artificial neurons and their
connections to each other. These are designed to mimic the function of the human brain. The
Neuronal Network exists of one input layer, at least one hidden layer, and one output layer. The
input layer provides the Neuronal Network with the necessary information (i.e. input data). The
input neurons process these input data and pass them to the next layer in a weighted manner.
The hidden layer receives the information form the input layer and forwards the information
from neuron to neuron to the output layer. The transport of information between two neutrons
of different layers is always weighted individually. The hidden layer is essentially a black box
and not visible for users. The output layer is directly connected to the last hidden layer. The
output neurons contain the resulting decision.

The Decision Tree [3, 4, 5] is a binary, hierarchical tree, in which each node has at most two
children with one root node at the top. The Decision Tree is built on the data training set. The
algorithm starts at the root node (i.e. at the top of the tree) and pass through the tree until a
leaf (i.e. node without own children) is reached. In each node a decision is made which children
node will be activated next. Decision trees can be categorised into classification trees, where
the target variable can assume a discrete set of values, or regression trees, which are based
on continuous values (i.e. real numbers). A node of a Decision Tree may consist of decision
rules, several parameters (e.g. maximum depth of the tree), and/or eventually result values. The
Decision Tree is individual for each data set. After executing the Decision Tree, the activated
leaf node contains the resulting decision.

The Random Forest [3] consists of many Decision Trees (there is no limit to the number of
Decision Trees). In general, the Random Forest defines an arbitrary number of Decision Trees
and connect them with an independent root node. For the final result each Decision Tree is
activated, and the individual results are aggregated (e.g. majority voting or averaging). Each of
the Decision Trees result in different outputs. In addition to the parameters of the individual
Decision Trees, the Random Forest requires further input variables (e.g. maximum number of
individual trees into the Random Forest).

3. Implementation

Data set: For the prediction, the exercise points, and grades of 334 students from Ulm University,
which are stored in the lecture ’databases’ from the years 2018 until 2021 are used. The data set
has been anonymised and does not contain any personal information. The maximum points
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for each exercise sheet are different over the semester and compared to the previous semesters.
To merge the data sheets a relative number is used in the form of percentage (i.e. 0-100%).
Furthermore, the official grades (x.0, x.3, x.7 for 𝑥 = {1, 2, 3} and 4.0) are possible. Students,
that failed the exam receive a 5.0 automatically. Some students have a grade bonus that may
falsify the results as students who receive this are automatically one grade level better (except
for a 1.0 or a 5.0 for failing). To evaluate the results, the grade bonus will be subtracted from the
grades.

Data Adjustments: The original data set is adjusted to uniform data types. When students
failed or did not submitted an exercise sheet, different input variables (e.g. ’0’, NULL-Value ’-’, or
a blank field) are given for the same context at the data set. Regarding the regression algorithms
used, all non-numerical values are converted into equivalent numbers (i.e. real numbers), in
this case into ’0’. Additionally, students who had not submitted any exercise sheets, but had
nevertheless taken part in the exam were deleted from the data set.
Data Distribution: The data set is spit into training and test data set. With the training

data set the models (e.g. Neuronal Network or Decision Tree) are generated and with the test
data set the algorithms and its models are tested. In general, 80% of the data set is used for the
training and the remaining 20% for testing. For the distribution of the data set three different
methods are implemented and compared to avoid irregular distribution and avoid potential
discrepancies.

First method takes the first 80% of the data set for testing and the remaining for training. With
this method, the data set for training only consist of the students who took part in the year 2021.
To avoid differences between the years the second method randomly assigned 80% for training
and 20% for testing. The third method uses every 5th line for testing and the remaining for
training. With the latter, a repeatable and reproducible method in comparison to the randomised
method and a mixed distribution over the different years can be achieved.
Array Preparation: To develop the algorithms the outcome needs to be extracted from

the data arrays (i.e. training and test data). For the example of this paper, exercise points
from upcoming exercise sheets and the final grade will be predicted. The two latter define the
outcomes of the given context. For the training phase, the training array as well as the desired
outcome handed over to algorithm. For the subsequent testing, only the test array without
the outcomes is passed to the respective algorithms. The resulting predictions can then be
compared to the actual values (i.e. outcome).

3.1. Implementation of the Algorithm

The Neuronal Network uses the described input and output arrays to predict their defined
results (e.g. exercise points or grades). The number of neurons in the input layer is manifested
in the variable input_shape and depends on the prediction (i.e. for the prediction of Exercise
Sheet 5, the variable input_shape is set to 4 based on four previous sheets). In the hidden layer,
the number of neurons is set to 200 and the activation function ELU is selected, as this function
achieved the best results. Due to the small data set, the number of epochs (i.e. the number of
passes through the training data set to train the network) is set to 900, which corresponds to
the best results in manual tests. In the output layer, the number of neurons is set to 1 and either
the exercise points or the grade may be predicted. To improve the manually tested Neuronal
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Network, the function GridSearch (i.e. results in best fit values over all combinations of given
parameters) and callback (i.e. stops the training when the best results have been achieved) is
used. Through this improvement, the number of epochs is increased to 5000. In total, 1512
combination are tested.

A Decision Tree requires several parameters to be initialised. In this example, the four
parameters criterion, which measures the quality of a split within the branches, max_depth,
which specifies the maximum depth of the Decision Tree, max_features, which specifies the
maximum number of outcomes, and random_state for recovery a Decision Tree are selected
in order to test the resulting predictions (i.e. exercise points and grades). For the parameter
criterion, all four possible values (i.e. squared_error, friedman_mse, absolute_error, poisson)
are tested. The max_depth and max_features accept fixed values, and a selection of values
is tested. Random_state is used to achieve the same results when the algorithm is executed
multiple times with the same parameters. The input array (e.g. training_dataset) depends on
the outcome (e.g. points of Exercise Sheet 4). To improve the manual tested combination of
parameters, additionally a GridSearch is implemented. For this, the described parameters
with its values are extended with the parameters splitter, which defines the rule to split at a
node, min_weight_fraction_leaf, which defines the total size of weights within the sample to
reach a leaf node, min_samples_leaf, which defines the minimum sample size (i.e. no further
splitting is allowed), and max_leaf_nodes, which defines the maximum number of leaf nodes. In
total, 1440 combination are tested.

Comparing the Random Forest with the Decision Tree they have the common parameters
max_depth, max_features, min_samples_leaf, and random_state, but with difference values for
each tree. In addition to them, the parameter n_estimators, which defines the maximum number
of individual trees within the forest is required for the implementation. To improve the Random
Forest again a GridSearch is implemented. For this, the described parameters are extended
with the parameters bootstrap and n_jobs. If the parameter of bootstrap is set to False, the
whole data set is used to train each tree, otherwise, the size for samples may be defined. The
parameter n_jobs defines the number of jobs (i.e. functions) that can run in parallel. In total,
1620 combination are tested.

4. Evaluation and Results

For the comparison of the predicted results, Actual Value describes the points or grade a
student received in the exercise sheet or exam. The parameter Prediction presents the results
determined from the algorithms. The parameter Variance defines different values of possible
deviations. First, no variance between the actual value and the prediction is acceptable (i.e.
the variance is 0% for the exercise points and 0.0 for the grades). Second, a variance of 10%
is acceptable for the exercise points and 0.4 for the grades and, third, 15% for the exercise
points or 0.7 for grades are acceptable. Moreover, on average, an exercise sheet has between
20 and 25 points. An acceptable variance of 10% results in a total variance between 2 and 2.5
points. In addition, the variance of 4% for exercise points is also compared in the evaluation,
which corresponds to a variance of one point per exercise sheet. The parameter Match, checks
whether the defined variance is within the scope (i.e. true) or not (i.e. false).
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4.1. Results

In total, the grades, and points of all 68 students are predicted for each sheet (i.e. Exercise Sheet
2 to 12) and their grade. In addition, these predictions are determined for each defined variance
and each algorithm. In total, 17,136 predictions are determined, evaluated, and compared. In
Tab. 2, the averages of correct answer (i.e. parameter match results in true) over each specified
variance and algorithm for all Exercise Sheets 2 to 12 are shown. The percentage results (RES
for short) of Tab. 2 are coloured in red for RES < 30%, orange for 30% ≤ RES < 50%, yellow
for 50% ≤ RES < 75.0%, light green for 75% ≤ RES < 90% and green 90% ≤ RES.

Table 1
The percentages of correct prediction for each exercise sheet and algorithm over the specified variances.

Exercise Neuronal Network Decision Tree Random Forest
Sheet 0% 4% 10% 15% 0% 4% 10% 15% 0% 4% 10% 15%

2 0.0 57.4 86.8 92.6 1.5 77.9 94.1 95.6 0.0 76.5 94.1 95.6
3 0.0 47.1 82.4 95.6 0.0 48.5 82.4 91.2 0.0 47.1 80.9 91.2
4 0.0 60.3 92.6 97.1 0.0 58.8 95.6 95.6 0.0 79.4 94.1 97.1
5 0.0 60.3 94.1 97.1 1.5 57.4 88.2 98.5 0.0 64.7 91.2 97.1
6 0.0 36.8 77.9 89.7 0.0 33.8 77.9 88.2 0.0 42.6 76.5 88.2
7 1.5 25.0 52.9 82.4 0.0 25.0 52.9 77.9 0.0 25.0 60.3 73.5
8 0.0 35.3 70.6 92.6 0.0 29.9 77.9 89.7 0.0 36.8 72.1 89.7
9 0.0 41.2 80.9 91.2 0.0 42.6 67.6 89.7 0.0 42.6 82.4 86.8
10 0.0 27.9 67.6 80.9 0.0 32.4 67.6 88.2 0.0 36.8 79.4 86.8
11 0.0 17.6 36.8 57.4 0.0 13.2 41.2 64.7 0.0 23.5 54.4 72.1
12 0.0 4.4 11.8 19.1 2.9 8.8 11.8 27.9 0.0 8.8 25.0 36.8

Predicting 0% variance is close to impossible in any algorithm. This is because the points of
the exercise sheets only allow whole or half points (i.e. x.0 or x.5). When transforming these
points (between 0 and 25) into percentages (0 and 100) more than half of the percentage values
are not addressed. In addition, the predictions allow decimal numbers with one decimal place.
To predict the exact value when the points are converted is almost impossible. Exercise Sheet 11
and 12 also predict the points in most of the cases wrong. Considering the distribution of points
across all sheets, it is remarkable that many students did not receive any points in the last two
sheet (i.e. 0 points). The reason for this could be that the last exercise sheets deal with content
that is no longer relevant to the exam or the students have completed their admission to the
exam (i.e. students have achieved a minimum number of points across all exercise sheets). The
Random Forest results the best predictions at 4% variance (i.e. variance of 1 point at the exercise
sheet), however, these results are between 25.0% and 79.4%. In general, Exercise 7 achieves the
worst results, while Exercise 4 achieves the best results. In Exercise Sheets 2 to 5, very positive
results are achieved across all algorithms for 10% and 15% variance. The algorithms differ only
minimally (i.e. up to 4.4%). In total, the best results are achieved by the Decision Tree with 98.5
correct predictions for 15% variance and 95.6% at 10%.

The predictions of the grades are capable of expansion. The Neuronal Network achieves only
29.4% with a variance of 0.3, and 48.5% with a variance of 0.7. The Decision Tree is slightly
better with 32.4% with a variance of 0.3, and 57.4% with a variance of 0.7. The Random Forest
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Table 2
The percentages of correct grade prediction for algorithm over the specified variances.

Neuronal Network Decision Tree Random Forest
Variance 0 0.3 0.7 0 0.3 0.7 0 0.3 0.7

Accuracy 14.7% 29.4% 48.5% 10.3% 32.4% 57.4% 8.8% 35.3% 61.8%

has a slightly better result than the Decision Tree with 35.3% with a variance of 0.3, and 61.8%
with a variance of 0.7. For a variance of 0.0 the Neuronal Network predicts the best results
with only 14.7% correctness (e.g. Decision Tree results in 10.3% and Random Forest results in
8.8%). There is no strict individual examination in the exercise sheets, i.e. students can help
each other, read the script again and have no time pressure during the editing the exercise sheet.
Additionally, the effort of learning directly before the exam is individual. All these factors are
not considered at the current implementation and may be the reason for the inaccurate results.

5. Related Work

In [6], the performance (i.e. excellent, good, poorly, or fail) for around 400 students from the
university of Bangladesh is predicted comparing eight different supervised algorithms (i.e. Sup-
port Vector Machines, Decision Tree, Multilayer Perceptron, Extra Tree, K-Nearest-Neighbour,
AdaBoost, Logistic Regression, and Weighted Voting Classifier). In total, the Weighted Voting
Classifier achieves the best results in predicting the performance category (i.e. excellent, good,
poorly, or fail) of each student with 81.73% correctness. In [7], Neuronal Networks are used
to predict the drop-out rates of students. The results are based on 2670 students at a Public
University in Ecuador. Thereby, the input layer of the Neuronal Network consists of 11 neurons
that are based on university factors (i.e. type of learning) and personal life decisions (e.g. preg-
nancy, born children and financial commitment). Two different kinds of Neuronal Networks
were tried out: Multi-layer perception with 98.6% correctness and radial basis function with
98.1% correctness.

6. Conclusions

This paper implements three different regression algorithms (i.e. Neuronal Networks, Decision
Trees, and Random Forest) to support and motivate students continuously during the semester
by predicting their grades depending on their current performance (i.e. exercise points). To
train and test the algorithms, a data set of 334 students with their exercise points and grades
from previous semesters are used. Different variances (i.e. 0%, 4%, 10%, and 15%) for exercise
points are tested and compared. With a variance of only 10% each algorithm may predict (for
some but not all exercise sheets) a correctness between 91% and 96%. Predicting the exact
points of upcoming exercise sheets (variance of 0%) none of the implemented algorithms works
due to the transformation of points into percentages (i.e. finer range of points). On top, only a
prediction of 35.3% with a variance of 0.3 and 61.8% with a variance of 0.7 using a Random
Forest is possible. The results of the other two algorithms are slightly worse. In future work,
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the data set will be extended by collecting more data over the coming semesters. In addition,
further algorithm will be implemented and tested to predict the grades more accurate. More-
over, other factors (i.e. learning type or financial commitment as student jobs) will be considered.
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