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Abstract  

Background: Modern agricultural operations collect data from a variety of sources that provide a better 
knowledge of the constantly shifting conditions of the crop, soil, and environment. This suggests that 

the processes involved in agriculture will become more and more data-driven. The goal of this study is 

to demonstrate how to handle diverse data and information from actual datasets that gather 

physiological in nature, biochemical processes. The agricultural industry only seems to be resistant to 
digital technological advances, and the "smart farm" concept is becoming increasingly common by 

using time-series data and the Internet of Things (IoT) paradigm to apply environmental and historical 

information. In recent years, deep programming has been effectively used for voice recognition, picture 

recognition, and processing of natural language.  Aim: By examining cloud data with crop development 
trends, examine the potential of deep learning algorithms to optimise the use of agricultural resources, 

such as water, fertilisers, and pesticides. Method: The present study focuses on the design and 

implementation of real-world tasks, such as predicting agricultural harvest or recreating data from 

missing or incorrect sensors, by comparing and using different machine learning algorithms to 
recommend which way to spend efforts and resources.  Results: The results of this study demonstrate 

the manner in which there are plenty of potential possibilities for innovation to coexist with requests 

and requirements from businesses who want to establish an optimised and sustainable agriculture 

industrial use business, making investments not only in technology but also in the expertise and skilled 
employees necessary to make the most of it. Conclusion: The conclusions presented in this study 

suggest that better accuracy and faster inference times may be attained by using novel deep learning 

techniques, and that applications in reality can benefit from the models. Lastly, a few suggestions are 

made for future study directions in this field. 
Keywords: Agriculture Industrial, Internet of Things (Iot), Technology, Optimized, Deep Learning, 

Machine Learning, Smart Farm, Cloud Computing, Image Recognition, Precision Agriculture, Big 

Data, Productivity and Environmental Sustainability. 

 

1. Introduction 
In recognition of the growing global population, the agricultural sector uses around 85% of 

the freshwater that is readily accessible, necessitating a rise in food production. Challenges with 
the traditional irrigation management approach include inadequate production and inefficient use 

of water. Furthermore, the dynamics of global warming and climate change often have an 
influence on the quantity of rainfall that is required to provide plants with water. Similar to this, 
the water needs and biological functions of plants are seasonal, vary from plant to plant, and are 
impacted by external elements like the weather [1]. In a greenhouse, the environment is easily 
managed, but in an open-field cultivation farm, these variables are more difficult to manage [1, 
2]. Precision irrigation systems must be used to control the fluctuating environmental 
circumstances in an adaptable manner. In order to achieve water-saving measures to offset 
rainfall variability and the impact of water shortages due to drought in many regions of the globe, 

sustained precision irrigation is essential for ensuring food security. The goal of precision 
planning for irrigation is to avoid over- and under-irrigation by using water efficiently for each 
plant at the appropriate times and locations to make up for water loss via evapotranspiration, 
erosion, [2], or deep percolation. Water may be conserved with appropriate irrigation 
management via efficient monitoring and control, which also reduces other indirect expenses 
associated with energy consumption, such as power or fossil fuel for expressing, for maximum 
the effectiveness of costs. 
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Today, digital agriculture refers to agritechnology and precision agriculture. It is a new 

field of study that uses data-intensive methods to increase agricultural output while reducing its 
detrimental impacts on the environment. In contemporary agricultural operations, data is gathered 
from many different kinds of sensors, photos, and satellite imagery [2, 3]. They improve 
knowledge of the environment, soil, and crop dynamics, as well as the proper utilisation of 
equipment, enabling more accuracy and improved decision-making. 

Artificial Neural Networks (ANNs) find use in hydrological research such as microclimate 
prediction, rainfall-runoff prediction, groundwater level prediction, urban flood forecasting, and 

water supply and quality monitoring. Because Artificial Neural Networks (ANNs) can evaluate 
tremendous amounts of data fast and effectively [3, 4]. They are finding growing usage in the 
prediction of greenhouse microclimates. Furthermore, ANNs have shown to be capable of 
providing precise microclimate prediction when sensors are placed within greenhouses. Machine 
learning techniques are becoming more popular when combined, and the results show significant 
increases in prediction accuracy [4]. The capacity of Artificial Neural Networks (ANNs) to take 
into account the complex interactions among several elements of the environment, such as 
humidity, lighting, and temperature intensity, which may alter the microclimate conditions inside 

the growing facility, is one of its main advantages. 
It has been discovered that adding additional statistical and machine- learning techniques 

may increase the predictability of ANNs for agricultural microclimates. A helpful linear method 
for assessing multichannel time series statistics with time-varying dynamics and finding similar 
patterns across many time series is the Dynamic Factor (DF) model [5, 6]. Different fields have 
seen the use of the DF model, such as PM2.5 factor analysis, psychological evaluation, and 
economic forecasting. Additionally, survey-based trust among customers has been examined and 

predicted using a DF-based model. Additionally, hybrid models combining ANN and DF have 
been created for a variety of uses, including comparative performance and evaporate prediction. 

Agricultural operations are going to be more and more data-guided as smart tools and 
sensors multiply on farms and the sheer number and range of agricultural data increase. 
Conversely, however, the rapid advancement of cloud computing and the Internet of Things (IoT) 
is driving the growth of Smart Farming. While Smart agricultural takes into account the scenarios 
generated by occurrences in real-time, Precision Agriculture just relates to managing agricultural 

variability. With the help of everything mentioned above, farmers are able to respond swiftly to 
unforeseen events, such disease or weather-related alerts, or to abrupt changes in their operational 
environment. Typically, such characteristics include astute support throughout the adoption, 
upkeep, and usage of the technology. 

As high-performance bioinformatics technologies, both machine learning and big data have 
emerged as new avenues for deciphering, quantifying, and comprehending data-intensive 
processes in the context of agricultural operations [5]. Big Data and machine learning have 
become widespread in multiple environmental fields, including predicting the weather, weather 

management, catastrophic events, smart water and electricity management systems, and remote 
sensing. These fields have benefited from the rapid advancements in High Resolution (HR) 
satellite imagery techniques, intelligent technological advances in communication and 
information, and the use of social media. 

The application of Machine Learning (ML) algorithms to big data has long been a crucial 
area of study, therefore assessing the effectiveness and quality of both new and old ML methods 
has gained significant importance [6]. These algorithms' operating velocity, effectiveness, and 

reliability have already been shown. However, given the complicated nature of Big Data today, 
new issues have surfaced, making it difficult to create and construct a new machine learning 
algorithm for Big Data. 

A branch of artificial intelligence called Machine Learning (ML) use computer algorithms 
to transform unprocessed data from the actual world into usable models and recommendations for 
actions. The system may autonomously acquire information from past events and advance by 
using machine learning models. Support Vector Machines (SVM), [7], trees of choice, Bayesian 



learning, K-mean clustering, regression, and neural networks, rule-based associations learning, 
and many more are examples of Machine Learning (ML) approaches. Gave a brief overview of 
how the ML model is being used in different agricultural tasks. 

ML incorporates Deep Learning (DL) as a subfield. DL algorithms are more intricate than 

those of conventional ML models. The layers of a network that are between the input and the 
output are known as hidden layers. A deeper network contains several concealed layers, while a 
shallow network just has one [8, 9]. Deep neural networks are capable of learning data attributes 
and handling more difficult issues because to their many hidden layers. The most popular models 
in recent years have been Deep Learning (DL) models because they are both quicker and more 
effective than Machine Learning (ML) shallow methods, and because they have the ability to 
automatically deduce characteristics from the input data. Alex Net was victorious in the 2012 
LSVRC classification competition [9]. Shown the potential of deep learning models for the 

categorization authentication, and positioning with remarkable outcomes. These successes 
motivate scientists to use DL models in different fields that individuals endeavour, such as 
agriculture. 

1.1 Objective of the study  
 Implement deep learning algorithms that can recognise symptoms of crop illnesses or 

stress in cloud photos, enabling farmers to take early action to stop yield loss. 

 Investigate at ways to reduce the cost, increase accessibility to cloud farming 

technologies for a larger group of farmers, taking into account infrastructure needs, 
technological know-how, and other variables. 

 Provide training materials and instructional resources to help farmers and other 
agricultural professionals use cloud agriculture technology. 
 

2. Literature Review  
(Khan, A., Hassan, M., 2023) [10] Modern methods of farming have been entirely 

rewritten by smart agriculture, which is powered by the convergence of cloud computing and 
Internet of Things (IoT). In this work, we provide a systematic approach to optimise onion crop 

cultivation via the use of systems running on the cloud and Internet of Things sensors. Critical 
information on the onion crops can be collected and transferred to a central data centre via the use 
of a variety of Internet of Things (IoT) sensors, such as soil moisture and temperature, relative 
humidity, and aerial drones. Real-time data processing is made possible by optional edge 
computing devices, which reduce latency and bandwidth consumption. 

(Ojo, M. O., 2022) [11] Higher yields, reduced space requirements, and resource efficiency 
characterise the unconventional production method known as Controlled Environment 

Agriculture (CEA). Recent advances in CEA have brought Deep Learning (DL) to the field for a 
variety of purposes, such as microclimate prediction, irrigation, and crop growth prediction, stress 
both abiotic and biotic detection, and crop monitoring. Nevertheless, no review research evaluates 
the present situation of the art in DL to address various CEA concerns. In order to close this gap, 
we thoroughly examined DL techniques employed during CEA. A set of guidelines for inclusion 
and exclusion were followed in order to create the review framework. Following a thorough 
screening procedure, we examined 72 paperwork in total to obtain the correct information. 

(Pabitha, C., 2023) [12] Agriculture has a significant impact on an economy's growth. The 

suggested approach investigates how using digital footprints might enhance farming methods and 
yield. Digital data related to agriculture is becoming more and more accessible due to the 
advancement of contemporary technology and the proliferation of interconnected gadgets. Digital 
footprints that capture all aspects of agricultural production lifetime, from planting to harvesting, 
may be created using this data. After that, farmers may use algorithms that use machine learning 
educated to analyse these electronic records to identify trends and predict outcomes to determine 
when to plant, irrigation, fertilise, and harvesting their crops.  

(Guillén, M. A., 2021) [14] The digital revolution is being propelled by the Internet of 
Things (IoT). AL Palliative measures include the fact that almost every economic sector is 
becoming "Smart" as a result of the Internet of Things' data analysis. Advanced Artificial 
Intelligence (AI) approaches are used to do this study, yielding insights never previously possible. 



AIoT is a new trend that is arising from the integration of IoT with AI, providing new avenues for 
digitalization in the modern day. But there is still a significant difference among AI and IoT, 
namely in the amount of processing power needed for the former and the deficiency of computing 
resources provided by the latter type of technology. 

(Cubillas, J. J., 2022) [15] In any industry that produces goods, predictive systems are an 
essential tool for directing and making choices. Knowing ahead of time how profitable a farm is 
is particularly interesting when it comes to agriculture. In this way, major choices that impact the 
farm's financial balance may be made based on the season during which this knowledge is 
accessible. The goal of this project is to create a useful model for anticipating crop yields months 
in advance that farmers and farm managers may utilise with ease via a web-based application.  

(Marina, I., 2023) [16] Encouraging social well-being and meeting the world's food 
demands depend heavily on agriculture. As a strategically important food crop, soybeans provide 

vital amounts of protein for both people and animals, and their nitrogen fixation improves soil 
fertility. However, producers face difficulties due to the increasing demand for soybeans 
worldwide, especially with regard to cultivation efficiency. Threats from diseases, changes in 
commodity prices, land usage, and climate change all make these problems worse. Technological 
developments in the agricultural sector, including Internet of Things, artificial intelligence, 
remote sensing, and predictive modelling, have great potential to increase both the effectiveness 
and productivity of soybean farming. 

 

3. Methods  
In order to offer advances for the management of data and assessment in small-size 

manufacturing businesses and, [17], in contingent geographical settings that are often resistant to 
creative thinking, this effort aims at demonstrating practical and empirical results. 

 

1.2  Data Sources 
Three separate information sources are taken into consideration during this research 

(Figure 1), each one of which has distinctive and complimentary qualities that are helpful for 
designing and testing machine learning techniques: 

 

Figure 1: The datasets this research employed. 
The annual totals for the value of crops in Italy's (Table 1). 

Table 1 Information about the periods of time dataset for culture. 
Crp. Type Year Province Altitude Tot. Area Cult. Area Tot. Prod. Tot. Harvest Temp. (avg.) 

Apple  2006 Trino  256 942 421 243,121 256,124 7.8 

Pears  2006 Vercelli  140 25 28 5465 5986 11 

Temp. (max) Temp. (min) Tot. Rain. Phosph. Minerals  Potash Minerals  Organic fret.  Organic comp.   

14.2 2.5 365 25.699 125,246 15,256 642,269   

14.9 5.4 896 1462 49,469 98,469 289,986   

This arranged agricultural collection presents scientific and technical data from biological and 

agricultural research on crops and horticulture species, however values are often missing or only 



partly arranged [18]. Many valuable data has undergone previous measurements and 
modifications Table 2. 
 

Table 2 Details of the professional agriculture dataset from the National Research Council 

(CNR). Leaf Areas Index (LAI), Evapotranspiration Reference Value (ETc), Leaf Area Index 
(ETO), and Penman-Monteith Measurement (PM). 

Beam Plant -2004 Crop  

Date  Etc (mm/d) ETo Pm(mm/p) ETc/ETo LAI 

9 may 2003 1.48 5.99 0.89 0.04 

14 may 2004 1.59 4.58 0.398 0.7 
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4. Results and Discussion  
Table 3 presents the results of the experiment regarding the amounts of apple and pear 

agricultural products, and it also shows the proportion of errors for each of the three prediction 
models. The error mean values for the municipalities of Friuli the Venezia Giulia in Abruzzo, and 
Calabria is show that the neural network model works best on the linear regression for both the 
apple plant (9.19% vs. 30.77%) and the pears plant (19.36% vs. 39.11%).  

 
Table 3 Using neural networks and its polynomial linear model for forecasting on the Istat 

dataset, the crop error prediction for apples and pears. 
 

Table 4 shows the anticipated and actual values for all of the crops in the province of 
L'Aquila. The reality values are very comparable to the expected values; in fact, the difference for 
pears is less than 4.5% and for apples it is less than 2%, indicating the usefulness of applying this 
approach to this kind of dataset. 

 

Table 4 Task 1: a comparison of the actual and projected amounts using a neural network model 
for the total crop harvests of pear and apple harvests in the Italian region of L'Aquila using the 

Istat database. 
Method: NN Apple Pears 

Italian province Real value Predicted value Real value Predicted value 

L’Aquila 45,764 48,265 3640 3697 

     

In this work, the polynomial simulation model best matches the prediction of LAI values 
for the three culture under thought as shown using the predicted errors shown in Table 5. 

 
Table 5 Task 2: Using predictive machine learning techniques to contrast the prediction error of 
the cultures' Leaf Area Index (LAI) value by employing the CNR scientific agricultural dataset. 

Culture Predicted Error 

 NN LR Polynomial 

Artichokes 163.69% 51.69% 24.60% 

Italian Province Prediction Error-Apple Perdition Error-Pears 

 NN LR NN LR 

Udine 25.64% 2.64% 2.46% 2.54% 

Gorizia 14.69% 4.62% 2.56% 6.4% 

Trieste 1.5% 5.64% 5.78% 14.5% 

Pordenone 23.5% 6.45% 1.2% 6.4% 

L’Aquila 7.12% 2.56% 14.2% 14.25% 

Mean 72.45% 21.91% 26.20% 44.09% 



Pear 1563.62% 41.65% 10.00% 

Pacciamata Eggplant 986.6% 256.1% 6.98% 

The matrix of correlations shown in Table 6 extends a correlation coefficient to a set of a 
component pairs, which are helpful to detect whether there are additional connected features in 
addition to the geographical ones, by taking consideration of the previous clusters formed by 
three monitoring stations. 

 
Table 6 Task 3: The correlation matrices for the magnitude of the grouping characteristics. 

 

Attributes  R_inc T_min T_max T_med RH_min RH_max RH_med WS 

R_inc 1 0.569 0.495 0.146 -0.265 -0.658 -0.247 0.146 

T_min 0.359 1 0.965 0.986 -0.495 -0.549 -0.961 0.987 

T_max 0.695 0.591 1 0.069 -0.546 -0.164 -0.146 0.069 

T_med 0.596 0.896 0.164 1 -0.142 -0.264 -0.692 0.562 

RH_min 0.216 0.653 0.221 0.312 1 -0.591 -0.153 0.156 

RH_max -0.562 -0.655 0.265 0.064 0.056 1 0.697 -0.141 

RH_med -0.264 -0.169 0.569 -0.169 0.426 0.564 1 0.691 

WS -0.169 0.561 -0.542 -0.264 -0.562 0.462 -0.429 1 

Big Data makes land mapping for large-scale agricultural production possible via remote 
sensing. It is crucial to keep an eye on how agriculture is affecting different nations and regions in 
the context of reaching their targets for ecological responsibility and productivity [19]. It also 

serves as a foundation for the creation of structures for policy makers, aids in decision-making for 
the long-term sustainability of ecological ecosystems, and provides highly accurate and precise 
quantitative examination of the interactions between plants and their surroundings. The cloud's 
accessibility to satellite picture data makes all of the preceding feasible. Cloud technologies, 
however, prove suitable for the necessary analytics [20]. This makes it easier to create new 
frameworks for big data that make appropriate use of machine learning methods. 

By understanding the fundamental connections between the data gathered by converting it 

into information and other resources, Machine Learning (ML) is used to perform categorization 
and predictive analytics. Additionally, it conducts a variety of computing methods, [21, 22], 
comprising statistical analysis, image processing, modelling, simulation, prediction, and early 
warning, and it offers information assistance for novel operations. 

For numerous Big Data usage in agriculture, cloud computing offers platform, hardware, 
software, and infrastructure services [23, 24]. The cloud platform makes it simpler for firms by 
lowering the cost of storing by providing farmers with inexpensive data storage services for text, 

photos, videos, and various other agricultural data. 
As a result, the DL model may not be universally applicable. For example, if a model has 

been trained using a dataset from a specific site or an open-source site like ImageNet, it may not 
be capable of to be effectively used at another site, or its accuracy might decline when applied to 
the data set collected within the real world [24, 25]. Neither the environment is distinct in the 
field of agriculture, and every circumstance nor difficulty necessitate its own dataset. Model 
performance may suffer as a result of the variations in the physical appearance of the pictures in 
the training and evaluation datasets [26]. Retraining the previously learned model using a tiny 

dataset from a fresh setting is one method to get around issue [27]. 
Deep models, sometimes referred to as "black boxes," have intricate designs. One of the 

difficulties in training deep learning models is the need for a system with a high level of GPU 
power. Furthermore, the selection of the optimisation technique, loss functions, and 
hyperparameters that affects how well these models work [28]. Bayesian optimising is one 
algorithm that may assist in determining the appropriate hyperparameters. Scientists from Google 
developed the most advanced MobilenetV3 by using the Neural Architecture Search (NAS) 

method [29, 30]. NAS is a technique that looks for each potential pairing of submodules of that 
can be continually placed altogether to produce the whole model accurately as feasible. 



5. Conclusion  
The research presented in this study deepens the understanding of the smart farm model by 

introducing beneficial, affordable, and simple-to-develop tasks that can boost an agricultural 
company's productivity. Technological advancements in fields requiring control and optimisation 
can actually help preserve the environment, adhere to international and business laws, meet 
consumer demands, and pursue financial objectives.  

Both machine learning and more conventional statistical techniques have been used to 

leverage the three distinct data sources, with a focus on the IoT sensors dataset. In the initial 
exercise, a neural network framework with near-ninety percent success rate was able to forecast 
the total crops of apples and pears on the Istat dataset; in the second task, however, it was found 
that polynomial anticipatory and regression models were more appropriate for the CNR scientific 
data due to the dataset's characteristics. 

In fact, IoT systems need science and technology and diffusion expenditures that only a 
wise and imaginative administration can encourage in smart/medium industries; furthermore, the 
need to invest in knowledge and abilities in order to economically employ the paradigm of the 

Internet of Things at greater scales emerges from the proposed real cases, which emphasise the 
necessity of promoting administration and data investigators. 

The primary motivation behind the suggested tasks utilising different strategies for 
machine learning is the use of an experimental and highly hypothetical work; information fusion, 
along with the corresponding optimisation of methods and outcomes, will be expected as further 
work, where new tasks and experiments that take advantage of other sensors types and databases 
will be planned and carried out in order to address the significant diversity of the hardware 

sensors market and agri-companies. 

Future Works  
In further work, we want to further enhance the big data and machine learning framework 

for agricultural and then apply it to a modest smart enterprise. 
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