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Abstract

Multiple Sclerosis (MS) is a prevalent autoimmune neurodegenerative disease characterized by
progressive nerve inflammation, leading to increasingly severe symptoms. Approximately 85% of MS
cases exhibit a relapse-remitting pattern, where sudden symptom exacerbations (relapses) are
followed by periods of improvement (remissions). Previous research has shown that MS progression
is influenced by external factors such as weather and air pollution. In this paper, we present a
Machine Learning-based approach to predict the timing of MS relapses based on environmental
exposure. This work was conducted as part of the Intelligent Disease Progression Prediction (iDPP)
CLEF 2024 Challenge, which focused on the impact of environmental exposure on MS progression
using retrospective data. Specifically, we utilized two anonymized datasets from clinical institutions
in Pavia and Turin, Italy, containing real patient data. We employed Topological Data Analysis to
compute personal exposure trajectories and used two predictive approaches, one based on the
application of Linear Regression, Random Forest, and Extreme Gradient Boosting models to the last
follow-up data, and one based on the application of Mixed-Effects modeling on longitudinal data from
the first to the last follow-up. Results suggest that integrating environmental variables yields valuable
insights for predicting MS relapses, emphasizing the need for improved methods of calculating
personal pollution exposure patterns to enhance the accuracy of MS progression predictions.
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1. Introduction

Multiple Sclerosis (MS) is a dysimmune, demyelinating, inflammatory and neurodegenerative
disease affecting approximately three million individuals worldwide [1]. Although it can
manifest at any age, its onset is typically during the late twenties to early thirties. MS is
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characterized by the development of demyelinating lesions (plaques) in the central nervous
system, associated with a widespread and subtle inflammatory and degenerative tissue damage.
These pathological events can manifest with multifunctional symptoms, including fatigue,
muscle weakness, numbness, coordination and balance issues, as well as cognitive impairment.
The disease progression of MS often follows a non-linear trajectory, characterized by episodes
of symptom exacerbation known as relapses, followed by complete or incomplete remission [2].
The Expanded Disability Status Scale (EDSS) is a method used to quantify disability and monitor
changes in disability levels over time. The scale ranges from 0 to 10 in 0.5-unit increments, with
higher scores indicating greater levels of disability [3].

While the exact cause of MS remains elusive, it is widely believed to result from a
complex interplay of genetic predisposition and exposure to environmental and lifestyle-related
factors [4,5]. Understanding the intricate mechanisms underlying disease onset and progression
is crucial for devising effective prevention strategies, but it poses significant challenges due to
the complexity of these interactions. Machine Learning (ML) and Artificial Intelligence (AI)
offer promising avenues for addressing these challenges by analyzing large datasets to discern
disease patterns, model causal relationships, and forecast outcomes.

This paper presents an ML-based approach aimed at evaluating whether exposure to
different pollutants and weather factors can be useful in predicting MS relapses. The research
was conducted as part of the Intelligent Disease Progression Prediction (iDPP) CLEF 2024
Challenge [6,7], which presented two evaluation tasks on forecasting ALS progression and one
task on predicting MS relapse. Specifically, we focused on the MS task, predicting the week of
the first relapse after the baseline considering environmental data and EDSS scores [3] based
on a weekly granularity, given the status of the patient at the baseline.

2. Materials and Methods

The task outlined in this paper was performed using two retrospective datasets. After a
comprehensive preprocessing phase to address missing data and align longitudinal
measurements, these datasets were analyzed using a combination of ML algorithms. This
section details the datasets utilized, the preprocessing procedures implemented, and the
methodologies applied for the prediction task.

2.1. Datasets and Preprocessing

Two retrospective datasets were provided for training and testing purposes. Both datasets
originate from two clinical institutions in Italy, one in Pavia and the other in Turin, and contain
fully anonymized data on real MS patients. The training dataset comprises 834 observations
from 199 patients, while the test dataset includes 290 observations from 81 patients, provided
on two different dates according to the iDPP CLEF 2024 Challenge. These datasets contain both
static (demographic and clinical) and longitudinal data on EDSS scores, together with functional
systems (FS) sub-scores, and environmental exposure measurements, all times-indexed in weeks
from baseline (the first available follow-up visit in the study period).

The preprocessing procedure was structured into three main phases. In the initial phase,
static variables such as age at onset and age at baseline were discretized, using medians as cutoff
points. Additionally, residence classification was refactored into two categories: rural areas and
cities/towns. The second phase involved applying appropriate methods to handle missing data



in the datasets. Finally, the third phase aligned the longitudinal data by follow-ups and
computed measures for personal exposure.

2.1.1. Missing Data Handling

For static data, variables with more than 7% missing data in the training set, such as ethnicity,
diagnosis criteria, and details about diagnosis criteria, were excluded. For longitudinal data,
various imputation methods were evaluated separately for FS scores and environmental
features to determine the most effective approach for subsequent analyses. Imputation methods
assessed for FS scores features included k-Nearest Neighbors (k-NN), K-Means, Multiple
Imputation by Chained Equations (MICE) Forest, and MissForest. For environmental features,
methods evaluated included Last Observation Carried Forward (LOCF), Linear Interpolation, k-
NN, Hot Deck, and MICE Forest.

Complete cases from the training dataset were selected, and missing values were
artificially introduced at a rate of 10% to simulate missing data scenarios. The performance of
these imputation methods was assessed using the Root Mean Square Error (RMSE) metric.

2.1.2. Personal Exposure Computation

A second preprocessing step involved aligning longitudinal data based on the follow-ups
temporal granularity. Specifically, we calculated the mean of each environmental factor's
measurements between consecutive follow-ups for each patient (or for the four weeks
preceding the first recorded follow-up), assigning this aggregated value as the cumulative
exposure on the follow-up date. Subsequently, longitudinal data were standardized.

Next, we employed Topological Data Analysis (TDA) to compute multivariate personal
exposure trajectories between consecutive follow-ups, using the mapper2D function from the
TDA Mapper R-package [8], integrated into the TDA-PseudoTime code [9]. TDA offers an
analytical method for complex data, identifying shape characteristics that remain robust despite
rescaling distances, thus providing a qualitative description of the data. Each identified
trajectory was utilized as a binary variable to indicate whether the patient falls within that
specific exposure category or not.

To compute Topological Maps using TDA, we defined observation similarity by computing
the cosine distance of aggregated environmental values assigned at each follow-up date. Filter
functions, including single-value decomposition and L1-infinity centrality, were used to project
data points into coordinate spaces describing data distribution. The resulting projections were
then partitioned into overlapping bins, based on resolution parameters, and clustering was
performed within each bin. We explored various resolution parameters using grid search,
adjusting the number of bins, their overlap, and geometric scale (number of clusters per bin).

TDA analysis revealed a complex structure comprising multiple trajectories that delineate
distinct exposure patterns across follow-up periods. We applied a minimum spanning tree filter
to identify the shortest paths within the topology, weighting edges by temporal sequence of
observations starting from the initial follow-up (t=0).

In addition to incorporating them into a multivariate exposure trajectory, we computed
additional aggregating features for each patient by calculating the mean and the slope
coefficient of environmental factors across all follow-ups, aiming to explore the average
influence of environmental factors and their temporal changes over time.



2.2. Models Development

The goal of the MS task was to predict the week of the first relapse after the baseline for each
patient, given that all patients are guaranteed to experience at least one relapse post-baseline.
Our idea was to compute an additional feature (delta) in the training set, representing the time
difference in weeks between consecutive follow-ups and, for the last follow-up, the difference
between the last follow-up and the first relapse. Therefore, models were trained to predict this
delta, which, when added to the number of weeks from baseline to the previous follow-up,
would represent the outcome. For models development, we adopted two strategies:

e Last-Observation taking a snapshot of clinical and exposure data at the last follow-up
and training Linear Regression (LR), Random Forest (RF), and Extreme Gradient
Boosting (XGB) Models.

e  Mixed-Effects using longitudinal data from the first to the last follow-up and applying
Mixed Effects Models.

Furthermore, we considered three scenarios with different subsets of variables: First with
TDA trajectories and static features (including demographic and clinical information); Second
with TDA trajectories, static features, and environmental slope features; Third with TDA
trajectories, static features, and environmental mean features. The optimal subset of features
for the MS task was selected based on RMSE computed on the training set using the Last-
Observation strategy.

2.2.1. Last-Observation Models Training

To optimize model hyperparameters and select the optimal feature subset, we split the training
dataset into further training and test sets (80%-20%) using stratified sampling. A LR model was
employed as a benchmark. Then, using a grid search, we fine-tuned two of the most used models
for regression problems, such as RF and XGB. Specifically, the trainControl function from the
caret R-package [10] was used to perform a 10-fold cross-validation as a resampling strategy,
iteratively creating training and validation sets. Finally, RF and XGB models in their optimal
configurations for each scenario, along with the LR benchmark model, were evaluated on the
20% test data to determine the best framework for predicting the week of the first relapse on
the test set provided by the iDPP CLEF 2024 Challenge [6,7].

For RF, the parameter controlling the number of variables randomly sampled as candidates
at each split of the algorithm was varied in the range [2-15]. For XGB, we varied several
hyperparameters on a grid, including number of trees (200 to 1000 with a 50-step), maximum
tree depth (2, 3, 4, 5), learning rate (0.025, 0.05, 0.1, 0.3), gamma for regularization (0, 1, 2, 3),
column sampling (0.25, 0.5, 0.75, 1.0), and minimum leaf weight (1, 2, 3, 4).

2.2.2. Mixed-Effects Models Training

We used a linear Mixed-Effects model to analyze all repeated observations for each patient,
employing the Imer function from the Ime4 R-package [11].

Initially, we trained a baseline model where delta was the response variable. Then, we
explored different models configurations incorporating random slopes, random intercepts, and



both random intercepts and slopes, as described in Equation 1, Equation 2, and Equation 3,
respectively.

1. Random Slope Only Model, which specifies a random slope for week_from_baseline
without a random intercept:
delta ~ week_from_baseline + (0 + week_from_baseline | patient_id) (1)

2. Random Intercept Only Model, which specifies a random intercept for patient_id
without a random slope:
delta ~ week_from_baseline + (1 | patient_id) (2)

3. Random Intercept and Slope Model, which includes both random intercepts and slopes
for the week_from_baseline, allowing the model to account for individual differences in
the baseline levels and the rates of change over time for each patient:
delta ~ week_from_baseline + (1 + week_from_baseline | patient_id) (3)

The performance of these models was evaluated using metrics such as Akaike Information
Criterion (AIC), Bayesian Information Criterion (BIC), Log-Likelihood (logLik), and deviance.
Following the feature selection strategy outlined in Section 2.2.1, we included the same fixed
effects as covariates used in the Last-Observation models. Finally, to assess the models' ability
to predict relapse week, we applied them to the first and last observations, predicting the relapse
delta from the first and from the last follow-up.

3. Results

3.1. Imputation of Missing Longitudinal Data

Table 1 summarizes the parameter settings and performance of each imputation method applied
to the FS scores and environmental features in the training dataset. The RMSE results indicate
that k-NN and MICE Forest achieved the best performances among the imputation approaches
for both types of features, with k-NN being particularly effective for environmental features.
Consequently, we selected the k-NN method to impute the missing longitudinal data in both
the training and test sets.

Table 1
Performance of the implemented imputation methods. Methods with the lowest Root Mean
Square Error (RMSE) for each feature type are in bold

Features type Method Parameters RMSE

FS scores K-Means cluster = 3 0.032
Mazx Iteration = 300
Algorithm = Lloyd Forgy

FS scores MissForest Tree = 100 0.005
Max depth = 15

FS scores MICE Forest Iteration = 3 0.0045
Algorithm = LightGBM

FS scores k-NN Neighbor = 5 0.0041

Weight = Inverse distance



Environmental LOCF 25.89

Environmental Hot Deck Neighbor = 1 23.47
Environmental Linear 16.26
Interpolation
Environmental MICE Forest Iteration = 3 12.97
Algorithm = LightGBM
Environmental k-NN Neighbor = 5 6.68

Weight = Inverse distance

3.2. Personal Exposure Trajectories

The TDA algorithm identified three main trajectories, designated based on the topological
structure of the networks as Traj4 (26 patients), Traj4_2 (74 patients), and Traj4_3 (99 patients).
We compared the patient groups identified by each trajectory in terms of exposure to Ozone
(0O3), Sulfur Dioxide (SO), and Wind Speed over the weeks from baseline. Figure 1 shows that
the smoothed conditional means of Os reveal a decreasing exposure for subjects in the green
Traj4 trajectory. In contrast, subjects in the orange Traj4_2 and blue Traj4_3 trajectories
maintain a more stable exposure over time.

Figure 2 illustrates that while all three trajectories begin with similar SO; values, the
green Traj4 trajectory experiences a rapid decline followed by an increase, ultimately stabilizing
at lower exposure levels compared to the more consistent patterns observed in the orange
Traj4_2 and blue Traj4_3 trajectories. In Figure 3, all three trajectories exhibit a general
decreasing trend in Wind Speed.
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Figure 1: Ozone (Os) standardized values in weeks from baseline for subjects belonging to
different exposure trajectories.



Exposure Trajectory 4 42 43

020-

0.05-
0 50 100 150
Time (weeks from Baseline)

Figure 2: Sulfur Dioxide (SO.) standardized values in weeks from baseline for subjects
belonging to different exposure trajectories.
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Figure 3: Wind Speed standardized values in weeks from baseline for subjects belonging to

different exposure trajectories.

In our approach to computing TDA on the test dataset, we maintained consistency by using
the same TDA training parameters, which resulted in the same number of clusters. Although
this method might not be optimal, it allowed for a direct comparison between the findings from
the training and test datasets. We identified clusters with similar clinical progressions by
visually inspecting plots of the average EDSS scores over time within the three clusters (Figure
4 and Figure 5). Based on this comparison, we retained clusters that exhibited similar clinical
trajectories, ensuring the relevance of the clusters identified during the training phase.
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Figure 4: Expanded Disability Status Scale (EDSS) scores in weeks from baseline for subjects
belonging to different exposure trajectories, considering the training set.
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Figure 5: Expanded Disability Status Scale (EDSS) scores in weeks from baseline for subjects
belonging to different exposure trajectories, considering the test set.

While this approach seems feasible, we recognize that the manual steps involved could be
refined for enhanced accuracy. A more robust strategy would entail utilizing the same topology
of the training set and subsequently assigning subjects to the original trajectories based on the
Jaccard distance. This refined methodology offers a more systematic and objective approach,
minimizing the potential biases inherent in manual cluster identification.

3.3. Last-Observation Model Selection

Table 2 presents the model performances using the Last-Observation strategy on the training
set across three scenarios with different feature subsets. The best performance was achieved by



the RF model in the Second scenario, which includes TDA trajectories, static features, and
environmental slope features. Overall, the RF model consistently outperformed the XGB and LR
models across all three scenarios, with the optimal number of variables randomly sampled as
candidates at each split (mtry) consistently being equal to 2.

Hyperparameter tuning for the XGB model yielded consistent values across the three
scenarios: number of trees = 2, maximum tree depth = 2, learning rate = 0.025, and column
sampling = 0.25. The exceptions were the gamma parameter (0 in the First and Second scenarios,
3 in the Third scenario) and the minimum leaf weight (4 in the First scenario, 3 in the Second
and Third scenarios). As expected, the LR benchmark model had the highest RMSE, except for
the XGB model in the Third scenario.

Table 2
Model performances using the Last-Observation strategy across the three scenarios with
different subsets of features (ordered by ascending RMSE)

Scenario Model RMSE
Second RF 18.74
Third RF 19.35
First RF 19.72
First XGB 20.17
Second XGB 20.20
First LR 22.11
Third XGB 23.51
Third LR 23.61
Second LR 27.56

3.4. Mixed-Effects Models Selection

We evaluated three Mixed-Effects models using various metrics such as AIC, BIC, logLik, and
deviance, as reported in Table 3. Based on the metrics provided, the Random Intercept and Slope
Model was identified as the best choice.

Table 3
Mixed-Effects Models performances
Model Parameters 1 BIC logLik  Deviance
number
Random Slope Only 4 9440.9 9459.8 -4716.4 9432.9
Random Intercept Only 4 11012.8 10993.9 5510.4 -11020.8
Random Intercept and Slope 6 2482.6 2454.3 12473 -2494.6

In the final Random Intercept and Slope Model, both fixed and random effects were
considered to predict the response variable, delta. The model included data from 834
observations across 199 patients. The random effects showed significant variance in intercepts
among patients (variance = 1324, standard deviation = 36.386) and minimal variance in slopes
for week_from_baseline (variance = 3.958e-08, standard deviation = 0.000199), with a perfect



correlation (1.00) between intercept and slope. The residual variance was 31.22 (standard
deviation = 5.587).

For the fixed effects, several predictors were found to be significant. Table 4 highlights
the significant fixed effects in the final model, indicating the influence of various clinical and
environmental factors, as well as exposure trajectories, on the delta values.

Table 4
Statistically significant fixed effects in the Random Intercept and Slope Model
Feature Estimate Standard Error t-value Probability(>|t|)
centre 3.127e+01 6.554e+00 4.770 2.18e-06 ***
residence_classification 1.699e+01 6.567e+00 2.587 0.009870 **
age_at_onset -1.702e+01 6.349e+00 -2.681 0.007500 **
spinal_cord_symptom 2.331e+01 8.733e+00 2.670 0.007747 **
CO_slope 1.444e+02 5.511e+01 2.620 0.008968 **
humidity_slope -1.297e+02 6.033e+01 -2.150 0.031841 *
sealevel_pressure_slope 8.559e+01 3.723e+01 2.299 0.021774 %
precipitation_sum_slope 1.507e+02 6.684e+01 2.255 0.024395 *
clusterTraj4_2 3.632e+01 8.857e+00 4101 4.54e-05 ***
clusterTraj4_3 3.012e+01 8.514e+00 3.537 0.000428 ***

3.5. Relapse Prediction Performances

We trained a RF model with mtry = 2 using the second subset of features, which includes TDA
trajectories, static features, and environmental slope features, to forecast the first relapse after
baseline. This identical feature set was used to train the Mixed-Effect Model, applying it to both
the First Observation (LMER_First_ Obs) and the Last Observation (LMER_First_Obs). We
evaluated these three models using the test set provided by the iDPP CLEF 2024 Challenge, with
performance outcomes detailed in Table 5. The RF model consistently delivered superior results
in both RMSE and MAE metrics.

Table 5
Performances of the selected Models on the test set
Model RMSE MAE
RF 41.52 22.49
LMER_First_Obs 48.07 28.05
LMER_Last_Obs 72.51 47.74

4. Discussion and Conclusions

MS can be debilitating and challenging to predict, influenced by numerous external factors that
are often difficult to identify and quantify. MS progression is known to be partially related to
the occurrence of relapses, with each relapse impacting on the patient's overall condition.
Predicting relapses is essential for improving disease prognosis, but it is complicated by the
variable nature of MS and the challenge of modeling the combined influence of external and
biological factors. The iDPP CLEF 2024 Challenge addresses this issue by focusing on the impact



of exposure to pollutants on MS progression. Indeed, one of the tasks proposed in the Challenge
aims to predict the week of the first relapse after baseline using environmental data and EDSS
scores, representing a potential step for developing novel approaches to enhance MS patient
care in relation to environmental exposures.

In this paper, we analyzed two retrospective datasets to predict the week of first relapse
after the baseline based on environmental exposure, employing two strategies with different
feature subsets. Under the Last-Observation strategy, the RF model yielded the best results
when considering TDA trajectories, static features, and environmental slope features at the last
follow-up. Its predictions were comparable to those of Mixed Effects Model applied to the first
follow-up. While the prediction results can be improved, they are promising in terms of the
significance of the variables used. The Mixed-Effects Model results indicate that several
environmental variables’ coefficients are statistically significant predictors of relapses,
highlighting the importance of integrating environmental exposures into ML models to
accurately characterize MS progression.

The difficulty in obtaining accurate predictions likely stems from the complex nature of MS,
which involves numerous interacting factors and significant individual variability, as well as
the approximations required to compute pollution exposure. Environmental monitoring often
relies on sensors located in specific areas or satellite data aggregated over time and space,
missing short-term or localized exposure peaks. Enhancing prediction accuracy requires more
precise personal exposure computation, which can be achieved by collecting data with finer
granularity and portable sensors.
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