
JSON Rules

Adrian Giurca1 and Emilian Pascalau1

Brandenburg University of Technology, Germany
{giurca,pascalau}@tu-cottbus.de

Abstract. This paper presents a JSON based rule language and its
JavaScript-based rule engine towards providing Web 2.0 applications
with rule-based inference capabilities. For interoperability purposes the
Rule Interchange Format is used. While the rule engine is enough general,
its main purpose is to execute production rules and Event-Condition-
Action rules related to the web page DOM processing. This way the
user’s browsing experience will be enriched with the ability to modify on
the fly the DOM of the current document as well as the browser user
interface (Firefox).

1 Introduction

In the last 10 years business rules were employed to declaratively describe poli-
cies, business processes and practices of an enterprise. Applications in domains
such as insurance, financial services, government, telecom, and e-commerce ben-
efit greatly from using rule engines. Moreover, rules are becoming increasingly
important in business modeling and requirements engineering, as well as in Se-
mantic Web applications. In each of these fields different rule languages and
tools are being used. At the same time the amount of Web 2.0 applications in-
creases heavily. Actual technologies such as Asynchronous JavaScript and XML
(AJAX) [8] allows the development of Rich Internet Applications (RIAs). This
concept was introduced in [2] to denote a web application that typically runs in
a web browser, and do not require software installation. Several Web 2.0 appli-
cations use heavily AJAX in order to provide desktop-like behavior to the user.
The number of RIAs is increasing because of the broad bandwidth of today’s
Internet connections, as well as the availability of powerful and cheap personal
computers. However, traditional ways of programming Internet applications no
longer meet the demands of modern rule-enabled rich Internet applications. For
example a highly responsive Web 2.0 application such as Gmail1, might be much
easily customized by using a declarative description such as rules.

The goal of this paper is to describe a rule language and a client-side rule
engine. The rule language uses JavaScript Object notation(JSON) notation [5]
as its main format. However, for interoperability purposes the Rule Interchange
Format (RIF) [4] is used. The choice of using JSON is due to it’s widely usage by
JavaScript developers. JSON is used for rule descriptions as well as serialization

1 http://mail.google.com

for data that is going to be transmitted over network. While the rule engine
is enough general, its main purpose is to execute production rules and Event-
Condition-Action rules related to the web page Document Object Model (DOM)
processing. This way the user’s browsing experience will be enriched with the
ability to modify on the fly the DOM of the current document as well as the
browser user interface (Firefox).

2 Related Work

While the ideas of RIAs are not new (see [2]) the rule-based RIAs proposals
are quite recent. A project was started in May 2008 by Project 6 Research 2.
However, the goals of this project are limited to XPath processing i.e. rules
conditions are similar with test from XSLT while the actions are not clearly
specified. In overall, the concepts are far away to be clear and we did not see
to much advance. Also this product is commercial and no demos are available.
There are also concerns to emulate a rule parser in Adobe Flex framework3 but
the goal seems to be a client side Drools[10] parser.

The most advanced work seems to be in [12] (May 2008) where two-layer
architecture for rule-enabled RIAs is described. This paper is a good starting
point but as a general architecture document, it does not formally provide a
Model-Driven Architecture like, platform independent model. In addition the
paper is not focused on the rule language description neither to the client-side
rule execution. This work was also related in [11].

3 The Rule Language

JSON notation combined with JavaScript function calls offers large capabilities
to express various kinds of rules. Recall that we deal both with production rules
and with Event-Condition-Action (ECA) rules i.e. rules of the form

Rule ID: ON EventExpression IF C1 && ... && Cn DO [A1, ..., Am]

where the event part is optional and denotes an event expression matching the
triggering events of the rule; C1, ... Cn are boolean conditions using a Drools like
syntax and [A1, ... Am] is a sequence of actions.

The metamodel of a JSON Rule is depicted in Figure 1.

Example 1 (Production Rule).

For all elements of class ’note’ having as first child a ’ul’ change the
first child background color to blue. Expressed in a logical form the
above example looks like: ∀x∃y(Element(x) ∧ x.class =′ note′ ∧ y =
x.firstChild ∧ y.nodeName =′ ul′) → changeBackground(y,′ blue′)

2 http://www.p6r.com/articles/2008/05/22/an-xpath-enabled-rule-engine/
3 http://archives.devshed.com/forums/compilers-129/

writing-a-rules-parser-in-actionscript-javascript-2370024.html

Atom

id : String
priority : Integer = 1
appliesTo : URL

JSONRule

conditions 0..*

EventExpression

RuleSet
1..*

prr::Action

actions

1..*

Fig. 1. Rules and Rulesets

{"id":"rule101",
"appliesTo": ["http://www.example.org/JRules",

"http://www.google.com/"],
"condition": "$X:Element(class==’note’,

$Y:firstChild)
&&
($Y.nodeName == ’ul’)",

"actions":["changeBackground($Y, ’blue’)"]
}

The above example shows that a JSON rule is first of all, a JSON object. The
appliesTo property states that the rule will apply only on the specific indicated
pages (URLs).

The condition uses a Drools like syntax and state that all elements with
the class attribute equals with note (i.e. $X:Element(class==’note’)) and with
the first child an unsorted list (i.e. $Y.nodeName == ’ul’) must participate in
the action.

The action changeBackground($X, ’blue’) should be an available user-
defined function call. If no such function is available then no action is performed.

JSON Rules are also ECA Rules i.e. they are triggered by events (see Example
4). Below we provide descriptions of the rule constituents.

3.1 Condition

A rule condition is always a conjunction of atoms. Empty conditions are inter-
preted as true conditions. As can be seen in the Figure 2, the language supports
three kinds of atoms: JavaScriptBooleanCondition, Description and XPathCon-
dition. The reader should notice that future extensions may involve other kinds
of atoms.

Atom

JavaScriptBooleanCondition

JSONTerm

Description

*
binding1

xPathExpression : String
XPathCondition

*

binding

1

Fig. 2. The language atoms

JavaScriptBooleanCondition This is the simplest conditional atom. Any
JavaScript boolean expression is allowed. For example window.find(’rule’)
or document.getElementById(’id’).value==10 are allowed.

Description This atom is related to the syntax of Drools pattern conditional.
The metamodel of language descriptions is depicted in Figure 3.

A Description is bound to a JSONTerm, has a type and has a list of con-
straints. The type is one of the values described by DescriptionType enumeration.
These values correspond to the node types defined in DOM Level 2 Core speci-
fication 4.

The Description offers two types of constraints PropertyRestriction and
PropertyBinding.

– A PropertyRestriction (see Figure 3) describes a set of value restrictions to
properties of the JSONTerm that are bound to it.
• The string property encodes a property name of a property belonging to

the corresponding bounded JSONTerm.
• operator is relational one.
• The value is either a JSONTerm (Variable or DOM:Node), or a Regu-

larExpression, or a String or a Number.
– A PropertyBinding performs a variable binding of a property belonging to

the related JSONTerm. After that this variable becomes available at the rule
level (See example 1).

The condition below stands for all DOM entities of type Element that are
text input elements with the value date of the form yyyy-mm-dd. Notice that
for the value we used a regular expression that checks its format. Month can be
only between 01-12. The regular value for day can not be greater than 31, and
for month 02 the value for day can not be greater than 29.
4 http://www.w3.org/TR/DOM-Level-2-Core/idl-definitions.html

Constraint

Description

1

constraints*

JSONTerm

*

binding

1

property : String
PropertyBinding

property : String
PropertyRestriction

Value

*
1

name : String
Variable

*

1

javascript::Number

javascript::RegularExpression

javascript::String
+EQ
+LE
+LEQ
+GE
+GEQ

«enumeration»
RelationalOperator

*

operator1

+DOCUMENT_TYPE
+PROCESSING_INSTRUCTION
+DOCUMENT
+ELEMENT
+ATTRIBUTE
+TEXT
+CDATA
+COMMENT
+FRAGMENT
+NODE_LIST

«enumeration»
DescriptionType

*

type

1

DOM::Node

Fig. 3. Descriptions

Example 2 (Condition).

$X : Element(nodeName=="input", type=="text",
value=="match(^[0-9]{4}-(((0[13578]|(10|12))-(0[1-9]|[1-2][0-9]

|3[0-1]))|(02-(0[1-9]|[1-2][0-9]))|((0[469]|11)-(0[1-9]
|[1-2][0-9]|30)))$)")

xPathExpression : String
XPathCondition

JSONTerm

*

binding

1

Fig. 4. The XPath Condition

XPathCondition The XPathCondition (see the metamodel in Figure 4) is the
third type of conditional atom. This one compared with the other might be a
little peculiar. For a usage example of this type of conditional we are going to
use the example page below.

Example 3 (An XPath Condition). Consider the following page with the view
depicted in Figure 5:

Fig. 5. Page view for XPathCondition example

<?xml version="1.0"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html>
<head>
<title>XPathCondition</title>
</head>
<body>
<div id="_div1" >
<table border="1">
<tr> <td>T1:row 1, cell 1</td> <td>T1:row 1, cell 2</td> </tr>
<tr> <td>T1:row 2, cell 1</td> <td>T1:row 2, cell 2</td> </tr>

</table>
</div>
<div id="_div2">
<table border="1">
<tr> <td>T2:row 1, cell 1</td> <td>T2:row 1, cell2 </td> </tr>
<tr> <td>T2:row 2, cell 1</td> <td>T2:row 2, cell 2</td> </tr>

</table>
</div>
</body>

</html>

Such a conditional can be bound to a JSONTerm (Figure 3. Recall that a
JSONTerm is either a Variable or a DOM:Node.

Assuming that we want to change the background for all rows in all tables
in the DOM of the current page, using the XPathCondition, the condition is:

"$X in "html//table//tr"

The variable $X has been used along with the reserved word in. The meaning is
”forall $X in the collection...” The evaluation of the xPathExpression returns a
list of nodes (In the previous example, the evaluation of the xPathExpression
returns 4 nodes).

On the other hand, if we want to change the background only for a specific
node by using an XPathCondition the condition is:

{"nodeName":"tr",
"firstChild":{"nodeName":"td",

"textContent":"T2:row1, cell 1"
}

} in "html//table//tr"

After evaluating the condition the background should be changed only for the
first row of the second table (see Figure 5).

3.2 Actions

Our approach deals with standard actions of OMG Production Rule Represen-
tation (PRR), [9]. The reader should notice that any user-defined JavaScript
functions can be called in the rule actions part. Below is the mapping of the
PRR standard actions to our language:

PRR Standard Actions JSON Rules

AssignExp change properties of an element

InvokeExp any JavaScript function call

AssertExp insert a DOM node

RetractExp remove a DOM node

UpdateExp update a DOM node

Table 1. PRR Standard Actions and their representation

An invoke action is already provided in Example 1. It corresponds to a
JavaScript function-call. The function must be available otherwise the action
is ignored (not executed).

An assign action is usually intended to change the properties of an element.
For example

$X.setAttribute("value", "25")

is an assign action changing the value attribute of an input element bounded
to the variable $X. If $X is not bounded to an element allowing the attribute
value then the engine will ignore such action.

An assert action is related to the creation of new nodes in the DOM e.g.

$X.appendChild(document.createElement("input"))

is an assert action.
A retract action is the inverse of the assert action i.e. deletes a node from

the DOM.
An update action is usually related to the content update of a DOM node.

For example

$X.replaceChild($Y,$Z)

is an assert action.

3.3 Event Expressions

+LOAD = load
+UNLOAD = unload
+ONDBLCLK = ondblclick
+...

«enumeration»
DOM::EventType

+AT_TARGET
+BUBBLING_PHASE
+CAPTURING_PHASE

«enumeration»
DOM::PhaseType

DOM::DOMTimeStamp

EventExpression

type

0..1 *

0..1

*

eventPhase 0..1

*

JSONTerm

eventTarget 1

*

Fig. 6. Event Expressions

The JSON event expression is related to the Event interface specification in
DOM Level 2 Events5, therefore the properties of this expression have the same
meaning as in the Event specification. At the runtime these properties of this
expression are matched against the incoming DOM events and their values can
be processed in the rule conditions and actions.

Example 4 (ECA Rule).

{"id":"rule102",
"appliesTo":["http://mail.yahoo.com/"],
"eventExpression": { "eventType": "click",

"eventTarget": "$X"
},

"condition":" ($X.nodeName == ’a’,
$X.href==’match(showMessage\?fid=Inbox)’)",

"actions":["append($X.textContent)"]
}

The rule from example 4 concerns the Yahoo mail and states that when
click event is raised, if the event came from an a element, and if the href
property matches the regular expression (rudimentary check that the link is an
inbox Yahoo message link) then call append function with the message subject
as parameter.

3.4 Additional parameters

In addition to its main constituents a rule provides some other parameters:

5 http://www.w3.org/TR/DOM-Level-2-Events/

– The id is required and denotes the unique identifier of a rule.
– The appliesTo property is required and holds a list of URLs on which the

rule must apply e.g. the rule from Example 1 can be applied to the pages
http://www.example.org/JRules and to http://www.google.com/.

– Priority expresses the order of a rule in a ruleset. If no value is provided for
it, default value is ”1”. Based on priorities the rule engine must execute the
rules in a down counting order (from greater values to lower values). The
execution order is not relevant for rules having the same priority.

4 The Rule Engine

The main characteristics of the rule engine are:

– Is a forward chaining rule engine using a modified RETE algorithm (see [6]
for the standard version) for production rules ;

– Uses the above rule language as well as RIF XML.
– Deals with two different types of rules: production rules and ECA Rules
– DOM events are processed as atomic events (i.e. no duration).
– Rules are stored locally or remote or both.
– The engine execute rulesets (a ruleset is the set of all rules referring to a

specific URL).
– The RETE working memory is the document DOM itself. Rule property

restrictions are matched against DOM entities (such as elements processing
instructions, attributes an so on).

The component view of the engine is depicted in the Figure 7.

InferenceEngine

EventManager

WorkingMemory

RulesRepository

Fig. 7. Rule Engine

A UML state diagram describing the functionality of the engine is depicted
in the Figure 8.

When the InferenceEngine is started it loads the corresponding rules from
the RuleRepository. After the rules are loaded, the EventManager gets active
and it listens for events from the WorkingMemory. When it receives events from
the WorkingMemory, the EventManager informs the InferenceEngine about it.
The InferenceEngine computes rules to fire. If rules are found then it fires them,
and the WorkingMemory is changed. When no rules are computed then it stops.

EventManager WorkingMemory

RuleRepositoryInferenceEngine

Rule Loading

ListenForEvents

RulesLoaded

FireEvents

InformOfEventsDeterminePossibleRulesToFire

ChangeWorkingMemoryFireRule

Fig. 8. The Rule Engine State Diagram

Opposed to usual rule engines, that stop their activity when no rules can be
fired, this stops only when the WorkingMemory exists no more. When rules can
not be fired, but the WorkingMemory still exists, the engine gets into an idle
state, and waits to be informed about new events from the EventManager.

4.1 The Working Memory

Is represented by the DOM of the current page. The WorkingMemory is special
because it is event based, DOM is changed through events.

4.2 The Inference Engine

Is the ”brain” of the system. Based on the facts (DOM) of the Working Memory
and based on the current page corresponding ruleset, it performs the matching
operation and executes rules.

4.3 The Event Manager

The event manager is a combination between JavaScript and the Working Mem-
ory - DOM of the current page. The Event Manager takes advantage of the fact
that the DOM itself is event based. All changes and in general all DOM events
are reported to the main document object. This is based on the bubbling effect
of DOM events.

4.4 The Rule Repository

Rules are stored in the repository. The repository can be local or remote. In both
cases the storing language is JSON based as described in Section 3.

5 Conclusion and future work

This paper describes an approach of enriching RIAs with rule-based reasoning.
JSON Rules provides the JavaScript engine with reasoning capabilities and the
users can write their own rules. The rules syntax is based on JSON notation,
therefore does not require high effort to accommodate it. Rules are simpler but
powerful, their main goal being to change the DOM of the page they apply. The
rule actions comply with the proposed OMG standard for production rules and
are enough general to achieve all kind of DOM changes as well as any kind of
side effects. The next immediate step will take into account the engine inter-
action with both user defined events and XMLHTTPRequest events to increase
the power of the reaction rules to dynamically handle the page AJAX-based
interactions. On a medium term JSON Rules should deal with metadata (with
emphasis on RDF[7]) both for embedded metadata (such as RDFa [1]) and ex-
ternal metadata (such as RSS [3] and Atom[13]). In addition, sharing rules is
a feature that can improve user experience and also, might spare him the time

of writing rules by himself, in the case he can find rules for the page being in-
terested in. The user can share with his friend, or with everybody. Rule sharing
goes hand in hand with rule publishing.

References

1. Ben Adida and Mark Birbeck. RDFa Primer: Embedding Structured Data in
Web Pages. W3C Working Draft 17 March 2008. http://www.w3.org/TR/

xhtml-rdfa-primer/.
2. Jeremy Allaire. Macromedia Flash MXA next-generation rich client. http://www.

adobe.com/devnet/flash/whitepapers/richclient.pdf, March 2002.
3. RSS Advisory Board. RSS 2.0 Specification. http://www.rssboard.org/

rss-specification.
4. Harold Boley and Michael Kifer. RIF Basic Logic Dialect. http://www.w3.org/

2005/rules/wiki/BLD, October 2007.
5. Douglas Crockford. The application/json Media Type for JavaScript Object No-

tation (JSON). http://tools.ietf.org/html/rfc4627, July 2006.
6. Charles Forgy. Rete – A Fast Algorithm for the Many Pattern / Many Object

Pattern Match Problem. Artificial Intelligence, 19:17–37, 1982.
7. Klyne G. and Caroll J.J. Resource Description Framework (RDF): Concepts and

Abstract Syntax. W3C Recommendation 10 February 2004. http://www.w3.org/
TR/rdf-concepts/.

8. Jesse James Garrett. Ajax: A new approach to web applications. http://www.

adaptivepath.com/ideas/essays/archives/000385.php, February 2005.
9. OMG. Production Rule Representation (PRR), Beta 1. Technical report, Novem-

ber 2007.
10. Mark Proctor, Michael Neale, Michael Frandsen, Sam Griffith Jr., Edson Tirelli,

Fernando Meyer, and Kris Verlaenen. Drools 4.0.7. http://downloads.jboss.

com/drools/docs/4.0.7.19894.GA/html single/index.html.
11. Kay-Uwe Schmidt, Jörg Dörflinger, Tirdad Rahmani, Mehdi Sahbi, Susan Thomas,

and Ljiljana Stojanovic. An User Interface Adaptation Architecture for Rich Inter-
net Applications. In Proceedings of 5th European Semantic Web Conference 2008,
ESWC 2008, Tenerife, Spain, volume 5021 of Lecture Notes in Computer Science.
Springer Verlag, June 2008. (accepted).

12. Kay-Uwe Schmidt and Ljiljana Stojanovic. From Business Rules to Applica-
tion Rules in Rich Internet Applications. In Proceedings of Business Infor-
mation Systems 11th International Conference, BIS 2008, Innsbruck, Austria,
May 5-7, 2008, volume 7 of Lecture Notes in Business Information Processing,
pages 447 – 458. Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/
978-3-540-79396-0 39.

13. Atom WG. Atom Publishing Format and Protocol . http://tools.ietf.org/wg/
atompub//.

