
Ontology Merging for Federated Ontologies on the Semantic Web

Gerd Stumme Alexander Maedche

Institute for Applied Computer Science and
Formal Description Methods (AIFB)

University of Karlsruhe
D-76128 Karlsruhe, Germany

www.aifb.uni-karlsruhe.de/WBS/gst

FZI Research Center
for Information Technologies
Haid-und-Neu-Strasse 10-14

D–76131 Karlsruhe, Germany
www.fzi.de/wim

Abstract

One of the core challenges for the Semantic Web is
the aspect of decentralization. Local structures can
be modeled by ontologies. However, in order to
support global communication and knowledge ex-
change, mechanisms have to be developed for inte-
grating the local systems. We adopt the database
approach of autonomous federated database sys-
tems and consider an architecture for federated on-
tologies for the Semantic Web as starting point of
our work.
We identify the need for merging specific on-
tologies for developing federated, but still au-
tonomous web systems. We present the method
FCA–MERGE for merging ontologies following a
bottom-up approach which offers a structural de-
scription of the merging process. The method
is guided by application-specific instances of the
given source ontologies that are to be merged. We
apply techniques from natural language processing
and formal concept analysis to derive a lattice of
concepts as a structural result ofFCA–MERGE.
The generated result is then explored and trans-
formed into the merged ontology with human in-
teraction.

1 Introduction
The current WWW is a great success with respect to the
amount of stored documents and the number of users. One of
the main reasons for the success of the current WWW is the
principle ofdecentralization[Berners-Lee, 1999]. Currently
the Semantic Web, developed as a “metaweb” for the WWW,
is being established by standards for syntax (e. g. XML)
and semantics (RDF(S), DAML+OIL, etc.). Ontologies have
been established for knowledge sharing and are widely used
as a means for conceptually structuring domains of interest.
One of the core challenges for the Semantic Web is the aspect
of decentralization.1 Local structures can be modeled by on-
tologies. However, in order to support global communication
and knowledge exchange, mechanisms have to be developed
for integrating the local systems.

1cf. http://www.w3.org/DesignIssues/Principles.html

A number of proposals are available from the database
community for developing multi-database systems and, more
specific, federated database systems, that resemble the decen-
tralized structures required in the Semantic Web. We adopt
the database approach of federated databases and consider an
architecture for federated ontologies on the Semantic Web as
motivation and starting point of our work.

A bottleneck for federated ontologies in the Semantic Web
is the process of integrating or merging specific ontologies.
The process ofontology mergingtakes as input two (or more)
source ontologies and returns a merged ontology based on
the given source ontologies. Manual ontology merging us-
ing conventional editing tools without support is difficult,
labor intensive and error prone. Therefore, several sys-
tems and frameworks for supporting the knowledge engi-
neer in the ontology merging task have recently been pro-
posed[Hovy, 1998; Chalupsky, 2000; Noy and Musen, 2000;
McGuinnesset al, 2000]. The approaches rely on syntac-
tic and semantic matching heuristics which are derived from
the behavior of ontology engineers when confronted with the
task of merging ontologies, i. e. human behaviour is simu-
lated. Although some of them locally use different kinds of
logics for comparisons, these approaches do not offer a struc-
tural description of the global merging process.

We propose the new methodFCA–MERGE for merging
ontologies following a bottom-up approach which offers a
global structural description of the merging process. For the
source ontologies, it extracts instances from a given set of
domain-specific text documents by applying natural language
processing techniques. Based on the extracted instances we
apply mathematically founded techniques taken fromFormal
Concept Analysis[Wille, 1982; Ganter and Wille, 1999] to
derive a lattice of concepts as a structural result ofFCA–
MERGE. The produced result is explored and transformed to
the merged ontology by the ontology engineer. The extrac-
tion of instances from text documents circumvents the prob-
lem that in most applications there are no objects which are
simultaneously instances of the source ontologies, and which
could be used as a basis for identifying similar concepts.

The remainder of the paper is as follows. We start our pa-
per introducing a generic architecture for federating ontolo-
gies for the Semantic Web in Section 2. There we also iden-
tify the need for merging specific ontologies for developing
federated, autonomous systems.

We briefly introduce some basic definitions concentrating
on a formal definition of what an ontology is and recall the ba-
sics of Formal Concept Analysis in Section 3. In Sections 4 to
6, we present our methodFCA–MERGEfor merging ontolo-
gies following a bottom-up approach which offers a global
structural description of the merging process. We present our
generic method for ontology merging in Section 4. Section 5
provides a detailed description ofFCA–MERGE. Section 6
gives an overview over related work, and Section 7 summa-
rizes the paper and concludes with an outlook on future work.

2 An Architecture for Federated Ontologies
in the Semantic Web

Figure 1 depicts the 5–layer architecture of federated ontolo-
gies on the Semantic Web. It adopts the approach of[Sheth
& Larsen, 1990] for federated databases.

App. 1 (view on

merged ontology)

App. N (view on

merged ontology)

Export

ontology
Export

ontology

Ontology + Metadata

Repository

OntologyOntology Merged

Ontology

Local

ontology
Local

ontology

Normalized

ontology
Normalized

ontology

Ontology + Metadata

Repository

Figure 1: Architecture for Federated Ontologies

The architecture extends the standardized 3–layer schema
architecture ANSI/SPARC with two additional layers. The
adopted architecture mainly consists of:

1. local ontologies (the conceptual models of the au-
tonomous systems), each of them with its specific un-
derlying ontology/metadata repository or database,

2. normalized ontologies (transformation of the local on-
tologies into a common data model),

3. export ontologies (view on the normalized ontology that
describes the relevant parts of the ontology for the fed-
eration),

4. one merged ontology (global ontology derived from the
combination of the two export schemas), and

5. different applications in the upper layer (external
schema layer), which use the merged ontology with their
specific views on it.

In the following we will not go into further details of the
organizational and architectural structure. As already men-
tioned, the following sections and the rest of this paper are
dedicated to the task of generating a merged ontology from
the two (or more) given export ontologies of the autonomous
web systems.

3 Ontologies and Formal Concept Analysis
In this section, we briefly introduce some basic definitions.
We thereby concentrate on a formal definition of what an on-
tology is and recall the basics of Formal Concept Analysis.

3.1 Ontologies
There is no common formal definition of what an ontology is.
However, most approaches share a few core items: concepts,
a hierarchical IS-A-relation, and further relations. For sake
of generality, we do not discuss more specific features like
constraints, functions, or axioms here. We formalize the core
in the following way.

Definition: A (core) ontology is a tuple O :=
(C; is a;R; �), whereC is a set whose elements are called
concepts, is a is a partial order onC (i. e., a binary rela-
tion is a � C � C which is reflexive, transitive, and anti-
symmetric),R is a set whose elements are calledrelation
names(or relationsfor short), and�:R ! C+ is a function
which assigns to each relation name its arity.

As said above, the definition considers the core elements of
most languages for ontology representation only. It is possi-
ble to map the definition to most types of ontology represen-
tation languages. Our implementation, for instance, is based
on Frame Logic[Kifer et al, 1995]. Frame Logic has a well-
founded semantics, but we do not refer to it in this paper.

3.2 Formal Concept Analysis
We recall the basics of Formal Concept Analysis (FCA) as far
as they are needed for this paper. A more extensive overview
is given in[Ganter and Wille, 1999]. To allow a mathematical
description of concepts as being composed of extensions and
intensions, FCA starts with aformal contextdefined as a triple
K := (G;M; I), whereG is a set ofobjects, M is a set of
attributes, andI is a binary relation betweenG andM (i. e.
I � G�M). (g;m) 2 I is read “objectg has attributem”.

Definition: ForA � G, we defineA0 := fm 2 M j 8g 2
A: (g;m) 2 Ig and, forB � M , we defineB 0 := fg 2 G j
8m 2 B: (g;m) 2 Ig.

A formal conceptof a formal context(G;M; I) is defined
as a pair(A;B) with A � G, B �M ,A0 = B andB0 = A.
The setsA andB are called theextentand theintent of the
formal concept(A;B). Thesubconcept–superconcept rela-
tion is formalized by(A1; B1) � (A2; B2) :() A1�A2

(() B1 � B2): The set of all formal concepts of a con-
textK together with the partial order� is always a complete
lattice,2 called theconcept latticeof K and denoted byB(K).

2I. e., for each set of formal concepts, there is always a greatest
common subconcept and a least common superconcept.

A possible confusion might arise from the double use of
the word ‘concept’ in FCA and in ontologies. This comes
from the fact that FCA and ontologies are two models for
the concept of ‘concept’ which arose independently. In order
to distinguish both notions,we will always refer to the FCA
concepts as ‘formal concepts’. The concepts in ontologies
are referred to just as ‘concepts’ or as ‘ontology concepts’.
There is no direct counter-part of formal concepts in ontolo-
gies. Ontology concepts are best compared to FCA attributes,
as both can be considered as unary predicates on the set of ob-
jects.

4 Bottom-Up Ontology Merging
As said above, we propose a bottom-up approach for ontol-
ogy merging. Our mechanism is based on application-specific
instances of the two given ontologiesO1 andO2 that are to
be merged. The overall process of merging two3 ontologies
is depicted in Figure 2 and consists of three steps, namely(i)
instance extraction and computing of two formal contextsK 1

andK 2 , (ii) the FCA-MERGE core algorithm that derives a
common context and computes a concept lattice, and(iii) the
generation of the final merged ontology based on the concept
lattice.

1

2

Linguistic

Processing

new

2

1

11

22

FCA-

Merge

Lattice

Exploration
Linguistic

Processing

Figure 2: Ontology Merging Method

Our method takes as input data the two ontologies and a
setD of natural language documents. The documents have to
be relevant to both ontologies, so that the documents are de-
scribed by the concepts contained in the ontology. The doc-
uments may be taken from the target application which re-
quires the final merged ontology. From the documents inD,
we extract instances. The mechanism for instance extraction
is further described in Subsection 5.1. This automatic knowl-
edge acquisition step returns, for each ontology, a formal con-
text indicating which ontology concepts appear in which doc-
uments.

The extraction of the instances from documents is neces-
sary because there are usually no instances which are already
classified by both ontologies. However, if this situation is
given, one can skip the first step and use the classification of
the instances directly as input for the two formal contexts.

The second step of our ontology merging approach com-
prises theFCA–MERGEcore algorithm. The core algorithm
merges the two contexts and computes a concept lattice from
the merged context using FCA techniques. More precisely, it

3The approach can easily be extended for mergingn instead of
two ontologies simultaneously.

computes apruned concept latticewhich has the same degree
of detail as the two source ontologies. The techniques ap-
plied for generating the pruned concept lattice are described
in Subsection 5.2 in more detail.

Instance extraction and theFCA–MERGE core algorithm
are fully automatic. The final step ofderiving the merged
ontologyfrom the concept lattice requires human interaction.
Based on the pruned concept lattice and the sets of relation
namesR1 andR2, the ontology engineer creates the con-
cepts and relations of the target ontology. We offer graphical
means of the ontology engineering environment OntoEdit for
supporting this process.

For obtaining good results, a few assumptions have to be
met by the input data: Firstly, the documents have to be rel-
evant to each of the source ontologies. A document from
which no instance is extracted for each source ontology can
be neglected for our task. Secondly, the documents have
to cover all concepts from the source ontologies. Concepts
which are not covered have to be treated manually after our
merging procedure (or the set of documents has to be ex-
panded). And last but not least, the documents must sepa-
rate the concepts well enough. If two concepts which are
considered as different always appear in the same documents,
FCA-MERGEwill map them to the same concept in the target
ontology (unless this decision is overruled by the knowledge
engineer). When this situation appears too often, the knowl-
edge engineer might want to add more documents which fur-
ther separate the concepts.

5 The FCA–MERGE Method
In this section, we discuss the three steps ofFCA–MERGEin
more detail. We illustrateFCA–MERGEwith a small exam-
ple taken from the tourism domain, where we have built sev-
eral specific ontology-based information systems. Our gen-
eral experiments are based on tourism ontologies that have
been modeled in an ontology engineering seminar. Differ-
ent ontologies have been modeled for a given text corpus on
the web, which is provided by a WWW provider for tourist
information.4 The corpus describes actual objects, like loca-
tions, accommodations, furnishings of accommodations, ad-
ministrative information, and cultural events. For the scenario
described here, we have selected two ontologies: The first on-
tology contains 67 concepts and 31 relations, and the second
ontology contains 51 concepts and 22 relations. The under-
lying text corpus consists of 233 natural language documents
taken from the WWW provider described above. For demon-
stration purposes, we restrict ourselves first to two very small
subsetsO1 andO2 of the two ontologies described above;
and to 14 out of the 233 documents. These examples will
be translated in English. In Subsection 5.3, we provide some
examples from the merging of the larger ontologies.

5.1 Linguistic Analysis and Context Generation
The aim of this first step is to generate, for each ontology
Oi; i2f1; 2g, a formal contextK i := (Gi;Mi; Ii). The set
of documentsD is taken as object set (Gi := D), and the set
of concepts is taken as attribute set (Mi := Ci). While these

4URL: http://www.all-in-all.com

I1

V
a
c
a
t
i
o
n

H
o
t
e
l

E
v
e
n
t

C
o
n
c
e
r
t

R
o
o
t

doc1 � � � � �

doc2 � � � � �

doc3 � � � �

doc4 � � � � �

doc5 � � �

doc6 � � � �

doc7 � �

doc8 � � � � �

doc9 � � � �

doc10 � � � �

doc11 � � � � �

doc12 � �

doc13 � � � �

doc14 � � � �

I2

H
o
t
e
l

A
c
c
o
m
m
o
d
a
t
i
o
n

M
u
s
i
c
a
l

R
o
o
t

doc1 � � � �

doc2 � � �

doc3 � � � �

doc4 � � � �

doc5 � �

doc6 � � � �

doc7 � � �

doc8 � � � �

doc9 � � �

doc10 � � �

doc11 � � � �

doc12 � � �

doc13 � � � �

doc14 � � �

Figure 3: The contextsK 1 andK 2 as result of the first step

sets come for free, the difficult step is generating the binary
relation Ii. The relation(g;m) 2 Ii shall hold whenever
documentg contains an instance ofm.

The computation uses linguistic techniques as described
in the sequel. We conceive an information extraction-based
approach for ontology-based extraction, which has been im-
plemented on top of SMES (Saarbr¨ucken Message Extrac-
tion System), a shallow text processor for German (cf.[Neu-
mannet al, 1997]). The architecture of SMES comprises
a tokenizerbased on regular expressions, alexical analysis
component including aword and a domain lexicon, and a
chunk parser. The tokenizer scans the text in order to identify
boundaries of words and complex expressions like “$20.00”
or “Mecklenburg–Vorpommern”,5 and to expand abbrevia-
tions.

The lexicon contains more than 120,000 stem entries and
more than 12,000 subcategorization frames describing infor-
mation used for lexical analysis and chunk parsing. Further-
more, the domain-specific part of the lexicon contains lexical
entries that express natural language representations of con-
cepts and relations. Lexical entries may refer to several con-
cepts or relations, and one concept or relation may be referred
to by several lexical entries.

Lexical analysisuses the lexicon to perform(1) morpho-
logical analysis, i. e. the identification of the canonical com-
mon stem of a set of related word forms and the analysis
of compounds,(2) recognition of named entities,(3) part-of-
speech tagging, and(4) retrieval of domain-specific informa-
tion. While steps (1), (2), and (3) can be viewed as standard
for information extraction approaches, step (4) is of specific
interest for our instance extraction mechanism. This step as-
sociates single words or complex expressions with a concept
from the ontology if a corresponding entry in the domain-
specific part of the lexicon exists. For instance, the expression
“Hotel Schwarzer Adler” is associated with the conceptHo-
tel. If the conceptHotel is in ontologyO1 and document
g contains the expression “Hotel Schwarzer Adler”, then the
relation (g,Hotel)2I1 holds.

Finally, the transitivity of theis a-relation is compiled
into the formal context, i. e.(g;m)2I andm is a n im-

5a region in the north east of Germany

Hotel_1
Hotel_2

Accommodation_2

Root_1
Root_2

Vacation_1

Event_1

Concert_1
Musical_2

Figure 4: The pruned concept lattice

plies (g; n)2I . This means that if (g,Hotel)2I1 holds
and Hotel is a Accommodation, then the document
also describes an instance of the conceptAccommodation:
(g,Accommodation)2I1.

Figure 3 depicts the contextsK 1 andK 2 that have been
generated from the documents for the small example ontolo-
gies. E. g., documentdoc5 contains instances of the con-
ceptsEvent, Concert, andRoot of ontologyO1, and
Musical andRoot of ontologyO2. All other documents
contain some information on hotels, as they contain instances
of the conceptHotel both inO1 and inO2.

5.2 Generating the Pruned Concept Lattice
The second step takes as input the two formal contextsK 1

andK 2 which were generated in the last step, and returns
a pruned concept lattice(see below), which will be used as
input in the next step.

First we merge the two formal contexts into a new formal
contextK , from which we will derive the pruned concept lat-
tice. Before merging the two formal contexts, we have to
disambiguate the attribute sets, sinceC1 and C2 may con-
tain the same concepts: LetfMi := f(m; i) j m 2 Mig,
for i2f1; 2g. The indexation of the concepts allows the pos-
sibility that the same concept exists in both ontologies, but
is treated differently. For instance, aCampground may be
considered as anAccommodation in the first ontology, but
not in the second one. Then the merged formal context is ob-
tained byK := (G;M; I) with G := D, M := fM1 [fM2,
and(g; (m; i)) 2 I :, (g;m) 2 Ii .

We will not compute the whole concept lattice ofK , as it
would provide too many too specific concepts. We restrict
the computation to those formal concepts which are above
at least one formal concept generated by an (ontology) con-
cept of the source ontologies. This assures that we remain
within the range of specificity of the source ontologies. More
precisely, thepruned concept latticeis given byBp (K) :=

f(A;B)2B(K) j 9m2M : (fmg0; fmg00) � (A;B)g (with �0

as defined in Section 3.2).
For our example, the pruned concept lattice is shown in

Figure 4. It consists of six formal concepts. Two formal con-

cepts of the total concept lattice are pruned since they are too
specific compared to the two source ontologies. In the di-
agram, each formal concept is represented by a node. The
empty nodes are the pruned concepts and are usually hidden
from the user. A concept is a subconcept of another one if
and only if it can be reached by a descending path. The in-
tent of a formal concept consists of all attributes (i. e., in our
application, the ontology concepts) which are attached to the
formal concept or to one of its superconcepts. As we are not
interested in the document names, the extents of the contexts
are not visualized in this diagram.

The computation of the pruned concept lattice is done with
the algorithm TITANIC [Stummeet al, 2000]. It is modified
to allow the pruning. The modified algorithm is described
below.

Compared to other algorithms for computing concept lat-
tices, TITANIC has — for our purpose — the advantage that
it computes the formal concepts via theirkey sets(or minimal
generators). A key set is a minimal description of a formal
concept:

Definition 1 K � M is a key set for the formal concept
(A;B) if and only if (K 0;K 00) = (A;B) and (X 0; X 00) 6=
(A;B) for all X � K withX 6= K.6

In our application, key sets serve two purposes. Firstly,
they indicate if the generated formal concept gives rise to a
new concept in the target ontology or not. A concept is new
if and only if it has no key sets of cardinality one. Secondly,
the key sets of cardinality two or more can be used as generic
names for new concepts and they indicate the arity of new
relations.

The TITANIC Algorithm. We recall the algorithm TI-
TANIC and discuss how it is modified to compute the pruned
concept lattice. In the following, we will use the composed
function �00:P(M) ! P(M) which is a closure operator
on M (i. e., it is extensive, monotonous, and idempotent).
The related closure system (i. e., the set of allB � M with
B00 = B) is exactly the set of the intents of all concepts of
the context. The structure of the concept lattice is already
determined by this closure system. Hence we restrict our-
selves to the computation of all concept intents in the sequel.
The computation makes extensive use of the followingsup-
port function:

Definition 2 ThesupportofX �M is defined by

s(X) :=
jX 0j

jGj
:

We follow a pruning strategy given in[Agrawal and
Srikant, 1994]. Originally this strategy was presented as a
heuristic for determining all frequent sets only (i. e., all sets
with supports above a user-defined threshold). The algorithm
traverses the powerset ofM in a level-wise manner. At the
kth iteration, all subsets ofM with cardinalityk (calledk-
sets) are considered, unless we know in advance that they
cannot be key sets.

6In other words:K generates the formal concept(A;B).

The pseudo-code of the modified TITANIC algorithm is
given in Algorithm 1. A list of notations is provided in Ta-
ble 1.

Algorithm 1 TITANIC

1) ;:s 1;
2) K0 f;g;
3) k 1;
4) forall m 2M do fmg:p s 1;
5) C ffmg j m 2Mg;
6) loop begin
7) COUNT(C);
8) Kk fX 2 C j X:s 6= X:p s and

(k = 1 or 9m 2M :X � m:closure)g;
9) forall X 2 Kk do X:closure CLOSURE(X);

10) if Kk = ; then exit loop ;
11) k ++;
12) C TITANIC -GEN(Kk�1);
13) end loop ;
14) return

Sk�1

i=0 fX:closurej X 2 Kig.

Table 1: Notations used in TITANIC

k is the counter which indicates the current iteration.
In thekth iteration, all keyk-sets are determined.

Kk contains after thekth iteration all keyk-setsK
together with their weightK:s and their closure
K:closure.

C stores the candidatek-sets C together with a
counterC:p s which stores the minimum of the
weights of all(k � 1)-subsets ofC. The counter
is used in step 8 to prune all non-key sets.

The algorithm starts with stating that the empty set is always
a key set, and that its support is always equal to 1 (steps 1+2).
Then all 1-sets are candidate sets by definition (steps 4+5).
In later iterations, the candidatek-sets are determined by the
function TITANIC -GEN (step 12/Algorithm 2) which is (ex-
cept step 5) equivalent to the generating function of Apriori.
(The result of step 5 will be used in step 8 of Algorithm 1 for
pruning the non-key sets.)

Once the candidatek-sets are determined, the function
COUNT(X) is called to compute, for eachX 2 X , the sup-
port ofX . It is stored in the variableX:s (step 7).

In step 8 of Algorithm 1, the second condition prunes all
candidatek-sets which are out of the range of the two source
ontologies. I. e., it implements the condition of the defini-
tion of the pruned concept latticeBp (K). This additional
condition makes the difference to the algorithm presented in
[Stummeet al, 2000]. The first condition in step 8 prunes all
candidatek-sets which are not key sets according to Proposi-
tion 1.
Proposition 1 ([Stumme et al, 2000]) X �M is a key set if
and only ifs(X) 6= minm2X(s(X n fmg)).

For the remaining sets (which are now known to be key
sets) their closures are computed (step 9). The CLOSURE

Algorithm 2 TITANIC -GEN

We assume that there is a total order> onM .

Input:Kk�1, the set of key(k � 1)-setsK with their support
K:s.

Output:C, the set of candidatek-setsC
with the valuesC:p s := minfs(Cnfmg j m 2 Cg.

The variablesp s assigned to the setsfp1; : : : ; pkg which are
generated in step 1 are initialized byfp1; : : : ; pkg:p s 1.

1) C ffp1; : : : ; pkg j i < j) pi < pj ;
fp1; : : : ; pk�2; pk�1g;
fp1; : : : ; pk�2; pkg 2 Kk�1g;

2) forall X 2 C do begin
3) forall (k � 1)-subsetsS of X do begin
4) if S =2 Kk�1 then begin C C n fXg;

exit forall ; end;
5) X:p s min(X:p s; S:s);
6) end;
7) end;
8) return C.

Algorithm 3 CLOSURE(X) for X 2 Kk�1
1) Y X ;
2) forall m 2 X do Y Y [(X n fmg):closure;
3) forall m 2M n Y do begin
4) if X [fmg 2 C then s (X [fmg):s
5) else s minfK:s j K 2 K; K � X [fmgg;
6) if s = X:s then Y Y [fmg
7) end;
8) return Y .

function (Algorithm 3) is a straight-forward implementation
of Proposition 2 (beside an additional optimization (step 2)).

Proposition 2 ([Stumme et al, 2000])

1. LetX �M . Then

h(X) = X [fm 2M nX j s(X) = s(X [fmg)g :

2. If X is not a key set, then

s(X) = minfs(K) j K 2 K;K � Xg

whereK is the set of all key sets.

Algorithm 1 terminates, if there are no keyk-sets left (step
10+14). Otherwise the next iteration begins (steps 11+12).

5.3 Generating the new Ontology from the
Concept Lattice

While the previous steps (instance extraction, context deriva-
tion, context merging, and TITANIC) are fully automatic, the
derivation of the merged ontology from the concept lattice
requires human interaction, since it heavily relies on back-
ground knowledge of the domain expert.

The result from the last step is a pruned concept lattice.
From it we have to derive the target ontology. Each of the

formal concepts of the pruned concept lattice is a candidate
for a concept, a relation, or a new subsumption in the target
ontology. There is a number of queries which may be used to
focus on the most relevant parts of the pruned concept lattice.
We discuss these queries after the description of the general
strategy — which follows now. Of course, most of the tech-
nical details are hidden from the user.

As the documents are not needed for the generation of the
target ontology, we restrict our attention to the intents of the
formal concepts, which are sets of (ontology) concepts of the
source ontologies. For each formal concept of the pruned
concept lattice, we analyze the related key sets. For each for-
mal concept, the following cases can be distinguished:

1. It has exactly one key set of cardinality 1.
2. It has two or more key sets of cardinality 1.
3. It has no key sets of cardinality 0 or 1.
4. It has the empty set as key set.7

The generation of the target ontology starts with all concepts
being in one of the two first situations. The first case is the
easiest: The formal concept is generated by exactly one on-
tology concept from one of the source ontologies. It can
be included in the target ontology without interaction of the
knowledge engineer. In our example, these are the two formal
concepts labeled byVacation 1 and byEvent 1.

In the second case, two or more concepts of the source on-
tologies generate the same formal concept. This indicates
that the concepts should be merged into one concept in the
target ontology. The user is asked which of the names to
retain. In the example, this is the case for two formal con-
cepts: The key setsfConcert 1g andfMusical 2g gen-
erate the same formal concept, and are thus suggested to
be merged; and the key setsfHotel 1g, fHotel 2g, and
fAccommodation 2g also generate the same formal con-
cept.8 The latter case is interesting, since it includes two con-
cepts of the same ontology. This means that the set of docu-
ments does not provide enough details to separate these two
concepts. Either the knowledge engineer decides to merge
the concepts (for instance because he observes that the dis-
tinction is of no importance in the target application), or he
adds them as separate concepts to the target ontology. If there
are too many suggestions to merge concepts which should be
distinguished, this is an indication that the set of documents
was not large enough. In such a case, the user might want to
re-launchFCA–MERGEwith a larger set of documents.

When all formal concepts in the first two cases are dealt
with, then all concepts from the source ontologies are in-
cluded in the target ontology. Now, all relations from the two
source ontologies are copied into the target ontology. Possi-
ble conflicts and duplicates have to be resolved by the ontol-
ogy engineer.

In the next step, we deal with all formal concepts covered
by the third case. They are all generated by at least two con-
cepts from the source ontologies, and are candidates for new

7This implies (by the definition of key sets) that the formal con-
cept does not have another key set.

8fRoot 1g andfRoot 2g are no key sets, as each of them has
a subset (namely the empty set) generating the same formal concept.

ontology concepts or relations in the target ontology. The de-
cision whether to add a concept or a relation to the target on-
tology (or to discard the suggestion) is a modeling decision,
and is left to the user. The key sets provide suggestions either
for the name of the new concept, or for the concepts which
should be linked with the new relation. Only those key sets
with minimal cardinality are considered, as they provide the
shortest names for new concepts and minimal arities for new
relations, resp.

For instance, the formal concept in the middle of Fig-
ure 4 hasfHotel 2, Event 1g, fHotel 1, Event 1g,
andfAccommodation 2, Event 1g as key sets. The user
can now decide if to create a new concept with the default
nameHotelEvent (which is unlikely in this situation), or
to create a new relation with arity (Hotel,Event), e. g., the
relationorganizesEvent.

Key sets of cardinality 2 serve yet another purpose:
fm1;m2g being a key set implies that neitherm1is am2

norm2is am1 currently hold. Thus when the user does not
use a key set of cardinality 2 for generating a new concept or
relation, she should check if it is reasonable to add one of the
two subsumptions to the target ontology. This case does not
show up in our small example. An example from the large
ontologies is given at the end of the section.

There is exactly one formal concept in the fourth case (as
the empty set is always a key set). This formal concept gives
rise to a new largest concept in the target ontology, theRoot
concept. It is up to the knowledge engineer to accept or to
reject this concept. Many ontology tools require the existence
of such a largest concept. In our example, this is the formal
concept labeled byRoot 1 andRoot 2.

Finally, the isa order on the concepts of the target ontology
can be derived automatically from the pruned concept lattice:
If the conceptsc1 andc2 are derived from the formal concepts
(A1; B1) and(A2; B2), resp., thenc1is a c2 if and only if
B1 � B2 (or if explicitly modeled by the user based on a key
set of cardinality 2).

Querying the pruned concept lattice. In order to support the
knowledge engineer in the different steps, there is a number
of queries for focusing his attention to the significant parts of
the pruned concept lattice.

Two queries support the handling of the second case (in
which different ontology concepts generate the same formal
concept). The first is a list of all pairs(m1;m2) 2 C1 � C2
with fm1g0 = fm2g0. It indicates which concepts from the
different source ontologies should be merged.

In our small example, this list contains for instance the pair
(Concert 1,Musical 2). In the larger application (which
is based on the German language), pairs like (Zoo 1, Tier-
park 2) and (Zoo 1, Tiergarten 2) are listed. We de-
cided to mergeZoo [engl.: zoo] andTierpark [zoo], but
notZoo andTiergarten [zoological garden].

The second query returns, for ontologyO i with i 2 f1; 2g,
the list of pairs(mi; ni) 2 Ci � Ci with fmig0 = fnig0. It
helps checking which concepts out of a single ontology might
be subject to merge. The user might either conclude that some
of these concept pairs can be merged because their differen-
tiation is not necessary in the target application; or he might

decide that the set of documents must be extended because it
does not differentiate the concepts enough.

In the small example, the list forO1 contains only the pair
(Hotel 1, Accommodation 1). In the larger application,
we had additionally pairs like (Räumliches,Gebiet) and
(Auto, Fortbewegungsmittel). For the target applica-
tion, we mergedRäumliches [spatial thing] andGebiet
[region], but notAuto [car] andFortbewegungsmittel
[means of travel].

The number of suggestions provided for the third situation
can be quite high. There are three queries which present only
the most significant formal concepts out of the pruned con-
cepts. These queries can also be combined.

Firstly, one can fix an upper bound for the cardinality of the
key sets. The lower the bound is, the fewer new concepts are
presented. A typical value is 2, which allows to retain all con-
cepts from the two source ontologies (as they are generated
by key sets of cardinality 1), and to discover new binary rela-
tions between concepts from the different source ontologies,
but no relations of higher arity. If one is interested in having
exactly the old concepts and relations in the target ontology,
and no suggestions for new concepts and relations, then the
upper bound for the key set size is set to 1.

Secondly, one can fix a minimum support. This prunes all
formal concepts where the cardinality of the extent is too low
(compared to the overall number of documents). In Algo-
rithm 1, this is achieved by adding the condition “[. . .] and
X:s � minsupp” to step 8. The default is no pruning, i. e.,
with a minimum support of 0 %. It is also possible to fix dif-
ferent minimum supports for different cardinalities of the key
sets. The typical case is to set the minimum support to 0 % for
key sets of cardinality 1, and to a higher percentage for key
sets of higher cardinality. This way we retain all concepts
from the source ontologies, and generate new concepts and
relations only if they have a certain (statistical) significance.

Thirdly, one can consider only those key sets of cardinal-
ity 2 in which the two concepts come from one ontology each.
This way, only those formal concepts are presented which
give rise to concepts or relations linking the two source on-
tologies. This restriction is useful whenever the quality of
each source ontologyper seis known to be high, i. e., when
there is no need to extend each of the source ontologies alone.

In the small example, there are no key sets with cardinal-
ity 3 or higher. The three key sets with cardinality 2 (as
given above) all have a support of11

14
� 78:6%. In the

larger application, we fixed 2 as upper bound for the cardinal-
ity of the key sets. We obtained key sets like (Telefon 1
[telephone],Öffentliche Einrichtung 2 [public in-
stitution]) (support = 24.5 %), (Unterkunft 1 [accom-
modation],Fortbewegungsmittel 2 [means of travel])
(1.7 %), (Schloß 1 [castle], Bauwerk 2 [building])
(2.1 %), and (Zimmer 1 [room],Bibliothek 2 [library])
(2.1 %). The first gave rise to a new conceptTele-
fonzelle [public phone], the second to a new binary rela-
tion hatVerkehrsanbindung [hasPublicTransportCon-
nection], the third to a new subsumptionSchloß is a

Bauwerk, and the fourth was discarded as meaningless.

6 Related Work

A first approach for supporting the merging of ontologies is
described in[Hovy, 1998]. There, several heuristics are de-
scribed for identifying corresponding concepts in different
ontologies, e. g. comparing the names and the natural lan-
guage definitions of two concepts, and checking the closeness
of two concepts in the concept hierarchy.

The OntoMorph system[Chalupsky, 2000] offers two
kinds of mechanisms for translating and merging ontologies:
syntactic rewriting supports the translation between two dif-
ferent knowledge representation languages, semantic rewrit-
ing offers means for inference-based transformations. It ex-
plicitly allows to violate the preservation of semantics in
trade-off for a more flexible transformation mechanism.

In [McGuinnesset al, 2000] the Chimaera system is de-
scribed. It provides support for merging of ontological terms
from different sources, for checking the coverage and correct-
ness of ontologies and for maintaining ontologies over time.
Chimaera offers a broad collection of functions, but the un-
derlying assumptions about structural properties of the on-
tologies at hand are not made explicit.

Prompt[Noy and Musen, 2000] is an algorithm for ontol-
ogy merging and alignment embedded in Prot´egé 2000. It
starts with the identification of matching class names. Based
on this initial step an iterative approach is carried out for per-
forming automatic updates, finding resulting conflicts, and
making suggestions to remove these conflicts.

The tools described above offer extensive merging func-
tionalities, most of them based on syntactic and semantic
matching heuristics, which are derived from the behaviour of
ontology engineers when confronted with the task of merg-
ing ontologies. OntoMorph and Chimarea use a descrip-
tion logics based approach that influences the merging pro-
cess locally, e. g. checking subsumption relationships be-
tween terms. None of these approaches offers a structural de-
scription of the global merging process.FCA–MERGE can
be regarded as complementary to existing work, offering a
structural description of the overall merging process with an
underlying mathematical framework.

There is also much related work in the database commu-
nity, especially in the area of federated database systems. The
work closest to our approach is described in[Schmitt and
Saake, 1998] and[Conrad, 1997]. They apply Formal Con-
cept Analysis to a related problem, namely database schema
integration. As in our approach, a knowledge engineer has to
interpret the results in order to make modeling decisions. Our
technique differs in two points: There is no need of knowl-
edge acquisition from a domain expert in the preprocessing
phase; and it additionally suggests new concepts and relations
for the target ontology.

7 Conclusion and Future Work

We have motivated our work with the issue of decentraliza-
tion, one of the main challenges for the Semantic Web. We
have adopted the database point of view and consider an ar-
chitecture for federating ontologies in the Semantic Web as
motivation of our work. We discussed especially the process

of integrating or merging specific ontologies which is a bot-
tleneck for federated ontologies in the Semantic Web.

In this paper we have presentedFCA–MERGE, a bottom-
up technique for merging ontologies based on a set of docu-
ments. We have described the three steps of the technique: the
linguistic analysis of the texts which returns two formal con-
texts; the merging of the two contexts and the computation of
the pruned concept lattice; and the semi-automatic ontology
creation phase which supports the user in modeling the target
ontology. The paper described the underlying assumptions
and discussed the methodology.

Future work includes the closer integration of theFCA–
MERGE method in the ontology engineering environment
ONTOEDIT. In particular, we will offer views on the pruned
concept lattice based on the queries described in Subsec-
tion 5.3. It is also planned to further refine our information-
extraction based mechanism for extracting instances. This re-
finement goes hand in hand with further improvements con-
cerning the connection between ontologies and natural lan-
guage (cf.[Maedcheet al, 2001]).

The evaluation of ontology merging is an open issue[Noy
and Musen, 2000]. We plan to useFCA–MERGEto generate
independently a set of merged ontologies (based on two given
source ontologies). Comparing these merged ontologies us-
ing the standard information retrieval measures as proposed
in [Noy and Musen, 2000] will allow us to evaluate the per-
formance ofFCA–MERGE.

On the theoretical side, an interesting open question is the
extension of the formalism to features of specific ontology
languages, like for instance functions or axioms. The ques-
tion is (i) how they can be exploited for the merging process,
and (ii) how new functions and axioms describing the inter-
play between the source ontologies can be generated for the
target ontology.

Future work also includes the implementation of the frame-
work of federated ontologies as introduced in Section 2. We
refer the interested reader to the recently started EU-IST
funded project OntoLogging9, where the development and
management of federated web systems consisting of multiple
ontologies and associated knowledge bases will be studied
and implemented.

Acknowledgements
This research was partially supported by DFG and BMBF.

References
[Agrawal and Srikant, 1994] R. Agrawal and R. Srikant. Fast algo-

rithms for mining association rules.Proc. VLDB Conf., 1994,
478–499 (Expanded version in IBM Report RJ9839)

[Chalupsky, 2000] H. Chalupsky: OntoMorph: A translation sys-
tem for symbolic knowledge.Proc. KR ’00, Breckenridge,
CO, USA,471–482.

[Conrad, 1997] S. Conrad: Föderierte Datenbanksysteme:
Konzepte der Datenintegration. Informatik-Lehrbuch,
Springer, Berlin–Heidelberg 1997

[Ganter and Wille, 1999] B. Ganter, R. Wille: Formal Concept
Analysis: mathematical foundations. Springer.

9http://www.ontologging.com

[Berners-Lee, 1999] T. Berners-Lee:Weaving the Web. Harper.
[Hovy, 1998] E. Hovy: Combining and standardizing large-scale,

practical ontologies for machine translation and other uses.
Proc. 1st Intl. Conf. on Language Resources and Evaluation,
Granada.

[Kifer et al, 1995] M. Kifer, G. Lausen, J. Wu: Logical foundations
of object-oriented and frame-based languages.Journal of the
ACM 42(4), 741–843.

[Maedcheet al, 2001] A. Maedche, S. Staab, N. Stojanovic,
R. Studer, and Y. Sure.SEmantic PortAL - The SEAL ap-
proach. to appear: In Creating the Semantic Web. D. Fensel,
J. Hendler, H. Lieberman, W. Wahlster (eds.) MIT Press, MA,
Cambridge, 2001.

[McGuinnesset al, 2000] D. L. McGuinness, R. Fikes, J. Rice, and
S. Wilder: An environment for merging and testing large Oon-
tologies.Proc. KR ’00, 483–493.

[Neumannet al, 1997] G. Neumann, R. Backofen, J. Baur,
M. Becker, C. Braun: An information extraction core system
for real world German text processing.Proc. ANLP-97,
Washington.

[Noy and Musen, 2000] N. Fridman Noy, M. A. Musen: PROMPT:
algorithm and tool for automated ontology merging and align-
ment.Proc. AAAI ’00, 450–455

[Schmitt and Saake, 1998] I. Schmitt, G. Saake: Merging inheri-
tance hierarchies for database integration.Proc. CoopIS’98,
IEEE Computer Science Press, 322–331.

[Stummeet al, 2000] G. Stumme, R. Taouil, Y. Bastide, N.
Pasquier, L. Lakhal: Fast computation of concept lat-
tices using data mining techniques.Proc. KRDB ´00,
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-
WS/, 129–139.

[Sheth & Larsen, 1990] Sheth, A. & Larsen, J. (1990). Federated
database systems for managing distributed, heterogeneous and
autonomous databases.ACM Computing Surveys, 22(3).

[Wille, 1982] R. Wille: Restructuring lattice theory: an approach
based on hierarchies of concepts. In: I. Rival (ed.):Ordered
sets. Reidel, Dordrecht, 445–470.

