
Towards WSMO Ontology Specification From Existing 
Web Services

Houda EL BOUHISSI1,2, Mimoun Malki1,3, Djelloul Bouchiha1,4, 

1 EEDIS Laboratory, Departement of computer sciences, Sidi-Bel-Abbes University, Algeria
2 Houda.elbouhissi@gmail.com, 3 Malki@univ-sba.dz, 4 Bouchiha.dj@gmail.com, 

Abstract. Semantic Web Services (SWSs) aim to improve the possibilities for 
automated  discovery,  composition  and  invocation  of  Web  Services  by 
providing ontology-based service descriptions expressed in a formal language. 
Several  approaches  have  been  driving  the  development  of  Semantic  Web 
Service frameworks such as OWL-S (Ontology Web Language for Services), 
WSMO (Web Service Modeling Ontology) and WSDL-S (Semantic Annotation 
of  Web Service  Description  Language  descriptions).  This  paper  focuses  on 
WSMO; it aims to give a service ontology specification according to WSMO 
and using the reverse engineering techniques.

Keywords: Web Service, Semantic Web Services, WSDL, Ontology, Reverse 
engineering.

1   Introduction

Semantic Web Services  aim to reduce the human effort  required to  build Service 
Oriented  Architectures  by  enabling  machines  to  understand  the  function  and 
interfaces of Web services through the addition of semantics; However to enable the 
adoption of Semantic Web Service technologies by business it is crucial that adequate 
tool  support  exists  which  supports  the  engineer  of  Semantic  Web  Services  and 
Semantically enabled Service Oriented Architectures through the full life cycle. 

This  paper  describes  a  reverse  engineering  process  [1],  a  software  engineering 
technique  that  consists  of  extracting  useful  information  from a  WSDL file  of  an 
existing Web Service in order to build web service ontology according to the WSMO 
conceptual model.

A prototype is implemented which assists the process in the stages. The produced 
ontology  is  stored  in  WSML  file,  which  provides  a  mean  for  the  tasks  such  as 
discovery, composition and execution of Web Services.

The remainder of this paper is structured as follows. Section 2 gives a general 
overview of Web services; in section 3 we provide an overview of the Semantic Web 
and  ontology,  in  section  4,  we  describe  Semantic  Web  Services  and  section  5, 
discusses related works according to SWS. In section 6, we describe our approach and 
present how our tool has been used to map the WSDL file of Google Search Web 



Service into WSMO ontology. Finally section 7 concludes the paper and gives future 
directives of the project.

2   Web Services

The W3C Web Services Architecture Working Group defines a Web service as: "A 
software application identified by an URI, whose interfaces and bindings are capable 
of being defined, described and discovered as XML artifacts. Web Service supports 
direct interactions with other software agents using XML-based messages exchanged 
via Internet-based protocols�  [2]. To define the infrastructure of the Service Web, a 
stack of interrelated standards, such as SOAP, UDDI and, WSDL are presented:

The Simple  Object  Access  Protocol  (SOAP1)  is  a  specification  for  interactions 
among Web Services across the Internet. SOAP uses XML to exchange structured 
and typed information.

WSDL2 (Web  Service  Description  Language)  is  an  XML-based  language  for 
describing Web services and how to access them. WSDL is also used to locate Web 
services.

As  services  become  available,  they  may  be  registered  with  a  UDDI3 registry 
(Universal  Description,  Discovery  and  Integration)  which  can  subsequently  be 
browsed and queried by other users, services and applications.

3   Semantic Web

The goal  of  the  Semantic Web is  to  solve the  current  limitations  of  the  Web by 
augmenting Web information with a formal (i.e., machine processable) representation 
of its meaning [3]. A direct benefit of this machine processable semantics would be 
the enhancement and automation of several information management tasks, such as 
search or data integration. The Semantic Web� s success and proliferation depends on 
quickly and cheaply constructing domain specific ontologies.

Ontologies [4] serve as metadata schemas, providing a controlled vocabulary of 
concepts,  each  with  explicitly  defined  and  machine  processable  semantics.  By 
defining shared and common domain theories, ontologies help people and machines 
to communicate concisely supporting semantics exchange, not just syntax.

4   Semantic Web Services

A key problem with the use of standards for Web Service description (e.g. WSDL) 
and publishing (e.g. UDDI) is that the syntactic definitions used in these descriptions 
do not completely describe the capability of a service and cannot be understood by 
software programs. It requires a human to interpret the meaning of inputs, outputs and 
applicable constraints as well as the context in which services can be used. To make 

1 http://www.w3.org/TR/soap12
2 http://www/w3.org/TR/wsdl
3 http://www.uddi.org



proper use of the Web services advertised by WSDL documents, programmers have 
to know in advance the intended meaning of the custom tags that specify the input 
and output schemes as well as the names of services that a Web service provides.

Semantic Web Services (SWSs) are the result of the evolution of the syntactic 
definition of Web Services and the semantic Web. Semantic Web Services will allow 
the  semi-automatic  and  automatic  annotation,  advertisement;  discovery,  selection, 
composition, and execution of inter-organization business logic, making the Internet a 
global common platform.

5   SWSs Approaches

The Major initiatives in the area of SWSs are documented by recent W3C member 
submissions: OWL-S [5], WSMO [6] and WSDL-S [7]. The proposals differ in scope, 
modeling approach and the concrete logical languages used.

The first approach uses OWL-S, a description language that semantically describes 
Web  Services  using  OWL  ontologies.  OWL-S  services  are  mapped  to  WSDL 
operations, and inputs and outputs of OWL-S are mapped to WSDL messages.

The second approach, the Web Services Modeling Ontology, WSMO, provides 
ontological specifications for the description of semantic Web services. One of the 
main objectives of WSMO is to give a solution to application integration problems for 
Web  services  by  providing  a  conceptual  framework  and  a  formal  language  for 
semantically describing all relevant aspects of Web Services.

WSDL-S is a third approach of creating semantic Web services is  by mapping 
concepts in a Web service description (WSDL specification) to ontological concepts. 
The WSDL elements that can be marked up with metadata are operations, messages, 
preconditions and effects, since all the elements are explicitly declared in a WSDL 
description.

These  approaches  are  complementary  in  many  ways.  Each  initiative  can  be 
characterized in terms of (1) a conceptual model describing the underlying principles 
and assumptions; and (2) a language or a set of languages that provide the means to 
realize the model.

The WSDL-S takes a bottom-up approach by annotating existing standards with 
metadata using domain ontologies, the other approaches takes a top down approach 
according to a conceptual model and a specific language.

In this paper, we focus on the WSMO approach; we aim to generate the WSMO 
ontology semi-automatically using an implemented tool.

6   Reverse Engineering Process

The research contribution of this paper is the description of a reverse engineering 
process,  a  software  engineering  technique  that  consists  of  extracting  useful 
information from a WSDL file of  an existing Web Service in order to build web 
service ontology according to the WSMO conceptual model.



It  mainly  aims  at  moving  from  web  service  application  where  service� s 
descriptions are described in a syntactic manner to semantic web service in order to 
automate discovery, composition and invocation of Web Services. 

The reverse engineering also reduces the efforts and the cost to build new web 
service applications by reengineering.

We give first a short overview of WSMO and in the next sections; we describe our 
approach in details.

6.1  WSMO Overview

The  WSMO  initiative  aims  at  providing  an  overarching  framework  for  handling 
Semantic Web services (SWSs). 

WSMO identifies four main top-level elements:

1. Ontologies that provide the terminology used by other elements;

2. Goals that state the intentions that should be solved by Web Services;

3. Web Services descriptions which describe various aspects of a service;

4. Mediators: to resolve interoperability problems.

Each of these WSMO Top Level Elements can be described with non-functional 
properties like creator, creation date, format, language, owner, rights, source, type; 
etc. WSMO comprises the WSMO conceptual model, as an upper level ontology for 
SWS, the WSML [8] language and the WSMX [9] execution environment.

The Web Service Modeling Language (WSML) is a formalization of the WSMO 
ontology, providing a language within which the properties of Semantic Web Services 
can be described.

WSMX  provides  an  architecture  including discovery,  mediation,  selection,  and 
invocation  and  has  been  designed  including  all  required  supporting  components 
enabling an exchange of messages between requesters and the providers of services.

6.2  WSMO Ontology Approach

The planned research can be split into the following sequence of high-level steps 
as presented in figure 1:

1. Extraction  phase:  extraction  of  information  from  the  XML  schema  of  the 
WSDL file.

2.  Analyze Phase: definition of a mapping from the XML Schema Conceptual 
Model to the WSMO Ontology. 

3. Translation phase: Translation of useful information into WSML specification.



Fig. 1. Phases for WSMO Ontology Generation. 

6.1.1 Extraction phase

We use the content of the WSDL file to derive WSMO ontology. However, we focus 
on the main part that provides us with information about the structure of valid XML 
document which is the XML schema definition. 

Useful  information  is:  Simple  definition  types,  complex  definition  types  and 
attributes.

6.1.2 Analysis phase

In this phase, we use the information extracted from the XML schema part of the 
WSDL file  to  define  a mapping from XML elements  to  terms used in  a  WSMO 
Ontology. Figure 2 shows the definition of this mapping on the design level. This 
mapping is done automatically by the analyzer module and the results at least are 
stored in a simple XML file.

We propose simple mappings for each of the components extracted at the previews 
phase. The mapping produced is roughly based on the following rules:



Fig. 2. Analysis Phase. 

1. Rule 1 : Simple type definition: 

If a simple type is used to create a new type based on restricting a built-in type, we 
create  a  new  concept  with  the  same  built-in  type  and  an  axiom  to  define  the 
restriction. For example the following simple type definition:

<xsd :element name=� age� >
<xsd :simpleType>
<xsd :restriction base=� xsd :positiveInteger� >
<xsd :maxExclusive value=� 35� >
</xsd :restriction>
</xsd :simpleType>
</xsd :element>

The  type  age is  mapped  to  the  WSMO  ontology  concept  with  its  build-type 
positiveinteger.

We deduce also a new axiom which is the restriction of the type: age>=35.

2. Rule 2 : Complex Type Definition

Complex type  definitions can obtain sub-components that  are a mixture of simple 
elements, attributes and other complex type definitions.

We propose to map each complex type to a concept in WSMO Ontology. Sub-
components with simple type built-in are mapped to attributes with the same built-in 
type and attributes are mapped to attributes with the same built-in type.

If sub-component itself is a complex type, here we proceed in a recursive manner, 
we create first the corresponding concept , then the sub-component are mapped to 
attributes with the build-in type.

For example, a complex type definition:

<xsd :complexType name=� employe� >
    <xsd :element name=� name�  type=� xsd :string� >



    <xsd :element name=� age� >
         <xsd :simpleType>
                <xsd :restriction base=� xsd :positiveInteger� >
                     <xsd :maxExclusive value=� 35� >
                 </xsd :restriction>
          </xsd :simpleType>
     </xsd :element>
</xsd complexType>
The type employe is mapped to a concept with the corresponding attributes name and 

age and their built-in types. 

Finally,  the complex type embedded in another complex type is mapped at one 
hand to sub-concept of the complex type and at the other hand to a concept.

3. Rule 3 : Attributes

An attribute  may be  associated  directly  to  the  root  or  embedded  in  a  simple  or 
complex type.

If an attribute depends to the root, we propose to create a new concept with the 
built-in type.

If  the attribute is embedded in a simple or a complex type,  it is mapped to an 
attribute of the concept of the complex or the simple type.

For example the following declaration:

<xsd :complexType name=� job�  type=� jobDesc� >
<xsd :attribute name=� jobid�  type=� xsd :string� />
</xsd :complexType>

The type job is mapped to a concept embedding an attribute jobid with the build-in 
type string.

Furthermore, later than this phase, the list of the terms used for the ontology is stored 
in an XML file.

6.1.3 Translation phase

The goal of this phase is to translate the list of terms stored previous to in WSML 
specification.

This translation generates an ontology expressed in WSML language according to 
the WSMO conceptual model. 

This phase proceeds with the help of a WSML template file stored in the local 
folder.  The WSML template  has  several  constants  that  are  replaced with specific 
information extracted from the XML file produced in the analyze phase. Once the 
specific data is replaced, the new created WSML file is stored to be used next.



6.2. Implementation

In order to validate our approach, we create a prototype with eclipse platform and java 
language. 

WSDL2WSMO  (Web  Service  Modeling  Language  to  Web  Service  Modeling 
Ontology),  a  semi  automatic  tool  for  the  translation  of  the  WSDL  file  to  an 
incomplete WSMO ontology.

The Translator engine takes as input a WSDL specification and it returns as output 
a partial WSMO ontology description of the Web Service expressed in the WSML 
language.

Upon loading a WSDL file (Figure 3), WSDL2WSMO parses the WSDL file and 
extracts the XSD definitions defined between the WSDL type tags. 
     The  extracted  WSD definitions  are  mapped  to  terms  used  by  the  ontology 
following a set of mapping rules. The mapping rules produce a list of terms which is 
stored in an XML file. 

Finally,  WSDL2WSMO  translates  the  terms  into  WSML  specification  and 
generates a WSML file.  

Fig. 3. Using the tool. 

6.3. Case study: Google search

Google.com has exposed a Web service [10] that allows to put Google Search area in 
web pages.

The user can embed a simple, dynamic search box to display search results in his 
web pages or use the results in innovative, programmatic ways.

The  WSDL  description  of  Google  search  contains  20  types.  Using  the 
WSDL2WSMO  tool,  we  were  able  to  compile  the  WSDL  specification  into  the 
corresponding WSMO ontology specification.

After this translation, the programmer is left with a WSML ontology file and three 
tasks to complete the WSMO specification (Web Services, Goals and Mediators).



7   Conclusion & Future Work

Summarizing, Semantic Web Services are an emerging area of research and currently 
all the supporting technologies are still far from the final product.

We have described the current main approaches of Semantic Web Services and we 
have proposed a new approach, reverse engineering process based to specify WSMO 
Ontology from WSDL. Nevertheless, there are still a number of issues concerning 
Semantic Web Services being investigated in a number of initiatives. 

These issues will have the attention of industry and academia for the next few 
years.

Finally the present research has attempted to give a partial specification of the 
WSMO ontology with the information extracted from the XML schema part of the 
WSDL file.

The work described in this paper may be generalized to include UDDI registry in 
order  to  obtain  complete  specification of  WSMO ontology and  make the  process 
completely automatic.

8 References

 [1] Chikofsky E.J., Cross II J.H.: Reverse engineering and design recovery: A taxonomy. IEEE 
Software, 13, 1990.

[2] Web services architecture requirements, W3C Web Services Architecture Working Draft, 
Available online at: http://www.w3.org/TR/2002/ WD-wsa-reqs-20021114.

[3]  Berners-Lee,  T.,  Hendler,  J.,  and  Lassila,  O.  (2001).  The  Semantic  Web.  Scientific 
American, 284(5):34 - 43.

[4] Gruber,T.(1993). A Translation Approach to Portable Ontology Specifications. Knowledge 
Acquisition, 5(2):199 –220.

[5]  OWL  Services  Coalition,  OWL-S:  Semantic  Markup  for  Web  Services,  Dec  2003, 
http://www.daml.org/services/owls/1.0/owl-s.html.

[6]  Dumitru  Roman,  Holger  Lausen,  and  Uwe  Keller.  Web  service  modeling  ontology 
(WSMO).  Final  Draft  D2v1.3,  WSMO,  2006.  Available  from: 
http://www.wsmo.org/TR/d2/v1.3/.

[7] Akkiraju, R., Farrell, J., Miller, J., Nagarajan, M., Schmidt, M., Sheth, A., & Verma, K. 
(2005),  Web Service  Semantics  -  WSDL-S,  W3C Member  Submission  7 November  2005, 
Retrieved April 4, 2006, from http://www.w3.org/Submission/2005/SUBM -WSDL-S-
20051107/

[8] H. Lausen, J. de Bruijn, A. Polleres, and D. Fensel. WSML - A Language Framework for 
Semantic  Web  Services.  In  Proc.  of  the  W3C  Workshop  on  Rule  Languages  for 
Interoperability, 2005.

[9] A. Haller, E. Cimpian, A. Mocan, E. Oren, and C. Bussler. WSMX - A Semantic Service-

http://www.daml.org/services/owls/1.0/owl-s.html


Oriented Architecture. In Proceedings of the International Conference on Web Service (ICWS 
2005), 2005.

[10]  WSDL  description  of  the  Google  web  APIs,  available  from  : 
http://api.google.com/GooleSearch.wsdl.

http://api.google.com/GooleSearch.wsdl

