CEUR-WS.org/Vol-3714/paper2.pdf

C

CEUR

Workshop
Proceedings

HPT4Rec: AutoML-based Hyperparameter Self-Tuning
Framework for Session-based Recommender Systems

Amir Reza Mohammadi’, Amir Hossein Karimi?, Mahdi Bohlouli’, Eva Zangerle! and
Giinther Specht?

'Department of Computer Science, Universitit Innsbruck, Austria
2Mathematics and Computer Science Department, Amirkabir University of Technology, Tehran, Iran

3Computer Science and Information Technology Department, IASBS, Zanjan, Iran

Abstract

Recommender systems have evolved beyond the basic user-item filtering methods in research. However, these filtering
methods are still commonly used in real-world scenarios, mainly because they are easier to debug and reconfigure. Indeed the
existing frameworks do not adequately support algorithmic tuning. Moreover, they are primarily focused on the reproducibility
of state-of-the-art accuracy rather than ease of algorithm development and maintenance. Therefore, rapid and iterative
experimentation and debugging are considerably hindered. In this work, we propose an AutoML-based framework with
a modular deep session-based recommender code-base and an integrated automated HyperParameter Tuning (HPT4Rec)
component. The proposed framework automates searching for the best session-based model for a given data. Therefore it
can help to consistently update the model based on potential changes in the type and volume of data that is prevalent for a
real-world scenario. It is demonstrated that HPT4Rec provides extensible data structures, training service compatibility, and
GPU-accelerated execution while maintaining training efficiency and recommendation accuracy. We have conducted our
experiments on the benchmark RecSys 2015 dataset and achieved performance on par with state-of-the-art results. Achieved
results of our experiments show the importance of continuous and iterative parameter tuning, particularly for real-world

scenarios.

Keywords

AutoML, Session-based Recommender Systems, Framework, Hyperparameter Tuning

1. Introduction

It is often overwhelming to an e-commerce user to see
so many products available for sale. Recognizing the
burden of data overload, recommender systems (RSs)
improve user experience substantially in various appli-
cations. Traditional RSs often rely on user profiles to
provide personalized recommendations. Collaborative fil-
tering approaches [1, 2, 3] could use history of purchases
to determine user similarity, or use matrix factorization
to establish latent factor vectors for each user. In both
cases, it is essential to identify the user when making
recommendations. However, this may not always be pos-
sible, such as not being logged in, having deleted their
tracking information, or a new user not having profile.
Consequently, recommendation methods that require the
user’s history suffer from cold-start issues.

Making session-based recommendations is another al-
ternative to using historical data [4]. In this setup, recom-
mendations are only made based on the behavior of users
in their current session which helps on tackling the cold-

34" GI-Workshop on Foundations of Databases (Grundlagen von Daten-
banken), June 7-9, 2023, Hirsau, Germany

& amir.reza@uibk.ac.at (A.R. Mohammadi); ahkarimi@aut.ac.ir
(A.H. Karimi)

@ 0000-0003-3934-6941 (A. R. Mohammadi); 0009-0001-3946-6954
(A.H. Karimi)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
o Attribution 4.0 International (CC BY 4.0).

start problem. Session-based recommendation might be
a vital component of the future recommendation, espe-
cially for the business and real-world applications, as
there are concerns and regulations about collecting user
data like GDPR [5].

Methods based on deep learning (DL) have shown
great promise in the session-based recommendation and
also in other communities [6]. As stated in various lit-
erature (7, 8, 9], they perform better than traditional
baseline methods by around 20-30 percent. However,
recent investigations have shown that many of these
methods are not compelling enough [10], moreover, re-
sults are hard to reproduce in many of them [11], and
the codes are not readily available. Recent publications
have addressed reproducibility by implementing several
DL-based recommendation algorithms as a framework
[12, 13, 14]. While these frameworks are effective and
helped to alleviate the problem, two key factors should
not be overlooked: 1. Iterative algorithm optimization:
If these algorithms are intended for real-world use, they
should include tools for being iteratively tuned to a given
dataset (not the offline benchmark datasets). The process
should be iterative and persistent since new features may
emerge, and user preferences may change. 2. Modular-
ity and ease of reproduciblity: Besides accuracy, several
other factors must be taken into consideration, when im-
plementing literature-approved methods in production,

mailto:amir.reza@uibk.ac.at
mailto:ahkarimi@aut.ac.ir
https://orcid.org/0000-0003-3934-6941
https://orcid.org/0009-0001-3946-6954
https://creativecommons.org/licenses/by/4.0

including non-complexity, fault tolerance, real-time pre-
diction, debuggability, resource consumption, and modu-
larity [15, 16]. The most advanced and well-performing
models are often left behind in the business, because they
are complex and challenging to debug. As a result, busi-
nesses still opt for more straightforward methods that
are less accurate, but easier to manipulate and debug. In
several papers [8, 10, 17, 18] (discussed in the background
section of prior work), various techniques were used to
slightly improve performance, which not only may not
be useful for large-scale day-to-day use, but may also
cause problems in production and during debugging. It
would be more practical to implement a robust and mod-
ular core structure with clear interfaces and to give room
to add more complex mechanisms based on the business
demands.

Motivated by reasons mentioned above, in this paper,
we present HPT4Rec, an AutoML-based framework for
hyperparameter self-tuning with a modular code-base
aimed at session-based recommendation. Our frame-
work simplifies the development and manipulation of
deep recommendation algorithms to meet business needs.
PyTorch and Microsoft NNI ! are used to develop the
code-base, both of which are well known in the DL and
AutoML communities and receive continuous updates.

Besides being open-source, this framework can be in-
stalled easily, and all prepared data and trained mod-
els are available at https://github.com/amirreza-m95/
HPT4Rec

2. Prior Work

Background. The most commonly used deep model,
when dealing with sequential data are Recurrent Neu-
ral Networks (RNN). There is a type of RNNs known
as LSTM [19] that are shown to work particularly well,
including additional gates regulating, when to take into
account input and, when to reset the hidden state. These
models are not affected by the vanishing gradient prob-
lem usually associated with RNN models. A somewhat
simpler alternative to LSTM, but still retaining all of its
properties, are Gated Recurrent Units (GRUs) [20], which
we employ in this work as the core learning structure of
the recommender for the experiments.

Hidasi et al. [7] suggested the RNN approach for
session-based recommendation (SBR) and then proposed
a parallel RNN architecture [9] to model sessions using
the clicks and features of the clicked items. Further re-
search was presented based on RNN methods in order to
improve the accuracy of this model. Performance of the
recurrent model can be boosted by taking into account
temporal changes in user behavior and data augmen-
tation techniques[8]. By uniting the recurrent method

!https://github.com/microsoft/nni

with the neighborhood-based method, Jannach et al. [10]
combined sequential patterns and co-occurrence signals
to get the best of both worlds. Tuan et al. [17] fused
session clicks with content features (namely, item titles
and categories) to generate recommendations based on
3-dimensional Convolutional Neural Networks (CNN).
Li et al. [21] have developed a neural attentive recom-
mendation machine (NARM) using an encoder-decoder
architecture. NARM can distinguish sequential behavior
and the primary purposes of users using the attention
mechanism on RNN. In another study, a Short-Term At-
tention Priority model (STAMP) [18], which employs a
simple MLP network, and an attentive net has been pro-
posed for understanding users’ general interests as well
as their current interests. In both NARM and STAMP, an
attention mechanism emphasizes the importance of the
last click.

Almost all of the aforementioned RNN-based SBR mod-
els follow the same architecture as GRU4Rec [7]. They
have just incorporated new features and mechanisms to
improve performance on top of the core structure. There-
fore, in HPT4Rec, a minimal code-base based on GRU4Rec
was built, with all the necessary tools and modules for
a methodologically simplified bottom-up approach to
model development. This can remove the barrier of en-
try for practitioners and allow them to add other features
if necessary.

Related Frameworks In the modern RSs field, re-
producibility is crucial. Recently, various researchers
[10, 11, 22, 23] pointed out the need for fair evaluation of
recommender models. Upon thorough hyperparameter
tuning, their argument about the supremacy of latent-
factor models over deep neural models made it necessary
to develop new recommendation frameworks. Begin-
ning in 2011, Mymedialite [24], , RankSys [25], LensKit
[26], LightFM [27], and Surprise [28] have established
a set of integrated tools for rapid prototyping and test-
ing of recommendation models, using standard metrics
and an intuitive model execution. Deep learning (DL)
recommendation models achieved remarkable success
and attracted growing community interest, which led
to the development of new tools. The first open-source
frameworks for DL-based recommenders were LibRec
[29], Spotlight [30], and OpenRec [31]. Although these
frameworks provided plenty of models, they lacked fil-
tering and Automated hyperparameter tuning strategies.
The RecQ [32], DeepRec [33], and Cornac [34] frame-
works have made a significant contribution towards a
more comprehensive collection of model implementa-
tions. DaisyRec [35], RecBole [36], and Elliot [12] raised
the bar considerably after the reproducibility hype, mak-
ing available a large number of models, data filtering and
splitting operations, as well as hyperparameter tuning.
Nevertheless, we observed a deficiency of two increas-
ingly critical aspects of recommendation model develop-

https://github.com/amirreza-m95/HPT4Rec
https://github.com/amirreza-m95/HPT4Rec

ment in real-world scenarios: Automated Hyperparame-
ter tuning and industry-level compatibility of tools and
training services. In reviewing these related frameworks,
we observed the lack of an open-source recommenda-
tion framework to perform automated hyperparameter
tuning while adopting various hyperparameter tuning
strategies on different distributed platforms. HPT4Rec
represents a step toward reaching that goal.

Earlier studies attempted to find a universal automated
solution for both architecture design [37, 38] and opti-
mization [39, 40, 41] but that seems to be ineffective since
the problems are diverse with different characteristics,
so a one-size-fits-all solution is not appropriate. The goal
of complete automation might be inspiring for scientific
research and serve as a long-term engineering objective,
but it seems likely that we will need to semi-automate the
majority of these tasks and gradually reduce the human
factor over time. Then it is expected that we will develop
powerful tools to assist in making machine learning, first
and foremost, more systematic and second, more effi-
cient. Aiming to accomplish this goal is the purpose of
HPT4Rec.

e
N

ejeq jndu|
¥
JakeT Buippaquig
nn 1ueu%eu pajes
e UN luau%ea pajes
e UN IUBU%GH pajen
¥
siehe] piemioypes
¥
SWwI8}| Uo salods

Figure 1: Overview of HPT4Rec’s Session-based Recommen-
dation Architecture

3. HPT4Rec

In this section, we describe HPT4Rec’s architecture and
tuning pipeline. First, we describe the general architec-
ture of the recommender. Next, we present the compo-
nents and architecture of the framework. Finally, we
discuss the available self-tuning methods and their best
application scenarios.

3.1. Sequential Modeling with RNN

Variable-length sequence data can be modeled using
RNNs. RNNs are characterized by the internal hidden
state present in the units that make up the network,
which sets them apart from conventional feedforward
neural networks. A standard RNN updates its hidden

state h according to mechanism showed in eq. (1):

hy = g(Wx¢ + Uhy_q) 1

where, The logistic sigmoid function g is a smooth
function with a bounded input of x;, which is the unit
input at time . Based on its actual state h;,, an RNN
provides a probability distribution for the subsequent
element of the sequence.

GRU is a form of RNN that tends to cope with vanish-
ing gradient problems better than vanilla RNN. In essence,
GRU gates learn when to update their hidden state and
by how much. GRUs are superior to Long Short-Term
Memory (LSTM) units when it comes to the session-based
recommendation. [7].

A linear interpolation between the prior activation
and the candidate activation is used to determine GRU
activation, hy:

he = (1-z)he_g +z¢hy @
where the update gate is given by:
2y = c(Wyx¢ + Uhe) (©)

In a similar manner while the candidate activation
function, h;, is also computed:

h; = tanh (Wx¢ + U(ry © hy_1)) (4)
and eventually, the reset gate 1 is provided by:
re = o(Wx¢ + Uhye_q))

We have presented the standard formulation of GRU
in Equations (3) and (4), but it is important to note that
framework users can tweak the model by using other
options, like using different final activations such as relu,
leaky-relu, and softmax.

3.1.1. GRU4Rec Architecture

The network core comprises the GRU layers, and further
feedforward layers may be added between the GRU layer
and the output. Each item’s predicted preference can be
calculated to predict whether it will be the next item in
the session. If more than one GRU layer is employed,
the hidden state of each layer is used as an input for the
next layer. An option is to connect the input to a higher
layer of the network to improve performance [7]. We
adjusted the base network to suit the task better since rec-
ommender systems are not the principal application area
of RNNs. The SBR model architecture is demonstrated
in Figure 1.

In addition, we also use trainable embeddings to rep-
resent all of our inputs. With backpropagation Through-
Time (BPTT), we can train our neural networks using

Command . S Configuration
Line : ; >
Interface OnehotiEnceding; Embgddmg Experiments Config, Search space
Dropout, Data cleaning
| 1 | ‘
Experiment Start Self-Tuner Model
> - ! ode
Manager Evaluator
IPE GRU4Rec |
Rest SMAC NARM ngiz%‘k
Server BOHB [€<T] STAWP
Training Service
l—‘ ‘—l A
T l Local Kubernetes base Loss
Server Services IR Code-base
Web TOP1 Core backend
ul Remote TOP1-MAX
OpenPAl Kubeflow External

Figure 2: HPT4Rec’s Architecture Overview

mini-batch gradient descent on multiple options for loss
over a dynamic number of time steps.

Session-parallel mini-batches. Click sessions are often
of varying length. It may take some users a long time to
find their desired item, while others find it within seconds.
In the recommender system, accurate predictions should
be provided regardless of the current session length. This
problem has been addressed by different methods like
session-parallel mini-batches [9] and data augmentation
[8]. Since we are seeking the least sophisticated approach,
we have taken the former approach.

3.2. Architecture and Data Flow

Automated tuning of hyperparameters is a key feature of
HPT4Rec. We provide 11 popular self-tuning algorithms.
Experiments can be run on a wide range of training plat-
forms, including local machines, multiple servers on a
distributed network, and open-source platforms such as
Kubernetes and OpenPAL

3.2.1. HPT4Rec’s Data Flow

HPT4Rec experiments are individual attempts to apply a
configuration (e.g., a set of hyperparameters) to a model.
The first step in constructing an experiment is to define
the search space (i.e., parameters). The tuner will sample
parameters/architecture according to the search space,
which is defined as a JSON file. Search spaces are defined

N U AW N

by the variable name, sampling strategy, and parameters
of a search space.
A search space definition can be expressed as follows:

{
"dropout_rate": {"_type": "uniform", "_value": [0.1, 0.5]},
"conv_size": {"_type": "choice", "_value": [2, 3, 5, 7]},
"hidden_size": {"_type": "choice", "_value": [124, 512, 1024]},
"lr": {"_type": "loguniform", "_value": [0.0001, 0.1]},

"momentum": {"_type": "lognormal", "_value": [0.1, 1]}

We have five parameters to tune in this search space.
According to this definition, the dropout rate is charac-
terized by a uniform distribution within a range of 0.1 to
0.5. This search space will be used by Tuner to build con-
figurations, selecting a value from within the range for
each parameter. Besides defining the search space, the
only requirement is to define a configuration file contain-
ing information like experiment log folder, self-tuning
algorithms, trial number, and duration threshold. The
configuration file is in YAML format.

In order to implement a new tuning algorithm or tweak
the existing ones, the base tuner should be inherited.
Then, by following the interface of the module and re-
turning the experiment results, passing the new parame-
ters, and updating the search space, the tuning module
will function properly.

Table 1
Self-tuning methods performance on different proxy datasets.

TPE SMAC Anneal
#Samples Recall@20 MRR@20 Time Recall@20 MRR@20 Time Recall@20 MRR@20 Time
125K 0.4314 0.2069 23 0.4229 0.2114 29 0.4332 0.203 25
250K 0.4687 0.225 39 0.473 0.2235 45 0.4633 0.2311 11
500K 0.5062 0.2426 76 0.5082 0.2442 77 0.5103 0.2487 57
Y% 0.545 0.2559 139 0.5479 0.2636 147 0.5481 0.2619 191

3.2.2. Architecture

By executing the experiment_runner python script
through Cli and passing the configuration file path, exper-
iments are instantiated. The experiment manager parses
the configuration file to determine the path to the search
space and target the training service, and then runs the
model code with the appropriate parameters from the
search space. Preprocessing will be performed by the
experiment manager (e.g., one-hot encoding, embedding
dropout). Following the execution of the model with
the first set of parameters, the self-tuner will examine
intermediate results (i.e., after each epoch) to determine
whether results are improving. Next, it will pass the
model on to the evaluation module. Evaluation will be
conducted by the evaluator, and results will be provided
to self-tuning algorithm to update its inner state. Follow-
ing the update, the self-tuning algorithm determines the
next metric to use. The iterative process will be repeated
until a certain time or number of experiments is reached.
Figure 2 illustrates this procedure. HPT4Rec will output
results in a webUI interface and collect all metrics, inter-
mediate results, best parameters, and system logs in a
JSON format.

3.2.3. Self-tuning

The cycle of getting hyperparameters, carrying out exper-
iments, testing their results, and then tuning hyperparam-
eters is deemed as self-tuning. Recommender systems
are used in various online websites with different lev-
els of user activity, which directly affects the volume of
data available for training models. Additionally, Training
deep models require substantial computational resources,
which is another crucial aspect since it directly impacts
revenue. Thereby, different tuning strategies are needed
based on available features, the volume of data, and avail-
able computational resources. Based on the framework
review shown in table 1, HPT4Rec offers several tuning
techniques tailored for diverse scenarios that occur in
real-world scenarios.

After a series of experiments, we have gained an early
intuition about the most suitable use cases of each self-
tuning algorithm. In that sense, Tree-structured Parzen
Estimator (TPE) [42] is suitable when computation re-
sources are limited, and you can only try a limited num-

ber of trials. A wide range of experiments revealed that
TPE outperformed random search. If the variables in the
search space can be selected from a prior distribution,
Anneal is useful. Likewise, it is recommended to use
naive evolution, when your experiment code supports
weight transfer, which implies that the experiment could
inherit its parent’s converged weight from its predecessor.
Training can be substantially accelerated with the right
tuning method, resulting in less time and money spent
and higher revenue, as well as better recommenders, to
enhance user experience.

4. Experiments

4.1. Experiment Setup
4.1.1. Dataset

We conducted our experiments on the YOOCHOOSE
e-commerce dataset for RecSys 2015 challenge 2. A six-
month period of click-streams from an e-commerce site
was included in this dataset. Click-streams are some-
times followed by purchase events. Following prepro-
cessing, there are 7,936,469 sessions and 31,437,691 clicks
on 37,403 items left for training and testing. Each clicking
event contains a session ID, an item ID and, if the item is
a buy-item, a price tag. A shopping session can contain
anywhere between 1 and 200 clicks, but most sessions
contain less than 30 clicks. We keep only the click events
from the challenge’s training set. Sessions of length one
are filtered out. The Yoochoose dataset was chosen since
it is the most general dataset, based on the dataset’s fea-
tures compared to other well-known datasets in this field
such as Diginetica®, Xing*, and Last.fm’. The default set-
tings of the framework can be used for all the datasets we
mentioned just by omitting some of their extra features.
We employ a dataset characterized by minimalistic data
features as a means to ensure the robust generalizability
of the model to diverse datasets encompassing a greater
abundance of data features.

*http://2015.recsyschallenge.com
Shttps://competitions.codalab.org/competitions/11161
*http://2016.recsyschallenge.com/
Shttp://ocelma.net/MusicRecommendationDataset/lastfm-1K html

4.1.2. Evaluation Metrics

In order to match the user with the most relevant item
on the list, recommender systems can recommend only a
few items at a time. We, therefore, use recall@20 as our
main evaluation metric, which counts the proportion of
cases that have the targeted item in the top 20 items for all
test cases. As long as an item is among the top-N, recall
does not take its rank into consideration. The MRR@20
metric is the second metric used in the experiments. A
reciprocal ranking of the desired items determines this
value. A reciprocal rank above 20 is set to zero.

4.1.3. Implementation Details

For demonstration purposes and to have a quantifiable
search space, we optimized hidden size, batch size, learn-
ing rate and the number of GRU layers and fixed others as
follow. For our model, 50-dimensional embeddings were
used for the items, with a 20% embedding dropout. The
optimization was conducted using Adam [43]. The GRU
search space was set at 50 to 1000 hidden units for each
model. A session ends with the GRU’s hidden state reset
to zero. Models are developed in PyTorch and trained on
an NVIDIA Tesla V100. The source code of the model,
checkpoints, and logs are available online.

The comparison was made with four traditional recom-
mendations (POP, S-POP, Item-KNN and BPR-MF) and
with two well-performing configurations of GRU4Rec.

+ POP. In one of its simplest forms, the popular pre-
dictor predicts the items that are most popular in
the training set. Even though it is simple, it often
provides a good baseline for certain domains.

« S-POP. This baseline recommends the items that
are most popular during the current session. As
the session progresses, the recommendation list
grows. Global popularity values are used to break
up ties.

«+ Item-KNN. This baseline measures similarity by
dividing the number of times two items appear
together in sessions by the square root of the
product of their occurrence rates.

4.2. Performance and Results
4.2.1. Diverse Self-tuning Methods Effectiveness

The most likely scenario for developing a recommender
system in the real world is carrying out an experiment,
where different levels of training data are collected. This
may change as user activity increases and new users
visit the website. Even in the offline dataset of RecSys
2015, the results of training on a complete dataset are
slightly worse than those of training on a recent region
of the dataset, which shows changing user behavior [8].

Table 2
Comparison of the our optimized recommender against base-
lines.

model/type/loss HS © Recall@20 ~ MRR@20
POP 0.005 0.0012
S-POP 0.2672 0.1775
Item-KNN 0.5065 0.2048
BPR-MF 0.2574 0.0618
GRU4REC BPR 1000 0.6322 0.2467
GRU4REC top1 100 0.5853 0.2305
HPT4Rec TOP1 110 0.6259 0.2681

Thus, to make recommendations that reflect changes in
user behavior over time, models must be continuously
and iteratively optimized. It is possible to have different
approaches when we have different quantities of data
and computation to find the best-optimized model, as
discussed in the self-tuning 3.2.2. Our experiments have
been conducted using four proxy datasets that mirror
the RecSys benchmark data, which comprise different
quantities of data. HPT4Rec’s recommender model was
tuned using four self-tuning methods that used proxy
datasets as training data. Evaluation metrics and tuning
time were recorded to compare these methods. Table 2
shows how we found the most effective model using 30
experiments. Results do not indicate the optimal use case
scenario for tuning methods, but rather demonstrate that
each of these tuners performs well in different scenarios
and that one of them does not outperform the others in
all proxy datasets and evaluation metrics.

4.2.2. Consistency with Published Results

A key element for any new tool is consistency with the
previously published results since a wide range of results
are possible due to a variety of implementation details,
non-fixed seed values, and other domain-specific rea-
sons. Our research also featured HPT4Rec’s self-tuning
method for optimizing the base recommender model with
the Original RecSys dataset. In Table 2 we show that
HPT4Rec has outperformed baseline models by a fair
margin and is almost on par with state-of-the-art models
with this privilege that it has discovered parameters that
lead to a simpler model, which results in less resource
consumption in production mode. The pursuit of more
streamlined models facilitates enhanced reproducibility,
a fundamental tenet of our methodology, thereby engen-
dering an essential advancement.

5. Conclusion and Future Work

In this paper, we have released a session-based rec-
ommender system framework based on AutoML called
HPT4Rec. We reviewed the recommended systems

frameworks in the literature, showing HPT4Rec’s mer-
its and shortcomings, and emphasizing the advantages
of modularity and automatic tuning. To the best of our
knowledge, HPT4Rec is the first recommendation frame-
work that provides a thorough self-tuning experimen-
tal pipeline supported by business scale training service
compatibility. We expect HPT4Rec to simplify the tuning
effort of recommendation models, facilitate the devel-
opment and debugging process of new algorithms, and
help migrate deep recommender algorithms to be used
in real-world scenarios. Our immediate future work will
emphasize automating other aspects of the recommen-
dation pipeline, such as automated data augmentation,
which has traditionally been done manually in literature.

References

[1] Y. Koren, R. Bell, C. Volinsky, Matrix factorization
techniques for recommender systems, Computer
42 (2009) 30-37.

[2] Y. Koren, Factorization meets the neighborhood: a
multifaceted collaborative filtering model, in: Pro-
ceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data min-
ing, 2008, pp. 426-434.

[3] R. Salakhutdinov, A. Mnih, G. Hinton, Restricted
boltzmann machines for collaborative filtering, in:
Proceedings of the 24th international conference
on Machine learning, 2007, pp. 791-798.

[4] J. B. Schafer, J. Konstan, J. Riedl, Recommender
systems in e-commerce, in: Proceedings of the 1st
ACM conference on Electronic commerce, 1999, pp.

158-166.
[5] E. Commission, 2018 reform of eu data
protection rules, 2018-05-25. URL: https:

//ec.europa.eu/commission/sites/beta-political/
files/data-protection-factsheet-changes_en.pdf.

[6] A. Datar, C. Pan, M. Nazeri, X. Xiao, Toward
wheeled mobility on vertically challenging terrain:
Platforms, datasets, and algorithms, arXiv preprint
arXiv:2303.00998 (2023).

[7] B. Hidasi, A. Karatzoglou, L. Baltrunas, D. Tikk,
Session-based recommendations with recurrent
neural networks, CoRR abs/1511.06939 (2016).

[8] Y.K. Tan, X. Xu, Y. Liu, Improved recurrent neural
networks for session-based recommendations, in:
Proceedings of the 1st workshop on deep learning
for recommender systems, 2016, pp. 17-22.

[9] B. Hidasi, M. Quadrana, A. Karatzoglou, D. Tikk,
Parallel recurrent neural network architectures for
feature-rich session-based recommendations, in:
Proceedings of the 10th ACM conference on recom-
mender systems, 2016, pp. 241-248.

[10] D.Jannach, M. Ludewig, When recurrent neural

networks meet the neighborhood for session-based
recommendation, in: Proceedings of the Eleventh
ACM Conference on Recommender Systems, 2017,
pp. 306-310.
M. F. Dacrema, P. Cremonesi, D. Jannach, Are we
really making much progress? a worrying analy-
sis of recent neural recommendation approaches,
in: Proceedings of the 13th ACM Conference on
Recommender Systems, 2019, pp. 101-109.
V. W. Anelli, A. Bellogin, A. Ferrara, D. Malitesta,
F. A. Merra, C. Pomo, F. M. Donini, T. D. Noia, Elliot:
a comprehensive and rigorous framework for re-
producible recommender systems evaluation, 2021.
arXiv:2103.02590.
L. Yang, E. Bagdasaryan, J. Gruenstein, C.-K. Hsieh,
D. Estrin, Openrec: A modular framework for
extensible and adaptable recommendation algo-
rithms, in: Proceedings of the Eleventh ACM In-
ternational Conference on Web Search and Data
Mining, WSDM 18, Association for Computing
Machinery, New York, NY, USA, 2018, p. 664-672.
URL: https://doi.org/10.1145/3159652.3159681.
S. Zhang, Y. Tay, L. Yao, B. Wu, A. Sun, Deeprec:
An open-source toolkit for deep learning based rec-
ommendation, 2019. arXiv:1905.10536.
P. Kouki, I. Fountalis, N. Vasiloglou, X. Cui, E. Lib-
erty, K. Al Jadda, From the lab to production: A
case study of session-based recommendations in
the home-improvement domain, in: Fourteenth
ACM conference on recommender systems, 2020,
pp. 140-149.
D. Jannach, M. Jugovac, Measuring the business
value of recommender systems, ACM Trans. Man-
age. Inf. Syst. 10 (2019). URL: https://doi.org/10.
1145/3370082.
T. X. Tuan, T. M. Phuong, 3d convolutional net-
works for session-based recommendation with con-
tent features, in: Proceedings of the eleventh
ACM conference on recommender systems, 2017,
pp- 138-146.
Q. Liu, Y. Zeng, R. Mokhosi, H. Zhang, Stamp:
short-term attention/memory priority model for
session-based recommendation, in: Proceedings of
the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, 2018, pp.
1831-1839.
S. Hochreiter, J. Schmidhuber, Long short-term
memory, Neural computation 9 (1997) 1735-1780.
K. Cho, B. Van Merriénboer, D. Bahdanau, Y. Ben-
gio, On the properties of neural machine transla-
tion: Encoder-decoder approaches, Fifth Workshop
on Syntax, Semantics and Structure in Statistical
Translation (2014).
[21] J.Li, P. Ren, Z. Chen, Z. Ren, T. Lian, J. Ma, Neu-
ral attentive session-based recommendation, in:

(12]

(16]

https://ec.europa.eu/commission/sites/beta-political/files/data-protection-factsheet-changes_en.pdf
https://ec.europa.eu/commission/sites/beta-political/files/data-protection-factsheet-changes_en.pdf
https://ec.europa.eu/commission/sites/beta-political/files/data-protection-factsheet-changes_en.pdf
http://arxiv.org/abs/2103.02590
https://doi.org/10.1145/3159652.3159681
http://arxiv.org/abs/1905.10536
https://doi.org/10.1145/3370082
https://doi.org/10.1145/3370082

Proceedings of the 2017 ACM on Conference on
Information and Knowledge Management, 2017, pp.
1419-1428.

S. Rendle, L. Zhang, Y. Koren, On the difficulty of
evaluating baselines: A study on recommender sys-
tems, 2019. arXiv:1905.01395.

D. Jannach, G. de Souza P. Moreira, E. Oldridge,
Why are deep learning models not consistently
winning recommender systems competitions yet?
a position paper, in: Proceedings of the Rec-
ommender Systems Challenge 2020, RecSysChal-
lenge 20, Association for Computing Machinery,
New York, NY, USA, 2020, p. 44-49. URL: https:
//doi.org/10.1145/3415959.3416001.

Z. Gantner, S. Rendle, C. Freudenthaler, L. Schmidt-
Thieme, MyMediaLite: A free recommender system
library, in: 5th ACM International Conference on
Recommender Systems (RecSys 2011), 2011.

S. Vargas, Novelty and diversity enhancement
and evaluation in recommender systems and in-
formation retrieval, in: Proceedings of the 37th
international ACM SIGIR conference on Research
& development in information retrieval, 2014, pp.
1281-1281.

M. D. Ekstrand, Lenskit for python: Next-
generation software for recommender systems ex-
periments, in: Proceedings of the 29th ACM Inter-
national Conference on Information & Knowledge
Management, 2020, pp. 2999-3006.

M. Kula, Metadata embeddings for user and
item cold-start recommendations, arXiv preprint
arXiv:1507.08439 (2015).

N. Hug, Surprise: A python library for recom-
mender systems, Journal of Open Source Software
5 (2020) 2174.

G. Guo, J. Zhang, Z. Sun, N. Yorke-Smith, Librec: A
java library for recommender systems., in: UMAP
Workshops, volume 4, Citeseer, 2015.

M. Kula, Spotlight, https://github.com/maciejkula/
spotlight, 2017.

L. Yang, E. Bagdasaryan, J. Gruenstein, C.-K. Hsieh,
D. Estrin, Openrec: A modular framework for ex-
tensible and adaptable recommendation algorithms,
in: Proceedings of the Eleventh ACM International
Conference on Web Search and Data Mining, 2018,
pp. 664—672.

J. Yu, M. Gao, H. Yin, J. Li, C. Gao, Q. Wang, Gen-
erating reliable friends via adversarial training to
improve social recommendation, in: 2019 IEEE
International Conference on Data Mining (ICDM),
IEEE, 2019, pp. 768-777.

U. Gupta, S. Hsia, V. Saraph, X. Wang, B. Reagen,
G.-Y. Wei, H.-H. S. Lee, D. Brooks, C.-J. Wu, Deep-
recsys: A system for optimizing end-to-end at-
scale neural recommendation inference, in: 2020

(34]

(35]

(39]

(42]

ACM/IEEE 47th Annual International Symposium
on Computer Architecture (ISCA), IEEE, 2020, pp.
982-995.

A. Salah, Q.-T. Truong, H. W. Lauw, Cornac: A com-
parative framework for multimodal recommender
systems, Journal of Machine Learning Research 21
(2020) 1-5.

Z. Sun, D. Yu, H. Fang, J. Yang, X. Qu, J. Zhang,
C. Geng, Are we evaluating rigorously? bench-
marking recommendation for reproducible evalu-
ation and fair comparison, in: Fourteenth ACM
Conference on Recommender Systems, RecSys ’20,
Association for Computing Machinery, New York,
NY, USA, 2020, p. 23-32. URL: https://doi.org/10.
1145/3383313.3412489.

W. X. Zhao, S. Mu, Y. Hou, Z. Lin, K. Li, Y. Chen,
Y. Lu, H. Wang, C. Tian, X. Pan, Y. Min, Z. Feng,
X. Fan, X. Chen, P. Wang, W. Ji, Y. Li, X. Wang,
J.-R. Wen, Recbole: Towards a unified, comprehen-
sive and efficient framework for recommendation
algorithms, 2020. arXiv:2011.01731.

P. Zhao, K. Xiao, Y. Zhang, K. Bian, W. Yan, Amer:
Automatic behavior modeling and interaction ex-
ploration in recommender system, arXiv preprint
arXiv:2006.05933 (2020).

Y. Chen, Y. Yang, H. Sun, Y. Wang, Y. Xu, W. Shen,
R. Zhou, Y. Tong, J. Bai, R. Zhang, Autoadr: Auto-
matic model design for ad relevance, in: Proceed-
ings of the 29th ACM International Conference on
Information & Knowledge Management, 2020, pp.
2365-2372.

T.-H. Wang, X. Hu, H. Jin, Q. Song, X. Han, Z. Liu,
Autorec: An automated recommender system, in:
Fourteenth ACM Conference on Recommender Sys-
tems, 2020, pp. 582-584.

R. Anand, J. Beel, Auto-surprise: An automated
recommender-system (autorecsys) library with tree
of parzens estimator (tpe) optimization, in: Four-
teenth ACM Conference on Recommender Systems,
2020, pp. 585-587.

H. Liu, X. Zhao, C. Wang, X. Liu, J. Tang, Auto-
mated embedding size search in deep recommender
systems, in: Proceedings of the 43rd International
ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, 2020, pp. 2307-2316.
J. Bergstra, R. Bardenet, Y. Bengio, B. Kégl, Algo-
rithms for hyper-parameter optimization, in: 25th
annual conference on neural information process-
ing systems (NIPS 2011), volume 24, Neural Infor-
mation Processing Systems Foundation, 2011.

D. P. Kingma, J. Ba, Adam: A method for stochas-
tic optimization, arXiv preprint arXiv:1412.6980
(2014).

http://arxiv.org/abs/1905.01395
https://doi.org/10.1145/3415959.3416001
https://doi.org/10.1145/3415959.3416001
https://github.com/maciejkula/spotlight
https://github.com/maciejkula/spotlight
https://doi.org/10.1145/3383313.3412489
https://doi.org/10.1145/3383313.3412489
http://arxiv.org/abs/2011.01731

	1 Introduction
	2 Prior Work
	3 HPT4Rec
	3.1 Sequential Modeling with RNN
	3.1.1 GRU4Rec Architecture

	3.2 Architecture and Data Flow
	3.2.1 HPT4Rec's Data Flow
	3.2.2 Architecture
	3.2.3 Self-tuning

	4 Experiments
	4.1 Experiment Setup
	4.1.1 Dataset
	4.1.2 Evaluation Metrics
	4.1.3 Implementation Details

	4.2 Performance and Results
	4.2.1 Diverse Self-tuning Methods Effectiveness
	4.2.2 Consistency with Published Results

	5 Conclusion and Future Work

