
A decision procedure for a two-sorted extension
of Multi-Level Syllogistic with the Cartesian

product and some map constructs

Domenico Cantone, Cristiano Longo, and Marianna Nicolosi Asmundo

Dipartimento di Matematica e Informatica, Università di Catania, Italy
{cantone, longo, nicolosi}@dmi.unict.it

Abstract. We present a nondeterministic polynomial-time decision pro-
cedure for an extension of multi-level syllogistic with the singleton oper-
ator, the Cartesian product, various map constructs, and special predi-
cates asserting respectively that a map term is single valued, injective,
and bijective, but with no map image or domain operators. We also prove
that the extension of multi-level syllogistic with a map image operator
has an ExpTime-hard decision problem, via a reduction of the decision
problem for the description logic ALC.

Keywords: Decision procedures, multi-level syllogistics, Cartesian prod-
uct, map constructs, NP-completeness, ExpTime-hardness.

1 Introduction

The decision problem in set theory has been intensively investigated in the last
decades. The initial motivations can be traced back in 1978, when Jack Schwartz1

envisaged an interactive proof checker supposed to accept sequences of logical
formulae, such that any formula in the sequence follows logically from earlier
formulae (cf. [13]). To keep at a reasonable level the mass of details that a user
must key in, he argued that such a system should include among other fun-
damental components also an inferential core, comprised of an extensive (and
extendible) collection of efficient (semi-)decision procedures to handle elemen-
tary inferential steps. Additionally, the language of set theory, which pervades
most mathematical reasoning, seemed to be the most appealing one for such an
enterprise.

Multi-level syllogistic (in short, MLS) has been the first unquantified sublan-
guage of set theory to be studied in this context. We recall that MLS involves
besides set variables and the ‘null set’ constant ∅, also the common Boolean
set operators ∪, ∩, \, the set predicates ∈, ⊆, and =, and the propositional
connectives.

Over the years, decision procedures or proofs of undecidability have been
provided for several extensions of MLS and also for various quantified fragments

1 January 9, 1930 – March 2, 2009.

2 Domenico Cantone, Cristiano Longo, and Marianna Nicolosi Asmundo

of set theory, contributing to the rise of the field of Computable Set Theory
(see [2, 5] for a thorough account of the state-of-the-art until 2001). It is to be
noticed, however, that several decision procedures found so far are not practical
at all and their interest is limited to the foundational purpose of identifying the
boundary between the decidable and the undecidable in set theory.

The quite recent implementation of the proof-verification system
ÆtnaNova/Referee described in [11, 6, 10] has given a new impulse to the in-
vestigation of effective2 decision procedures with the goal of enhancing its infer-
ential capabilities. For instance, [3] presents some commonly occurring decidable
extensions of MLS.

In this paper we present an effective procedure (namely, having a nondeter-
ministic polynomial-time complexity) for an extension of MLS with the singleton
operator, the Cartesian product, and various map constructs, which we denote
MLSS×2,m. More specifically, MLSS×2,m is a two-sorted language with set and map
variables. Set variables range over sets of the von Neumann cumulative hierarchy
of sets and map variables range over collections of pairs of sets (this acceptation
of the term ‘map’ agrees with the map data structure in the SETL language;
see [14]). Since map variables and set variables have different sorts, we do not
need to be specific on the internal representation of pairs, as long as the basic
property of pairs holds:

[x, y] = [x′, y′] ⇐⇒ x = x′ ∧ y = y′ .

Map terms can be formed by means of the Cartesian product, various map
restriction operators, a map inverse operator, and the Boolean set operators on
maps. Additionally, the language allows assertions meaning that a map term is
single-valued, or injective, or bijective. However, for efficiency reasons, domain
and range operators are not allowed, since, as we will show in Section 4, their
presence triggers the ExpTime-hardness of the decision problem.

A similar two-sorted language, extended with domain and range operators,
but with no Cartesian product and no Boolean set operators among map terms,
has been considered in [9], but the decision procedure proposed there had a
double exponential time complexity. The language in [9] has been subsequently
extended with various topological constructs, without disrupting decidability.

We mention also a one-sorted version of the language considered in [9], fur-
ther extended with map evaluation (cf. [7]). In this case, since there is no dis-
tinction between set and map variables, maps (i.e., sets) can be combined with
the Boolean set operators as well. However, the language in [7] does not allow a
predicate IsMap(x), asserting that x is a collection of pairs. Therefore, for in-
stance, a predicate of type Inverse(f, g) expresses only that g is an inverse of f ,
up to non-pair elements, so that Inverse(f, g) and Inverse(f, g′) do not imply
that g = g′, but only that g and g′ contain the same pairs (namely the inverse of

2 Needless to say, any decision procedure for a language at least as expressive as propo-
sitional logic has at least a nondeterministic polynomial-time complexity. This is the
case for all extensions of MLS. Thus, our meaning of ‘effective’ is just nondetermin-
istic polynomial-time.

Title Suppressed Due to Excessive Length 3

the pairs contained in f). Despite the peculiarity of such semantics, the decision
procedures given in [7] has a nondeterministic exponential time complexity.

The paper is organized as follows. Section 2 gives the precise syntax and
semantics of the language MLSS×2,m of our interest. A decision procedure for

MLSS×2,m and its complexity analysis are then reported in Section 3. In Section 4
we prove that the extension of MLS with the image operator has an ExpTime-
hard decision problem. Finally, we briefly give some hints to future work in
Section 5.

2 The language MLSS×
2,m

2.1 Syntax

MLSS×2,m (Multi-Level Syllogistic with singleton, Cartesian product, and various
map constructs) is a two-sorted language which contains:

(i) a countably infinite collection of set variables Varss = {x, y, z, . . .};
(ii) a countably infinite collection of map variables Varsm = {f, g, h, . . .};
(iii) the predicate symbols ∈, =, ⊆, injective(·), single valued(·), bijective(·);
(iv) the operator symbols ∩, ∪, \, × (Cartesian product), {·} (singleton), (·)·|,

(·)|·, (·)·|· (map restriction operators), (·)−1 (map inverse);
(v) the constant ∅ (empty set);
(vi) parentheses (to construct compound terms);

(vii) the logical connectives ¬, ∧, ∨, →, ↔ (to construct compound formulae).

MLSS×2,m-set terms are recursively defined as follows:

1. each set variable and the constant ∅ are set terms;
2. if X,Y are set terms, then so are X ∪ Y , X ∩ Y , X \ Y , {X}.

MLSS×2,m-map terms are recursively defined as follows:

1. each map variable is a map term;
2. if X,Y are set terms and F,G are map terms then

– X × Y ,
– FX|, F|Y , FX|Y (left, right, and left-right restriction, respectively),
– F−1, F ∪G, F ∩G, F \G

are map terms.

MLSS×2,m-atomic formulae are defined from set terms and map terms in the
following way. Let X,Y be set terms and F,G be map terms, then

1. X ∈ Y , X ⊆ Y , X = Y ,
2. [X,Y] ∈ F , F ⊆ G, F = G,
3. injective(F), single valued(F), bijective(F)

4 Domenico Cantone, Cristiano Longo, and Marianna Nicolosi Asmundo

are atomic formulae. Observe that a formula of type [X,Y] ∈ F is to be con-
sidered just as a ternary relationship among X, Y , and F , since we did not
introduce any set term of type [X,Y].

Then the set of MLSS×2,m-formulae is the smallest set containing all the

MLSS×2,m-atomic formulae and that is closed with respect to the logical con-

nectives ¬, ∧, ∨, →, ↔. Usually, to denote MLSS×2,m-formulae we will use the
metavariables ϕ and ψ.

For an MLSS×2,m-formula ϕ, we denote by Varss(ϕ) and Varsm(ϕ) the col-
lections of set variables and of map variables occurring in ϕ, respectively, and
we put Vars(ϕ) =Def Varss(ϕ) ∪Varsm(ϕ).

2.2 Semantics

The semantics of MLSS×2,m is based upon the von Neumann standard cumulative
hierarchy V of sets defined by:

V0 = ∅
Vγ+1 = P(Vγ) , for each ordinal γ
Vλ =

⋃
µ<λ Vµ , for each limit ordinal λ

V =
⋃
γ∈On Vγ ,

where, given a set S, P(S) is the power set of S, and On indicates the class of
all ordinals. It can be proved that the membership relation is well-founded in V
and, therefore, no membership cycle can occur in V.

We denote with rank(u) the least ordinal γ such that u ⊆ Vγ (i.e., u ∈ Vγ+1),
for every set u in V.

An assignment is a total function M : Varss ∪ Varsm −→ V that maps
each set and map variable into a set of the von Neumann hierarchy V, such
that Mf is a set of ordered pairs, for any f ∈ Varsm. It is not relevant which
representation is chosen for ordered pairs, as long as the basic ordered pair
property holds. One possibility could be to adopt Kuratowski’s definition and
put [u, v] =Def {{u}, {u, v}}, for all sets u and v.

An assignment M is said to be injective with respect to a set of variables
S ⊆ Varss, if Mx 6= My, for all distinct variables x, y in S.

Assignments extend naturally to set terms and map terms. For instance, we
have:

M(X × Y) = {[u, v] : u ∈MX ∧ v ∈MY } ,
MFX| = {[u, v] : [u, v] ∈MF ∧ u ∈MX} ,
MF|Y = {[u, v] : [u, v] ∈MF ∧ v ∈MY } ,

MFX|Y = {[u, v] : [u, v] ∈MF ∧ u ∈MX ∧ v ∈MY } ,

where X,Y are set terms and F is a map term.3

3 For simplicity, in the following we will use the same operator and predicate symbols
also at the semantic level. So, for instance, for any map m and set s, ms| will denote
the map {[u, v] : [u, v] ∈ m ∧ u ∈ s}. This will generate no confusion.

Title Suppressed Due to Excessive Length 5

Assignments evaluate atomic formulae of type X ∈ Y , X ⊆ Y , X = Y ,
F ⊆ G, and F = G, to a truth value true or false in the standard way. Atomic
formulae of the other types are evaluated as follows:

M([X,Y] ∈ F) is true⇐⇒ [MX,MY] ∈MF,
M(single valued(F)) is true⇐⇒ (∀u, v, v′)({[u, v], [u, v′]} ⊆MF → v = v′),

M(injective(F)) is true⇐⇒ (∀u, u′, v)({[u, v], [u′, v]} ⊆MF → u = u′),
M(bijective(F)) is true⇐⇒ (∀u, v, u′, v′)({[u, v], [u′, v′]} ⊆MF

→ (u = u′ ↔ v = v′)).

Finally, evaluation of compound formulae by an assignment M follows the stan-
dard rules of propositional logic.

Let M be an assignment and ϕ a formula of MLSS×2,m. We say that M satisfies
ϕ (and write M |= ϕ) if M evaluates ϕ to true. In this case M is said to be a
model for ϕ. A formula ϕ is satisfiable if there is an assignment that satisfies it.
Two formulae ϕ and ψ are equisatisfiable, when ϕ is satisfiable if and only if ψ
is also satisfiable. A formula ϕ is injectively satisfiable with respect to a set of
variables S if there is an injective assignment with respect to the set of variables
S that satisfies it.

The satisfiability problem for MLSS×2,m is then the problem of establishing

for any given formula of MLSS×2,m whether it is satisfiable or not.

Since the evaluation of an MLSS×2,m-formula by an assignment depends solely
on the values which it assumes over the variables occurring in the formula, in
most cases we will deal with partial assignments, though we will refer to them
just as ‘assignments’.

By way of a simple normalization process of the type described in [2, §3.8],
it is easy to show that the satisfiability problem for MLSS×2,m-formulae reduces

to the satisfiability problem for normalized MLSS×2,m-conjunctions, namely con-

junctions of MLSS×2,m-literals of the types reported in Table 1.4 For instance, to
see that literals of type single valued(f) and ¬single valued(f) can be dismissed,
it is enough to observe that ¬single valued(f) is equisatisfiable with

[x, y] ∈ f ∧ [x, y′] ∈ f ∧ y ∈ z ∧ y′ /∈ z ,

where x, y, y′, z are newly introduced set variables, and that single valued(f) is
equivalent to injective(f−1), which in turn is equisatisfiable with g = f−1 ∧
injective(g), where g is a newly introduced map variable.

3 A decision procedure

In this section we describe a nondeterministic polynomial-time decision proce-
dure for the satisfiability problem for normalized MLSS×2,m-conjunctions. The

key idea behind such procedure is that a normalized MLSS×2,m-conjunction is

4 Plainly, the expressions x /∈ y and [x, y] /∈ f in Table 1 are shorthands for the literals
¬(x ∈ y) and ¬([x, y] ∈ f), respectively.

6 Domenico Cantone, Cristiano Longo, and Marianna Nicolosi Asmundo

x ∈ y x /∈ y [x, y] ∈ f [x, y] /∈ f y = {x}

x = y ∪ z x = y \ z f = g ∪ h f = g \ h f = x× y

g = fx| g = f−1 injective(f)

Table 1. Literals in normalized MLSS×2,m-conjunctions.

satisfiable if and only if there exists a finite structure, to be introduced later,
which witnesses this fact, in a sense that will be clarified below. In addition,
the total size of such structure has a bound depending solely on the size of the
conjunction, This decision procedure is a generalization of the one presented in
[1] for the extension MLSS of MLS with a singleton operator.

To begin with, it is convenient to introduce some notations and definitions.
Given a relation % over a set N and a nonempty subset V ⊆ N , we say that

% is V -extensional if 〈 % a〉 6= 〈 % a′〉, for all distinct a, a′ ∈ V , where

〈 % a〉 =Def {b ∈ N : b % a} .

Next, let ∈̂ be an acyclic relation over a finite set N and let V ⊆ N . We
introduce a notion of height relative to V , for x ∈ V , with the following recursion:

V -height(x) =

{
0 if y /̂∈ x, with y ∈ V ,
max

{
V -height(y) : y ∈ V ∧ y ∈̂ x

}
+ 1 otherwise.

We will use MLSS×2,m-relation systems to witness the satisfiability of normal-

ized MLSS×2,m-conjunctions. These are defined as follows.

Definition 1 (MLSS×2,m-relation system). An MLSS×2,m-relation system is a

tuple G =
(
V, T, F, ∈̂, {f̂ : f ∈ F}

)
, where

– V and T are finite disjoint collections of set variables such that V 6= ∅,
– F is a finite collection of map variables,
– ∈̂ is an acyclic relation over V ∪ T ,

–
{
f̂ : f ∈ F

}
is a collection of relations over V ∪ T . ut

MLSS×2,m-relation systems allow to define special assignments, which are
called realizations.

Definition 2 (Realization of an MLSS×2,m-relation system).

Let G =
(
V, T, F, ∈̂, {f̂ : f ∈ F}

)
be an MLSS×2,m-relation system and let

{ut : t ∈ T} be a collection of sets. Then the realization of G relative to
{ut : t ∈ T} is the assignment R over (V ∪ T) ∪ F defined recursively by:

Title Suppressed Due to Excessive Length 7

Rx =
{
R z : z ∈̂ x

}
, for x ∈ V ,

R t =
{
R z : z ∈̂ t

}
∪ {ut} , for t ∈ T ,

R f =
{

[Rx,R y] : x f̂ y, for x, y ∈ V ∪ T
}
, for f ∈ F . ut

The following lemma states conditions on MLSS×2,m-relation systems which

guarantee that it has realizations satisfying specific MLSS×2,m-literals. It will
be used later to prove the correctness of the decision procedure outlined in
Theorem 1 below.

Lemma 1. Let G =
(
V, T, F, ∈̂, {f̂ : f ∈ F}

)
be an MLSS×2,m-relation system

and let {ut : t ∈ T} be a collection of sets such that

(a) ∈̂ is V -extensional;
(b) ut 6= ut′ , for all distinct t, t′ ∈ T ;
(c) ut 6= Rx, for all t ∈ T, x ∈ V ∪ T .

Then

(i) R is injective w.r.t. V ∪ T (i.e., Rx 6= Rx′, for all distinct x, x′ ∈ V ∪ T);
(ii) Rx ∈ Rx′ ⇐⇒ x ∈̂ x′, for all x, x′ ∈ V ∪ T ;

(iii) Rx = R y ∪R z ⇐⇒ 〈 ∈̂ x〉 = 〈 ∈̂ y〉 ∪ 〈 ∈̂ z〉, for all x, y, z ∈ V ;
(iv) Rx = R y \ R z ⇐⇒ 〈 ∈̂ x〉 = 〈 ∈̂ y〉 \ 〈 ∈̂ z〉, for all x, y, z ∈ V ;
(v) Rx = {R y} ⇐⇒ 〈 ∈̂ x〉 = {y}, for all x ∈ V and y ∈ V ∪ T ;

(vi) [Rx,R y] ∈ R f ⇐⇒ x f̂ y, for all x, y ∈ V ∪ T and f ∈ F ;

(vii) R f = Rx×R y ⇐⇒ f̂ = 〈 ∈̂ x〉 × 〈 ∈̂ y〉, for all x, y ∈ V and f ∈ F ;

(viii) R f = (R g)R x| ⇐⇒ f̂ = (ĝ)〈 ∈̂x〉|, for all x ∈ V and f, g ∈ F ;

(ix) R f = R g ∪Rh⇐⇒ f̂ = ĝ ∪ ĥ, for all f, g, h ∈ F ;

(x) R f = R g \ Rh⇐⇒ f̂ = ĝ \ ĥ, for all f, g, h ∈ F ;

(xi) R f = (R g)−1 ⇐⇒ f̂ = (ĝ)−1, for all f, g ∈ F ;

(xii) injective(R f)⇐⇒ injective(f̂), for every f ∈ F .

Proof. (i) To prove that R is injective with respect to V ∪ T we reason as
follows. Let x, x′ be two distinct set variables in V ∪ T . We have to prove that
Rx 6= Rx′. To begin with, let us assume that {x, x′} ∩ T 6= ∅, and let, without
loss of generality, x ∈ T . If Rx = Rx′, then ux ∈ Rx′, which by (c) implies
ux = ux′ , contradicting (b). Thus Rx 6= Rx′. Instead, if x, x′ ∈ V , we proceed
by induction on µ = max(V -height(x), V -height(x′)). In the base case µ = 0, by

V -extensionality, there must exist a t ∈ T such that t ∈̂ x if and only if t /̂∈x′.
Suppose, without loss of generality, that t ∈̂ x and t /̂∈x′. Thus R t ∈ Rx \ Rx′.
Indeed, if R t ∈ Rx′, then there exists y ∈ V ∪T such that y ∈̂ x′ and R t = R y.
But then, as in the previous case, we would have that t and y have to be identical
and therefore t ∈̂ x′, which is a contradiction. ThusRx 6= Rx′. For the inductive
step, suppose by contradiction that Rx = Rx′, whereas (i) is true for every
distinct y, y′ ∈ V such that

max(V -height(y), V -height(y′)) < max(V -height(x), V -height(x′)) . (1)

8 Domenico Cantone, Cristiano Longo, and Marianna Nicolosi Asmundo

By V -extensionality, since x and x′ are distinct, there must be a y ∈ V ∪T such

that y ∈̂ x if and only if y /̂∈x′. Suppose, without loss of generality, that y ∈̂ x
and y /̂∈x′. Since Rx = Rx′, there must be a y′ ∈ V ∪ T such that y′ ∈̂ x′ and
R y = R y′. But then, from the base case if {y, y′}∩T 6= ∅, or from the inductive
hypothesis if y, y′ ∈ V , y and y′ must be identical. This implies that w ∈̂ v′, a
contradiction. Thus we have Rx 6= Rx′ even if x, x′ ∈ V , whenever x and x′

are distinct.

Next we prove (ii). Plainly, if x ∈̂ x′ then Rx ∈ Rx′. On the other hand,
if Rx ∈ Rx′, then by (c) there must exist a y ∈ V ∪ T such that y ∈̂ x′ and
Rx = R y. But then, by (i), x and y must coincide and therefore x ∈̂ x′.

In order to prove (iii), let x, y, z ∈ V and assume first that Rx = R y ∪R z.
Then for every x′ ∈ V ∪ T we have: x′ ∈ 〈 ∈̂ x〉 ⇐⇒ Rx′ ∈ Rx ⇐⇒ Rx′ ∈
R y ∪ R z ⇐⇒ Rx′ ∈ R y or Rx′ ∈ R z ⇐⇒ x′ ∈ 〈 ∈̂ y〉 or x′ ∈ 〈 ∈̂ z〉 ⇐⇒
x′ ∈ 〈 ∈̂ y〉 ∪ 〈 ∈̂ z〉, so that 〈 ∈̂ x〉 = 〈 ∈̂ y〉 ∪ 〈 ∈̂ z〉. Analogously one can
prove that 〈 ∈̂ x〉 = 〈 ∈̂ y〉 ∪ 〈 ∈̂ z〉 implies Rx = R y ∪R z.

Properties (iv) and (v) can be proved much as (iii).

(vi) follows immediately the very definition of R f and from the injectivity
of the realization R w.r.t. V ∪ T , already proved in (i).

To prove (vii), let f ∈ F , x, y ∈ V and suppose initially thatR f = Rx×R y.

Let x′, y′ be such that x′ f̂ y′. Then, by Definition 2, [Rx′,R y′] ∈ R f , so that
Rx′ ∈ Rx and R y′ ∈ R y. Thus, (ii) yields x′ ∈̂ x and y′ ∈̂ y, and therefore

f̂ ⊆ 〈 ∈̂ x〉×〈 ∈̂ y〉. Similarly, it can be shown that 〈 ∈̂ x〉×〈 ∈̂ y〉 ⊆ f̂ , which

together with the previous inclusion implies f̂ = 〈 ∈̂ x〉 × 〈 ∈̂ y〉. Conversely,

assume that f̂ = 〈 ∈̂ x〉 × 〈 ∈̂ y〉. By (i), (vi), and Definition 2, [u, v] ∈ Rf
holds if and only if there are x′, y′ ∈ V ∪ T such that Rx′ = u, R y′ = v, and
x′ f̂ y′. From our assumption, it follows that x′ ∈̂ x and y′ ∈̂ y. Thus, by (ii),
we have that u ∈ Rx and v ∈ R y, so that R f ⊆ Rx × R y. To show that
Rx×R y ⊆ R f , let [u, v] ∈ Rx×R y. Since x, y ∈ V , there exist x′, y′ in V ∪T
such that Rx′ = u, R y′ = v, x′ ∈̂ x, and y′ ∈̂ y. Hence, by our assumption,
x′ f̂ y′, and therefore [u, v] ∈ R f , proving that Rx×R y ⊆ R f .

To prove (viii), assume first that R f = (R g)R x|. Then f̂ = (ĝ)〈 ∈̂x〉| follows

plainly from (ii) and (vi). Next suppose that f̂ = (ĝ)〈 ∈̂x〉| and let u, v be any two
sets such that [u, v] ∈ R f . Then there exist x′, y′ in V ∪ T such that Rx′ = u,

R y′ = v, and x′ f̂ y′. But then, since f̂ = (ĝ)〈 ∈̂x〉|, we have x′ĝv′, and x′ ∈̂ x,
so that [u, v] ∈ R g and u ∈ Rx, which in turn implies [u, v] ∈ (R g)R x|, and
therefore R f ⊆ (R g)R x|. The converse inclusion can be proved analogously,
completing the proof of (viii).

Properties (ix), (x), and (xi) are direct consequences of (vi).

Finally, let us prove (xii). First suppose that R f is injective and let x, y, y′ ∈
V ∪ T such that x f̂ y and x f̂ y′. By (vi), [Rx,R y] and [Rx,R y′] are in R f .
Thus, by the assumed injectivity of R f and by (i), it follows that y = y′, proving

that the map f̂ is injective. Conversely, let us assume that f̂ is injective. If [u, v]
and [u, v′] are in R f , then there must exist x, y, y′ in V ∪ T such that Rx = u,

Title Suppressed Due to Excessive Length 9

R y = v, R y′ = v′, x f̂ y, and x f̂ y′. The injectivity of f̂ implies y = y′, so that
v = R y = R y′ = v′, proving that R f is injective too. ut

To any given assignment M and given collections of set and map variables, it
is possible to associate a particular MLSS×2,m-relation system, called canonical,
which represents all membership relations among pairs of sets (Mx,My) and
pairs of type ([Mx,My],Mf), where x, y are set variables and f is a map variable
belonging to the given collections of variables.

Definition 3 (Canonical MLSS×2,m-relation system). Given

– two disjoint finite collections V and T of set variables, such that V 6= ∅,
– a finite collection F of map variables,
– an assignment M over (V ∪T)∪F , injective with respect to the variables in
V ∪ T ,

then the canonical MLSS×2,m-relation system GM of M relative to (V, T, F) is the

MLSS×2,m-relation system (cf. Definition 1)

GM = Def

(
V, T, F, ∈̂M, {f̂M: f ∈ F}

)
,

where

– x ∈̂M y ⇐⇒Mx ∈My, for every x, y ∈ V ∪ T ,
– x f̂M y ⇐⇒ [Mx,My] ∈Mf , for every x, y ∈ V ∪ T and f ∈ F . ut

The following lemma states some properties of canonical MLSS×2,m-relation
systems which will be used to prove the completeness of the decision procedure
given in Theorem 1.

Lemma 2. Let V , T , F , M , and GM =
(
V, T, F, ∈̂M, {f̂M: f ∈ F}

)
be as in

Definition 3. Then, the following properties hold:

(i) ∈̂M is acyclic;
(ii) if Mx ∈My then x ∈̂M y, for x, y ∈ V ∪ T ;

(iii) if Mx /∈My then ¬(x ∈̂M y), for x, y ∈ V ∪ T ;
(iv) if Mx = My ∪Mz then 〈 ∈̂ x〉 = 〈 ∈̂ y〉 ∪ 〈 ∈̂ z〉, for x, y, z ∈ V ∪ T ;
(v) if Mx = My \Mz then 〈 ∈̂M x〉 = 〈 ∈̂M y〉 \ 〈 ∈̂M z〉, for x, y, z ∈ V ;

(vi) if Mx = {My} then 〈 ∈̂M x〉 = {y}, for x, y ∈ V ∪ T ;

(vii) if [Mx,My] ∈Mf then x f̂M y, for x, y ∈ V ∪ T and f ∈ F ;

(viii) if [Mx,My] /∈Mf then ¬(x f̂M y), for x, y ∈ V ∪ T and f ∈ F ;

(ix) if Mf = Mx ×My then f̂M = 〈 ∈̂M x〉 × 〈 ∈̂M y〉, for x, y ∈ V ∪ T and
f ∈ F ;

(x) if Mf = (Mg)Mx| then f̂M = (ĝM)〈 ∈̂M
x〉|, for f ∈ F and x ∈ V ;

(xi) if Mf = Mg ∪Mh then f̂M = ĝM ∪ ĥM , for f, g, h ∈ F ;

(xii) if Mf = Mg \Mh then f̂M = ĝM \ ĥM , for f, g, h ∈ F ;

(xiii) if Mf = (Mg)−1 then f̂M = (ĝM)−1, for f, g ∈ F ;

10 Domenico Cantone, Cristiano Longo, and Marianna Nicolosi Asmundo

(xiv) if injective(Mf) then injective(f̂M), for f ∈ F .

Proof. (i) plainly follows from the definition of ∈̂M and the acyclicity of the
membership relation on sets. The remaining statements are immediate conse-
quences of Definition 3. ut

The decidability of the satisfiability problem for normalized MLSS×2,m-
conjunctions is proved in the following theorem.

Theorem 1. Let ϕ be a normalized MLSS×2,m-conjunction, V = Varss(ϕ), and
F = Varsm(ϕ). Then ϕ is injectively satisfiable w.r.t. V if and only if there
exist:

– a finite collection T = {t1, . . . , tm} of set variables, disjoint from V , with
m = |T | ≤ |V | − 1,

– an MLSS×2,m-relation system G =
(
V, T, F, ∈̂, {f̂ : f ∈ F}

)
such that

(a) ∈̂ is V -extensional;
(b) if x ∈ y occurs in ϕ then x ∈̂ y, for x, y ∈ V ;

(c) if x /∈ y occurs in ϕ then x /̂∈ y, for x, y ∈ V ;

(d) if [x, y] ∈ f occurs in ϕ then x f̂ y, for x, y ∈ V, f ∈ F ;

(e) if [x, y] /∈ f occurs in ϕ then [x, y] /∈ f̂ , for x, y ∈ V, f ∈ F ;
(f) if x = y ∪ z occurs in ϕ then 〈 ∈̂ x〉 = 〈 ∈̂ y〉 ∪ 〈 ∈̂ z〉, for x, y, z ∈ V ;
(g) if x = y \ z occurs in ϕ then 〈 ∈̂ x〉 = 〈 ∈̂ y〉 \ 〈 ∈̂ z〉, for x, y, z ∈ V ;

(h) if f = g ∪ h occurs in ϕ then f̂ = ĝ ∪ ĥ, for f, g, h ∈ F ;

(i) if f = g \ h occurs in ϕ then f̂ = ĝ \ ĥ, for every f, g, h ∈ F ;

(j) if f = x× y occurs in ϕ then f̂ = 〈 ∈̂ x〉 × 〈 ∈̂ y〉, for x, y ∈ V , f ∈ F ;

(k) if f = gx| occurs in ϕ then f̂ = f̂〈 ∈̂x〉|, for x ∈ V , f ∈ F ;

(l) if injective(f) occurs in ϕ then f̂ is injective, for every x ∈ V , f ∈ F ;

Proof. We show first that the conditions of the theorem are sufficient for ϕ
to be injectively satisfiable w.r.t. V . Thus, let T = {t1, . . . , tm} and G =(
V, T, F, ∈̂, {f̂ : f ∈ F}

)
be as in the hypotheses and such that (a)–(l) hold.

We use Lemma 1 to prove that some realization of the MLSS×2,m-relation system
G is an injective model for ϕ w.r.t. V . To this end, it is enough to exhibit a
collection of sets {uti : ti ∈ T} such that

(A) uti 6= utj , for all distinct ti, tj ∈ T , and
(B) uti 6= Rx, for all ti,∈ T and v ∈ V ∪ T ,

where R is the realization of G relative to {uti : ti ∈ T} and (V, T). Let us put
uti =Def {n, i}, for ti ∈ T , where n = |V |.5 The sets uti are obviously pairwise

5 We are assuming the von Neumann representation of natural numbers 0 =Def ∅,
1 =Def {0}, 2 =Def {0, 1}, and so on.

Title Suppressed Due to Excessive Length 11

distinct. In addition, we have rank(uti) = n + 1, for uti ∈ T . Hence, to prove
(B), we can just show that rank(Rx) 6= n + 1, for each x ∈ V ∪ T . Thus,
let x ∈ V ∪ T . If uti ∈+ Rx (where ∈+ denotes the transitive closure of the
membership relation) then rank(R v) > n+ 1. On the other hand, if uti /∈

+ Rx
for all uti ∈ T , by induction on V -height(x) it follows that rank(Rx) < n.

Properties (b)–(l) and Lemma 1 guarantee that R satisfies all literals in ϕ.
For instance, if the literal x ∈ y occurs in ϕ, then by (b) we have x ∈̂ y, so that
Lemma 1(ii) yields Rx ∈ R y. Reasoning in a similar way, one can show that
R satisfies all the conjuncts in ϕ. Additionally, by Lemma 1(i), R is injective
w.r.t. V ∪ T , completing the proof of the sufficiency part of the theorem.

Conversely, let M be a model for ϕ which is injective w.r.t. the collection
of variables V = Varss(ϕ). We show next how to construct a collection T =
{t1, . . . , tm} of set variables with m = |T | ≤ |V | − 1, and an MLSS×2,m-relation

system G =
(
V, T, F, ∈̂, {f̂ : f ∈ F}

)
such that conditions (a)–(l) of Lemma 1

are satisfied.
It is convenient to introduce the following notion (cf. [1]). We say that a set

Σ distinguishes a set S if s ∩Σ 6= s′ ∩Σ holds for any two distinct s, s′ ∈ S.

Claim.6 Any finite set S admits a set Σ which distinguishes it and such that
|Σ| ≤ |S| − 1.

Proof. If |S| ≤ 1, our claim is vacuously true. Otherwise, let |S| > 1 and,
inductively, let us assume that our claim holds for any set S′ such that |S′| < |S|.
Then, pick s ∈ S. By our inductive hypothesis the set S \ {s} admits a set Σ′

which distinguishes it and such that |Σ′| ≤ |S| − 2. If Σ′ distinguishes S, we
are done. Otherwise, there is an s′ ∈ S \ {s} such that s ∩ Σ′ = s′ ∩ Σ′. Let
d ∈ (s\s′)∪(s′\s) and consider Σ =Def Σ

′∪{d}. We assert that Σ distinguishes
S. Indeed, if this were not the case there would exist an s′′ ∈ S \ {s, s′} such
that s ∩Σ = s′′ ∩Σ, so that s ∩Σ′ = s′′ ∩Σ′ and, therefore, s′ ∩Σ′ = s′′ ∩Σ′,
contradicting our assumption that Σ′ distinguishes S \ {s}. It only remains to
observe that |Σ| ≤ |S| − 1. ut

In view of the above claim, let ΣM be a set which distinguishes {Mx : x ∈ V }
and is such that |ΣM | ≤ |V | − 1. Also, let m = |ΣM \ {Mx : x ∈ V }| ≤ |V | − 1
and let T = {t1, . . . , tm} be a collection of m distinct set variables not belonging
to V . Let us extend/redefine M over the variables in T in such a way that

{Mti : ti ∈ T} = ΣM \{Mx : x ∈ V } and let GM =
(
V, T, F, ∈̂M, {f̂M : f ∈ F}

)
be the canonical MLSS×2,m-relation system of M relative to (V, T) and F . From
the well-foundedness of the membership relation in V, we have immediately that
∈̂M is acyclic. Additionally, by construction, if x, x′ ∈ V are any two distinct
variables, then there exists y ∈ V ∪T such that My ∈ ((Mx\Mx′)∪(Mx′\Mx)).
Hence y ∈̂M x⇐⇒ y /̂∈M x′, proving the V -extensionality of ∈̂M (condition (a)).
Conditions (b)–(l) follows from Lemma 2 and from the fact that M satisfies
all the literals of ϕ. For instance, if x ∈ y occurs in ϕ, then we have plainly

6 See [1]. [12] also provides an extension to infinite sets.

12 Domenico Cantone, Cristiano Longo, and Marianna Nicolosi Asmundo

Mx ∈ My. Thus, by Lemma 2(ii), we have x ∈̂M y. The remaining conditions
can be proved much in the same way, concluding the proof that the conditions
of the theorem are also necessary for the injective satisfiability of ϕ w.r.t. V . ut

Since an MLSS×2,m-conjunction ψ of literals of the types listed in Table 1
is satisfiable if and only if there exists an equivalence relation ∼ on Varss(ψ)

such that ψ̃ is injectively satisfiable (w.r.t. Varss(ψ̃)), where ψ̃ is the MLSS×2,m-
conjunction obtained from ψ by identifying ∼-equivalent set variables, namely
by replacing them by a common representative, we have the following result.

Corollary 1. The ordinary satisfiability problem for the class of MLSS×2,m-
formulae is solvable. ut

3.1 Complexity issues

Theorem 1 leads to a nondeterministic polynomial-time decision test for the
injective satisfiability problem for normalized MLSS×2,m-conjunctions (w.r.t. the
collection of its set variables).

Lemma 3. The injective satisfiability problem for normalized MLSS×2,m-
conjunctions w.r.t. set variables is NP-complete.

Proof. To begin with, the NP-hardness of the class of formulae of our interest
follows immediately from the NP-hardness of MLSS (cf. [4]). Concerning its
membership to NP, we reason as follows. Let ϕ be a normalized MLSS×2,m-
conjunction which admits an injective model, relative to its set variables. This
fact can be witnessed by the existence of an MLSS×2,m-relation system

G =
(

Varss(ϕ), T,Varsm(ϕ), ∈̂, {f̂ : f ∈ Varsm(ϕ)}
)
,

with |T | < |Varss(ϕ)|, such that conditions (a)–(l) of Theorem 1 are satisfied.
Since the size of G is at most quadratic in the size of ϕ and since conditions (a)–
(l) can be verified in polynomial-time, it follows that the injective satisfiability
problem for normalized MLSS×2,m-conjunctions is in NP and, therefore, is NP-
complete. ut

In view of Corollary 1 and the remarks just before its statement, we have
also the NP-completeness of the ordinary satisfiability problem for normalized
MLSS×2,m-conjunctions. To this end, it is enough to observe that given an equiv-

alence relation ∼ on the set variables of a normalized MLSS×2,m-conjunction ϕ,
then ϕ̃ can be computed in linear time (obviously, relative to the size of ϕ). Thus
we have:

Corollary 2. The ordinary satisfiability problem for normalized MLSS×2,m-
conjunctions is NP-complete.

Title Suppressed Due to Excessive Length 13

3.2 Remarks on the domain and image operators

The same approach of Theorem 1 can not readily be applied to deal also with the
extension of MLSS×2,m with literals of the type x = dom(f), where the semantics
of the dom(·) operator is the obvious one, namely

M(dom(f)) =Def {s : [s, u] ∈Mf, for some set u} ,

for any assignment M .
Consider for instance a formula ϕ containing the literals x = dom(f0) and

y ∈ x and let M be a model for ϕ. Let GM =
(
V, T, F, ∈̂M, {f̂M: f ∈ F}

)
be the

canonical MLSS×2,m-relation system of M , relative to a certain set T of auxiliary
variables and let us assume that Mx = {My} and Mf0 = {[My, v]}, where

v 6= Mz for every set variable z ∈ V ∪ T . Then f̂M0 = ∅ and

∅ = dom(f̂M0) 6= 〈 ∈̂ x〉 = {y} .

Most likely, any extension of the decision test contained in Theorem 1 to deal
also with literals of type x = dom(f) will involve the introduction in T of ex-
ponentially many auxiliary set variables in the size of the input formula. This
is supported by the fact that any decidable extension of MLS with the literals
of type y = f [x] (map image operator) is ExpTime-hard (see next section) and
the fact that the literal y = f [x] can be expressed in any extension of MLSS×2,m
with literals of type x′ = dom(f ′) by the literal

y = dom((fx|)
−1) .

On the other hand, we observe that the language MLSS×2,m allows one to
express literals of the types dom(f) ⊆ and f [x] ⊆ y, in view of the equivalences

dom(f) ⊆ x⇐⇒ f = fx|
f [x] ⊆ y ⇐⇒ f = fx|y .

4 ExpTime-hardness of MLS with the image operator

In this section we provide a complexity lower bound for the satisfiability problem
of the decidable extension MLSIm of MLS with literals of the type y = f [x].7

The semantics of the image operator f [x] is the obvious one, namely

M(f [x]) =Def {v : [u, v] ∈Mf , for some u ∈Mx} ,

for any assignment M .
Our result is achieved by reducing the decision problem for the description

logic ALC to the satisfiability problem for MLSIm.
ALC is a two-sorted language which contains:

7 MLSIm is a subfragment of a an extension of MLSS with some map constructs, whose
decidability has been proved in [9].

14 Domenico Cantone, Cristiano Longo, and Marianna Nicolosi Asmundo

– a countably infinite collection of concept names N c = {A,B, . . . },
– a countably infinite collection of role names N r = {P,Q, . . . },
– the symbols >,⊥, representing the universal concept and the bottom concept,

– the concept constructors ¬ (complement), u (conjunction), t (disjunction),
∀ (universal restriction), ∃ (existential restriction) to form complex concepts.

ALC-concepts are defined recursively as follows:

– concept names are concepts;

– >,⊥ are concepts;

– if C,D are concepts, then ¬C, C uD, and C tD are concepts;

– if C is a concept and R is a role name, then ∀R.C and ∃R.C are concepts.

ALC-axioms have the following forms:

– C v D (inclusion axiom),

– C ≡ D (equivalence axiom),

where C,D are ALC-concepts.

The semantics of ALC is given in terms of interpretations.8 An interpretation
I consists of a nonempty set ∆I , also called the domain of the interpretation,
and of an interpretation function assigning to each concept name A ∈ N c a set
AI ⊆ ∆I , and to every role name R ∈ N r, a binary relation RI ⊆ ∆I ×∆I .

An interpretation I extends recursively to concepts as follows:

>I =Def ∆I ,
⊥I =Def ∅,

(¬C)I =Def ∆I \ CI ,
(C tD)I =Def CI ∪DI ,
(C uD)I =Def CI ∩DI ,
(∀R.C)I =Def

{
u ∈ ∆I : (∀v ∈ ∆I)([u, v] ∈ RI −→ v ∈ CI)

}
,

(∃R.C)I =Def

{
u ∈ ∆I : (∃v ∈ CI)([u, v] ∈ RI)

}
.

Let I be an interpretation and let C,D be two concepts. Then I satisfies
C v D (resp., C ≡ D) if CI ⊆ DI (resp., CI = DI). In addition, let T be
a finite collection of axioms. Then I satisfies T if and only if it satisfies each
axiom in T ; also, I satisfies the concept C with respect to T if it satisfies T
and CI 6= ∅. An ALC-concept C is said to be satisfiable with respect to a finite
collection of axioms T if there exists an interpretation I that satisfies C with
respect to T , otherwise it is unsatisfiable. If I satisfies a concept C (resp., a
finite collection of axioms T), then I is said to be a model for C (resp., T).

In [8, Theorem 3.27, page 132] the ExpTime-hardness of the problem of de-
ciding if a given concept C is unsatisfiable with respect to a given finite collection
T of inclusion axioms is proved for the sublogic AL of ALC. Hence, we have:

8 Here we recall just the descriptive semantic. There are several other semantics that
are out of the scope of this paper.

Title Suppressed Due to Excessive Length 15

Theorem 2. The problem of deciding whether a given ALC-concept C is un-
satisfiable with respect to a given finite collection T of ALC-inclusion axioms is
ExpTime-hard. ut

Next we show how the satisfiability problem forALC-concepts with respect to
a finite set of axioms can be reduced to the satisfiability of MLSIm-formulae. Since
∃R.C ≡ ¬(∀R.(¬C)), without loss of generality we can consider only concepts
that do not contain any occurrence of universal restriction.

Theorem 3. The satisfiability problem for MLSIm is ExpTime-hard.

Proof. In view of Theorem 2, it is enough to exhibit a reduction from ALC to
MLSIm. Thus, given a finite collection T of ALC-inclusion axioms and an ALC-
concept C, we show how to construct an MLSIm-formula which is satisfiable if
and only if the concept C is satisfiable w.r.t. T .

Let Cpts ⊆ N c and Rls ⊆ N r be the collections of the concept names and of
the role names, respectively, occurring in C and in T . Additionally, let π be a
function that injectively associates every concept name in Cpts to a set variable of
the language MLSIm and every role name in Rls to a map variable of MLSIm. The
function π extends naturally to concepts and axioms in the following recursive
way:

π(>) =Def U
π(⊥) =Def ∅

π(¬C) =Def U \ π(C)
π(C uD) =Def π(C) ∩ π(D)
π(C tD) =Def π(C) ∪ π(D)
π(∃R.C) =Def (π(R))[π(C)]

π(C v D) =Def π(C) ⊆ π(D)
π(C ≡ D) =Def π(C) = π(D) ,

where U is a set variable of MLSIm not in π[Cpts].
Let ϕ =Def ψ1 ∧ ψ2 ∧ ψ3 be the MLSIm-formula in which:

ψ1 =Def U 6= ∅ ∧
∧
A∈Cpts π(A) ⊆ U ∧

∧
R∈Rls(π(R))[U] ⊆ U

ψ2 =Def

∧
Γ∈T π(Γ)

ψ3 =Def π(C) 6= ∅.

We observe that the size of the MLSS×2,m-formula ϕ is linear in the total size of
T and C.

Next we show that ϕ is satisfiable (relative to the semantics of MLSIm) if and
only if C is satisfiable w.r.t. T (relative to the semantics of ALC).

To begin with, let us assume that ϕ is satisfiable, and let M be a model for
ϕ. We construct an interpretation I, induced by M , with domain ∆I =Def MU,
by putting

AI =Def M(π(A))
RI =Def ((M(π(R)))MU|)

−1 ,

16 Domenico Cantone, Cristiano Longo, and Marianna Nicolosi Asmundo

for every concept name A and role name R occurring in T or in C. Otherwise,
the action of the interpretation I over the remaining concept and role names can
be defined arbitrarily, as long as the constraints AI ⊆ ∆I and RI ⊆ ∆I ×∆I
hold, for each concept name A and role name R not occurring in T or in C.

Notice that since M models correctly all the literals in ψ1, then we actually
have AI ⊆ ∆I and RI ⊆ ∆I ×∆I for all concept names A and role names R,
respectively, showing that I is a valid interpretation. Moreover, for every concept
D involving only variables that occur in T and in C we have

DI = M(π(D)) . (2)

We prove (2) by structural induction on the concept D. If D is of type >, ⊥,
¬D′, D′ t D′′, or D′ t D′′, then (2) follows directly from the definition of I.
Thus, the only interesting case occurs when the concept D is of type (∃R.D0),
with R a role name in Rls and D0 a concept structurally simpler than D.

Let us show that (∃R.D0)I = M(π(∃R.D0)).
Let v ∈ (∃R.D0)I . Then there is a u ∈ DI0 = M(π(D0)) such that [v, u] ∈

RI = ((M(π(R)))MU|)
−1. The latter implies [u, v] ∈ (M(π(R)))MU|, so that

[u, v] ∈ M(π(R)) (since u ∈ MU), and therefore v ∈ (M(π(R)))[M(π(D0))] =
M(π(∃R.D0)). Hence, (∃R.D0)I ⊆M(π(∃R.D0)).

To show the converse inclusion, let now v ∈ M(π(∃R.D0)). Then v ∈
(M(πR))[M(π(D0))], so that [u, v] ∈ M(π(R)) for some u ∈ M(π(D0)). There-
fore [u, v] ∈ (M(π(R)))M(U)| (since by inductive hypothesis M(π(D0)) = DI0 ⊆
∆I = M(U) and therefore u ∈ M(U)). Hence, [v, u] ∈ ((M(π(R)))M(U)|)

−1 =
RI . And since u ∈ DI0 , then v ∈ (∃R.D0)I . Therefore M(π(∃R.D0)) ⊆ (∃R.D0)I

which together with the previous inclusion yields (∃R.D0)I = M(π(∃R.D0)).
From (2) and the fact that M models correctly all the conjuncts of ψ2, it

follows that I is a model for T . Additionally, since M satisfies ψ3, it also follows
that I satisfies C, so that the interpretation I induced by the model M satisfies
C w.r.t. T . This completes the first half of the proof.

Conversely, let I be a model for C w.r.t. T . Without loss of generality, we may
assume that ∆I is a set belonging to the von Neumann hierarchy V (otherwise,
we embed ∆I in V).

We construct an assignment MI induced by I as follows:

MI(U) =Def ∆
I ;

MI(π(A)) =Def A
I ;

MI(π(R)) =Def (RI)−1

for all concept names A and role names R occurring in T and in C (as usual,
we do not need to be specific on the remaining variables of MLSIm), and show
that MI is a model for ϕ.

Much as was done before, we prove by structural induction that

MI(π(D)) = DI , (3)

for every concept D involving only concept and role names occurring in T and
C. As before, the only relevant case to be considered is when D is of type

Title Suppressed Due to Excessive Length 17

(∃R.D0). To prove (3) for a concept D of type (∃R.D0), it is enough to show
that MI(π(R))[MI(π(D0))] = (∃R.D0)I .

Let u ∈ (∃R.D0)I . Then there is a v ∈ DI0 such that [u, v] ∈ RI . Therefore
[v, u] ∈ MI(π(R)) and since by inductive hypothesis v ∈ MI(π(D0)), it follows
that u ∈MI((π(R))[π(D0)]). Hence we have (∃R.D0)I ⊆MI(π(R))[MI(π(D0))].

To prove the converse inclusion, let u ∈MI(π(R))[π(D0)]). Hence, there ex-
ists v ∈MI(π(D0)) such that [v, u] ∈MI(π(R)) = (RI)−1. But then [u, v] ∈ RI
and since by inductive hypothesis MI(π(D0)) = DI0 , we have v ∈ DI0 , and thus
u ∈ (∃R.D0)I . Therefore we have MI(π(R))[MI(π(D0))] ⊆ (∃R.D0)I , which to-
gether with the previously established inclusion yields MI(π(R))[MI(π(D0))] =
(∃R.D0)I .

Having established (3), it is immediate to check that the assignment MI
satisfies the MLSS×2,m-formula ϕ, completing the proof of the theorem. ut

5 Conclusions and Future Work

We have introduced the unquantified fragment MLSS×2,m of set theory, involving
besides the basic set constructors, also the Cartesian product operator and some
map constructs. We have shown that the satisfiability problem for MLSS×2,m-
formulae is NP-complete. We have also proved that any decidable extension of
the basic fragment MLS extended with map literals of the form y = f [x] has
an ExpTime-hard decision problem. Such lower bound has been obtained by
exhibiting a reduction from the description logic ALC.

We plan to further investigate the relationship between description logics
and other MLS extensions in order to find new lower bounds. In particular, we
conjecture that the presence of the map union and map difference operators
together with the image operator leads to NExpTime-hardness.

We also intend to extend the fragment MLSS×2,m with some further map
constructs such as reflexive closure, transitive closure, symmetric closure, and
restricted forms of map composition.

Furthermore, we plan to continue our investigations of decision procedure for
a one-sorted variant of the language MLSS×2,m in which maps (and the Cartesian
product) are regarded just as primitive sets.

References

1. D. Cantone and A. Ferro. Techniques of computable set theory with applications
to proof verification. Comm. Pure Appl. Math., XLVIII(9-10):1–45, 1995.

2. D. Cantone, A. Ferro, and E. G. Omodeo. Computable set theory. Number 6 in
International Series of Monographs on Computer Science, Oxford Science Publi-
cations. Clarendon Press, Oxford, UK, 1989.

3. D. Cantone, A. Formisano, E. G. Omodeo, and J. T. Schwartz. Various commonly
occurring decidable extensions of multi-level syllogistic. In S. Ranise and C. Tinelli,
editors, Proceedings of the Workshop on Pragmatics of Decision Procedures in Au-
tomated Reasoning 2003 - PDPAR’03 (Miami, USA, July 29, 2003), pages 2–14,
2003.

18 Domenico Cantone, Cristiano Longo, and Marianna Nicolosi Asmundo

4. D. Cantone, E. G. Omodeo, and A. Policriti. The automation of syllogistic. II:
Optimization and complexity issues. Journal of Automated Reasoning, 6(2):173–
187, June 1990.

5. D. Cantone, E. G. Omodeo, and A. Policriti. Set theory for computing - From
decision procedures to declarative programming with sets. Monographs in Computer
Science. Springer-Verlag, New York, 2001.

6. D. Cantone, E. G. Omodeo, J. T. Schwartz, and P. Ursino. Notes from the logbook
of a proof-checker’s project. In N. Dershowitz, editor, Verification: Theory and
Practice (Essays Dedicated to Zohar Manna on the Occasion of His 64th Birthday),
volume 2772 of Lecture Notes in Computer Science, pages 182–207, Berlin, 2003.
Springer-Verlag.

7. D. Cantone and J. T. Schwartz. Decision procedures for elementary sublanguages of
set theory. XI: Multilevel syllogistic extended by some elementary map constructs.
Journal of Automated Reasoning, 7(2):231–256, June 1991.

8. F. M. Donini. Complexity of reasoning. In F. Baader, D. Calvanese, D. L. McGuin-
ness, D. Nardi, and P. F. Patel-Schneider, editors, The description logic handbook:
theory, implementation, and applications, chapter 3, pages 105–145. Cambridge
University Press, 2nd edition, 2007.

9. A. Ferro, E. G. Omodeo, and J. T. Schwartz. Decision procedures for some frag-
ments of set theory. In W. Bibel and R. A. Kowalski, editors, In 5th Conference on
Automated Deduction, Les Arcs, France, July 8-11, 1980, Proceedings, volume 87
of Lecture Notes in Computer Science, pages 88–96. Springer, 1980.

10. E. G. Omodeo, D. Cantone, A. Policriti, and J. T. Schwartz. A Computerized Ref-
eree. In M. Schaerf and O. Stock, editors, Reasoning, Action and Interaction in AI
Theories and Systems – Essays dedicated to Luigia Carlucci Aiello, volume 4155 of
Lecture Notes in Artificial Intelligence, pages 117–139. Springer Berlin/Heidelberg,
2006.

11. E. G. Omodeo and J. T. Schwartz. A ‘Theory’ mechanism for a proof-verifier
based on first-order set theory. In A. Kakas and F. Sadri, editors, Computational
Logic: Logic Programming and beyond, Essays in honour of Robert Kowalski, part
II, volume 2408 of LNCS, pages 214–230. Springer-Verlag, 2002.

12. F. Parlamento, A. Policriti, and K. P. S. B. Rao. Witnessing differences without
redundancies. Proc. Amer. Math. Soc., 125:587–594, 1997.

13. J. T. Schwartz. A survey of program proof technology. Technical Report 001, New
York University, Department of Computer Science, September 1978.

14. J. T. Schwartz, R. B. Dewar, E. Schonberg, and E. Dubinsky. Programming with
sets; an introduction to SETL. Springer-Verlag New York, Inc., New York, NY,
USA, 1986.

