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1 Università del Piemonte Orientale, Dipartimento di Informatica, Alessandria, Italy
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Abstract. In this paper we define a Temporal Action Theory through
a combination of Answer Set Programming and Dynamic Linear Time
Temporal Logic (DLTL). DLTL extends propositional temporal logic of
linear time with regular programs of propositional dynamic logic, which
are used for indexing temporal modalities. In our language, general tem-
poral constraints can be included in domain descriptions. We define the
notion of Temporal Answer Set for domain descriptions, based on the
usual notion of Answer Set. Bounded Model Checking techniques are
used for the verification of DLTL formulas. The approach can deal with
systems with infinite runs.

1 Introduction

In this paper we define a temporal answer set extension of ASP reasoning about
action in a Dynamic Linear Time Temporal Logic (DLTL). DLTL extends propo-
sitional temporal logic of linear time with regular programs of propositional dy-
namic logic, which are used for indexing temporal modalities. Allowing program
expressions within temporal formulas and including arbitrary temporal formu-
las in domain descriptions provides a simple way of constraining the (possibly
infinite) evolutions of the system, using regular programs (as in Propositional
Dynamic Logic). The need of temporally extended goals in a linear temporal
logic has been motivated in the context of planning by Bacchus, Kabanza et
al. [2, 20]. The formalization of properties of planning domains as temporal for-
mulas in CTL has also been proposed in [17], where the idea of planning as
model checking in a temporal logic has been explored, by formalizing planning
domains as semantic models. In [13], a monotonic approach to the definition of
a temporal action theory based on DLTL has been developed. Following [25],
the extensions of a domain description are defined as the temporal models of
a completion of the domain description. The temporal projection and planning
problem are formalized as satisfiability problems in DLTL, which can be solved
by model checking techniques. An algorithm for constructing on-the-fly a Büchi
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automaton from a DLTL formula has been proposed in [14], generalizing the
tableau-based algorithm for LTL [12].

In this paper we define an extension of ASP rules by allowing temporal
modalities and we introduce a notion of temporal answer set, which naturally
allows to deal with possibly infinite action sequences. The temporal answer sets
which satisfy the constraints in the domain description are recognized as the
extensions of the domain description.

We provide a translation into standard ASP rules of action laws, causal
laws, etc. in the domain description. The temporal answer sets of an action
theory can then be computed as the standard answer sets of the translation. To
compute the extensions of a domain description, the temporal constraints which
are part of the domain description, are then evaluated over temporal answer
sets using bounded model checking techniques [5]. The approach proposed for the
verification of DLTL formulas extends the one developed in [18] for bounded
LTL model checking with Stable Models.

The proposed action theory can deal naturally with systems with infinite
runs, and we provide an example concerning a controlled system from the auto-
motive domain.

2 Dynamic Linear Time Temporal Logic

In this section we briefly define the syntax and semantics of DLTL as introduced
in [19]. In such a linear time temporal logic the next state modality is indexed
by actions. Moreover, (and this is the extension to LTL) the until operator Uπ is
indexed by a program π as in Propositional Dynamic Logic (PDL). In addition
to the usual 2 (always) and 3 (eventually) temporal modalities of LTL, new
modalities [π] and 〈π〉 are allowed. Informally, a formula [π]α is true in a world
w of a linear temporal model if α holds in all the worlds of the model which are
reachable from w through any execution of the program π. A formula 〈π〉α is
true in a world w of a linear temporal model if there exists a world of the model
reachable from w through an execution of the program π, in which α holds.
The program π can be any regular expression built from atomic actions using
sequence (;), non-deterministic choice (+) and finite iteration (∗). The modalities
2, 3 and © (next) of linear temporal logic can be seen to be derivable.

Let Σ be a finite non-empty alphabet. The members of Σ are actions. Let
Σ∗ and Σω be the set of finite and infinite words on Σ, where ω = {0, 1, 2, . . .}.
Let Σ∞ =Σ∗∪Σω. We denote by σ, σ′ the words over Σω and by τ, τ ′ the words
over Σ∗. Moreover, we denote by ≤ the usual prefix ordering over Σ∗ and, for
u ∈ Σ∞, we denote by prf(u) the set of finite prefixes of u.

We define the set of programs (regular expressions) Prg(Σ) generated by Σ
as follows:

Prg(Σ) ::= a | π1 + π2 | π1;π2 | π∗

where a ∈ Σ and π1, π2, π range over Prg(Σ). A set of finite words is associated
with each program by the mapping [[ ]] : Prg(Σ)→ 2Σ

∗
, which is defined in the

standard way.



Let P = {p1, p2, . . .} be a countable set of atomic propositions containing >
and ⊥. The set of DLTL formulas over Σ is defined as follows:

DLTL(Σ) ::= p | ¬α | α ∨ β | αUπβ

where p ∈ P, α, β range over DLTL(Σ) and π ∈ Prg(Σ).
A model of DLTL(Σ) is a pair M = (σ, V ) where σ ∈ Σω and V : prf(σ)→

2P is a valuation function. Given a model M = (σ, V ), a finite word τ ∈ prf(σ)
and a formula α, the satisfiability of a formula α at τ in M , written M, τ |= α,
is defined as follows:

– M, τ |= p iff p ∈ V (τ);
– M, τ |= ¬α iff M, τ 6|= α;
– M, τ |= α ∨ β iff M, τ |= α or M, τ |= β;
– M, τ |= αUπβ iff there exists τ ′ ∈ [[π]] such that ττ ′ ∈ prf(σ) and M, ττ ′ |=
β. Moreover, for every τ ′′ such that ε ≤ τ ′′ < τ ′3, M, ττ ′′ |= α.

A formula α is satisfiable iff there is a model M = (σ, V ) and a finite word
τ ∈ prf(σ) such that M, τ |= α.

The formula αUπβ is true at τ if “α until β” is true on a finite stretch of
behavior which is in the linear time behavior of the program π.

The derived modalities 〈π〉 and [π] can be defined as follows: 〈π〉α ≡ >Uπα
and [π]α ≡ ¬〈π〉¬α.

Furthermore, if we let Σ = {a1, . . . , an}, the U (until), © (next), 3 and 2

operators of LTL can be defined as follows: ©α ≡
∨
a∈Σ〈a〉α, αUβ ≡ αUΣ∗β,

3α ≡ >Uα, 2α ≡ ¬3¬α, where, in UΣ∗ , Σ is taken to be a shorthand
for the program a1 + . . . + an. Hence both LTL(Σ) and PDL are fragments of
DLTL(Σ). As shown in [19], DLTL(Σ) is strictly more expressive than LTL(Σ).
In fact, DLTL has the full expressive power of the monadic second order theory
of ω-sequences.

3 Action theories in Temporal ASP

Let P be a set of atomic propositions, the fluent names. A simple fluent literal
l is a fluent name f or its negation ¬f . Given a fluent literal l, such that l = f
or l = ¬f , we define |l| = f . We denote by l the complementary literal of l
(namely, p = ¬p and ¬p = p). Also, we denote by Lit the set of all simple fluent
literals. LitT is the set of (temporal) fluent literals: if l ∈ Lit, then l ∈ LitT ;
if l ∈ Lit, then [a]l,©l ∈ LitT (for a ∈ Σ). Given a (temporal) fluent literal
l, not l represents the default negation of l. A (temporal) fluent literal possibly
preceded by a default negation, will be called an extended fluent literal.

A domain description D is defined as a tuple (Π,Frame, C), where Π con-
tains action laws, causal laws, precondition laws and the initial state, Init; Frame
provides a classification of fluents as frame fluents and non-frame fluents; C is a
set of temporal constraints.
3 We define τ ≤ τ ′ iff ∃τ ′′ such that ττ ′′ = τ ′. Moreover, τ < τ ′ iff τ ≤ τ ′ and τ 6= τ ′.



The action laws in Π have the form:

2([a]l1 or . . . or [a]lk ← l′1, . . . , l
′
m),

where l1, . . . , lm and l′1, . . . , l
′
k are simple fluent literals. Its meaning is that ex-

ecuting action a in a state in which the conditions l′1, . . . , l
′
m hold causes either

the effect l1 or . . . or the effect lk to hold.
In case of deterministic actions, there is a single disjunct in the head of the

action law. For instance, from the Russian turkey problem domain, we have:
2([shoot]¬alive← loaded) (the action of shooting the turkey makes the turkey
dead if the gun is loaded) and 2[load]loaded (loading the gun makes the gun
loaded). An example of non-deterministic action is the action of spinning the gun,
after which the gun may be loaded or not: 2([spin]loaded or [spin]¬loaded ←
true).

Causal laws are intended to express “causal” dependencies among fluents.
Static causal laws in Π have the form:

2(l← l1, . . . , lm),

where l, l1, . . . , lm are simple fluent literals. Their meaning is that: if l1, . . . , lm
hold in a state, l is also caused to hold in that state. For instance, the causal
law 2(frightened← turkey in sight, alive) says that the turkey being in sight
causes it to be frightened, if it is alive.

Dynamic causal laws in Π have the form:

2(©l← l1, . . . , lm,©lm+1, . . . ,©lk),

meaning that: if l1, . . . , lm hold in a state and lm+1, . . . , lk hold in the next state,
then l is caused to hold in the next state.

Precondition laws have the form:

2([a]⊥ ← l1, . . . , lm),

with a ∈ Σ and l1, . . . , lk are simple fluent literals. The meaning is that the
execution of an action a is not possible if l1, . . . , lk hold (that is, no state results
from the execution of a in a state in which l1, . . . , lk holds). An action for which
there is no precondition law is always executable.

The initial state, Init, is a (possibly incomplete) set of simple fluent literals,
i.e., the fluents which are known to hold initially.

For instance, Init = {alive,¬turkey in sight,¬frightened}.
As in [22, 21] we call frame fluents those fluents to which the law of inertia

applies. We consider frame fluents as being dependent on the actions. Frame is
a set of pairs (p, a), where p ∈ P and a ∈ Σ, meaning that p is a frame fluent
for action a, that is, p is a fluent to which persistency applies when action a is
executed. Instead, non-frame fluents with respect to a do non persist and may
change value non-deterministically, when a is executed.

Unlike [13], we adopt a non-monotonic solution to the frame problem, as
usual in the context of ASP. The persistency of frame fluents from a state to the
next one can be enforced by introducing persistency laws of the form:

2([a]l← l, not [a]l),



for each simple fluent literal l and action a ∈ Σ, such that (|l|, a) ∈ Frame.
Its meaning is that, if l holds in a state, then l holds in the state obtained by
executing action a, if it can be assumed that ¬l does no hold in the resulting
state.

For capturing the fact that a fluent p which is non-frame with respect to a ∈ Σ
may change its value non-deterministically when a is executed, we introduce the
axiom:

2([a]p or [a]¬p← true)

for all p and a such that (p, a) 6∈ Frame. When a is executed, either the non-
frame fluent literal p holds in the resulting state, or ¬p holds. We will call
FrameD the set of laws introduced above for dealing with frame and non-frame
fluents. They have the same structure as action laws, but frame axioms contain
default negation in their bodies. Indeed, both action and causal laws can be
extended for free by allowing default negation in their body. This extension has
been considered for instance in [8].

As concerns the initial state, we assume that its specification is, in general,
incomplete. However, we reason on complete initial states obtained by complet-
ing the initial state in all the possible ways, and we assume that, for each fluent
p, the domain description contains the law:

p or ¬p← true

meaning that either p is assumed to hold in the initial state, or ¬p is assumed
to hold. This approach is in accordance with our treatment of non-deterministic
actions and, as we will see, gives rise to extensions in which all states are com-
plete, where each extension represents a run, i.e. a possible evolution of the world
from the initial state. We will call InitD the set of laws introduced above for
completing the initial state.

The temporal constraints in C are arbitrary temporal formulas of DLTL.
They are used to restrict the space of the possible extensions. For instance,
¬loaded U turkey in sight states that the hunter does not load the gun until
the turkey is in sight. A temporal constraint can also require a complex behavior
to be performed.

The program π = load; ((¬turkey in sight)?;wait)∗; (turkey in sight)?; spin;
shoot describes the behavior of the hunter who loads the gun, waits for a turkey
until it appears and, when there is one in sight, spins the gun and shoots. The
action in sight? is a test action. DLTL does not include test actions. We define
a test action p? as an atomic action with no effect, which is executable only if p
holds: 2([p?]⊥ ← ¬p).

4 Example system model

As a further example, we describe an adaptation of the qualitative causal model
of the “common rail” diesel injection system from [6, 24] where:



– Pressurized fuel is stored in a container, the rail, in order to be injected at
high pressure into the cylinders. We ignore in the model the output flow
through the injectors.

– Fuel from the tank is input to the rail through a pump.
– A regulating system, including, in the physical system, a pressure sensor, a

pressure regulator and an Electronic Control Unit, controls pressure in the
rail; in particular, the pressure regulator, commanded by the ECU based on
the measured pressure, outputs fuel back to the tank.

– The control system repeatedly executes the sense pressure action while the
physical system evolves through internal events4.

Examples of formulas from the model are as follows:

2([pump weak fault]f in low)

shows the effect of the fault event pump weak fault.
Flows influence the (derivative of) the pressure in the rail, and the derivative

influences pressure, e.g.:

2(p decr ← f out ok, f in low)
2(p incr ← f out very low, f in low)
2(p steady ← f out low, f in low)
2([p change]p low ← p ok, p decr)
2([p change]p ok ← p low, p incr)
2([p change]⊥ ← p steady)
2([p change]⊥ ← p decr, p low)
2([p change]⊥ ← p incr, p normal)

The model of the pressure regulating subsystem includes:

2([sense pressure]p obs ok ← p ok)
2([sense pressure]p obs low ← p low)
2(f out ok ← normal mode, p obs ok)
2([switch mode]comp mode)
2(f out very low ← comp mode, p obs low)
2(f out low ← comp mode, p obs ok)

4 We make several further abstraction wrt [6, 24]. In particular, we consider “normal”
and “low” abstractions for the pressure value, and we assume that the qualitative
abstraction of the “normal” range of numeric values is large enough, the frequency (in
the real system) of readings from the pressure sensor is high enough, and the reaction
of the regulating system is fast and strong enough so that, when the system is driven
away from the nominal behavior by a change which is small enough, it quickly evolves
to a state which is steady in the qualitative abstraction. Alternatively, temporal
constraints can be used to state, e.g., that a sense pressure action is executed at most
every k internal events. This choice has, of course, a major influence on properties
that hold for the system model. Finding proper abstractions is a key problem in
qualitative reasoning (see, e.g., [26]) and we do not aim at solving it here.



Initially, everything is normal and pressure is steady:
p ok, p steady, f in ok, f out ok, normal mode

We have the following constraints in C:
2(〈p change〉true← (p ok ∧ p decr) ∨ (p low ∧ p incr)
2(〈switch mode〉true← normal mode ∧ p obs low)
[sense pressure]〈(Σ − {sense pressure})∗〉〈sense pressure〉true
2[pump weak fault]¬3〈pump weak fault〉True

The first models conditions under which a pressure change has to occur (sufficient
preconditions). The 2nd models the fact that a mode switch occurs when the
system is operating in normal mode and the pressure measured is low. The 3rd
one models the fact that the control system repeatedly executes sense pressure,
but other actions may occur in between. The 4th imposes that at most one fault
may occur in a run.

Given this specification, we can, for instance, check that if pressure is low
in one state, it will be normal in the 3rd next one, namely, that the temporal
formula 2(p low →©©©p ok) is satisfied in all the extensions.

Given the observation p obs low in a state, we can ask if there is an extension
of the domain description which explains it. A diagnosis of the fault is a run from
the initial state to a state in which p obs low holds and which does not contain
previous fault observation in the previous states. In general, we can compute
a diagnosis of the fault obsf by finding an extension of the domain description
which satisfies the formula: (¬obs1∧. . .∧¬obsn) U obsf , where obs1, . . . , obsn are
all the possible observations of fault. Here, p obs low is the only possible fault
observation, hence a diagnosis for it is an extension of the domain description
which satisfies 3p obs low.

5 Temporal answer sets and extensions for domain
descriptions

Given a domain descriptionD = (Π,Frame, C), the set of rules inΠ ∪FrameD∪
InitD is a general logic program extended with a restricted use of temporal
modalities. The action modalities [a] and© may occur in front of simple literals
within rules and the 2 modality occurs in front of all rules in Π. In order to
define the extensions of a domain description, we introduce a notion of temporal
answer set, extending the notion of answer set [11]. The extensions of a domain
description will be defined as the temporal answer sets of Π ∪ FrameD ∪ InitD
satisfying the integrity constraints C.

In the following, for conciseness, we will speak of simple literals and of tem-
poral literal rather than of simple fluent literals or temporal fluent literal. Also,
we will call rules the laws in Π ∪FrameD ∪ InitD, which have the general form:

2(l′1 or . . . or l
′
h ← l1 ∧ . . . ∧ lm ∧ not lm+1 ∧ . . . ∧ not lk),

where the l′i, lj ’s are simple or temporal literals. Additional rules of the form
[a1; . . . ; ah](l′1 or . . . or l

′
h ← l1∧. . .∧lm), where the l′i, lj ’s are simple or temporal

literals, will be used in the following.



As we have seen, temporal models of DLTL are linear models, consisting
in an action sequence σ and a valuation function V associating a propositional
evaluation with each state in the sequence (denoted by a prefix of σ) . To capture
this linear structure of temporal models, the notion of answer set has to be
extended accordingly. We define a partial temporal interpretation S as a set of
literals of the form [a1; . . . ; ak]l where a, . . . , ak ∈ Σ, meaning that literal l holds
in S in the state obtained by executing the actions a1; . . . ; ak in the order. Let
us define a notion of partial interpretation over σ.

Definition 1. Let σ ∈ Σω. A partial temporal interpretation S over σ is a set
of temporal literals of the form [a1; . . . ; ak]l, where a1 . . . ak is a prefix of σ, and
it is not the case that both [a1; . . . ; ak]l and [a1; . . . ; ak]¬l belong to S (namely,
S is a consistent set of temporal literals).

We define a notion of satisfiability of a literal l in a temporal interpretation S
in the state a1 . . . ak as follows. A literal l is true in a partial temporal interpreta-
tion S in the state a1 . . . ak (and we write S, a1 . . . ak |=t l), if [a1; . . . ; ak]l ∈ S;
a literal l is false in a partial temporal interpretation S in the state a1 . . . ak
(and we write S, a1 . . . ak |=f l), if [a1; . . . ; ak]l ∈ S; and, finally, a literal l is
unknown in a partial temporal interpretation S in the state a1 . . . ak (and we
write S, a1 . . . ak |=u l), otherwise.

The notion of satisfiability of a literal in a partial temporal interpretation in
a given state, can be extended to temporal literals and to rules in a natural way.
Given a partial temporal interpretation S over σ, and a prefix a1 . . . ak of σ we
say that

S, a1 . . . ak |=t [a]l if [a1; . . . ; ak; a]l ∈ S or a1 . . . ak, a is not a prefix of σ
S, a1 . . . ak |=f [a]l if [a1; . . . ; ak; a]l̄ ∈ S or a1 . . . ak, a is not a prefix of σ
S, a1 . . . ak |=u [a]l, otherwise.

For the temporal literals of the form ©l:
S, a1 . . . ak |=t ©l if [a1; . . . ; ak; b]l ∈ S, where a1 . . . akb is a prefix of σ.
S, a1 . . . ak |=f ©l if [a1; . . . ; ak; b]l̄ ∈ S, where a1 . . . akb is a prefix of σ.
S, a1 . . . ak |=u ©l, otherwise.

For default negation of a simple or temporal literal l:
S, a1 . . . ak |=t not l if S, a1 . . . ak |=f l or S, a1 . . . ak |=u l;
S, a1 . . . ak |=f not l, otherwise.
The three valued evaluation of conjunctions and disjunctions of literals is

defined as usual in ASP (see, for instance, [11]). Finally, we say that a rule
2(H ← Body) is satisfied in a partial temporal interpretation S if, for all ac-
tion sequences a1 . . . ak (including the empty one), S, a1 . . . ak |=t Body im-
plies S, a1 . . . ak |=t H. We say that a rule [a1; . . . ; ah](H ← Body), is sat-
isfied in a partial temporal interpretation S if S, a1 . . . ah |=t Body implies
S, a1 . . . ah |=t H.

We are now ready to define the notion of answer set for a set P of rules that
do not contain default negation. Let P be a set of rules over an action alphabet
Σ, not containing default negation, and let σ ∈ Σω.



Definition 2. A partial temporal interpretation S over σ is a temporal answer
set of P if S is minimal (in the sense of set inclusion) among the partial inter-
pretations satisfying the rules in P .

We want to define answer sets of a program P possibly containing negation.
Given a partial temporal interpretation S over σ ∈ Σω, we define the reduct, PS,
of P relative to S extending the transformation in [11] to compute a different
reduct of P for each prefix a1, . . . , ah of σ.

Definition 3. The reduct, PSa1,...,ah
, of P relative to S and to the prefix a1, . . . , ah

of σ , is the set of all the rules [a1; . . . ; ah](H ← l1 ∧ . . . ∧ lm), such that
2(H ← l1∧ . . .∧ lm∧not lm+1∧ . . .∧not lk) is in P and, for all i = m+1, . . . , k,
either S, a1, . . . , ah |=f li or S, a1, . . . , ah |=u li, (where l, l1, . . . , lk are simple or
temporal literals). The reduct PS of P relative to S over σ is the union of all
reducts PSa1,...,ah

for all prefixes a1, . . . , ah of σ.

Definition 4. A partial temporal interpretation S over σ is an answer set of P
if S is an answer set of the reduct PS.

The definition above is a natural generalization of the usual notion of answer
set to programs with temporal rules. Observe that the reduct PS is inherently
infinite, as well as the answer sets. This is in accordance with the fact that
temporal models are infinite. We can prove the following:

Proposition 1. Given a domain description D over Σ and an infinite sequence
σ, any answer set of Π ∪ FrameD ∪ InitD over σ is a total answer set over σ.

In the following, we define the notion of extension of a domain description
D = (Π,Frame, C) over Σ in two steps: first, we find the answer sets of Π ∪
FrameD ∪ InitD; second, we filter out all the answer sets which do not satisfy
the temporal constraints in C. For the second step, we need to define when a
temporal formula α is satisfied in a total temporal interpretation S. Observe
that, a total answer set S over σ can be easily transformed into a temporal
model as defined in Section 2. Given a total answer set S over σ we define the
corresponding temporal model as MS = (σ, VS), where p ∈ VS(a1, . . . , ah) if and
only if [a1; . . . ; ah]p ∈ S, for all atomic propositions p. We say that a total answer
set S over σ satisfies a DLTL formula α if MS , ε |= α.

Definition 5. An extension of a domain description D = (Π,Frame, C) over
Σ, is any (total) answer set S of Π ∪FrameD ∪ InitD satisfying the constraints
in C.

Notice that, in general, a domain description may have more than one ex-
tension even for the same action sequence σ: the different extensions of D with
the same σ account for the different possible initial states (when the initial state
is incompletely specified) as well as for the different possible effects of nondeter-
ministic actions.



6 Translation to ASP

We now show how to translate a domain description to standard ASP.
A model is a sequence of actions and a valuation function giving the value

of fluents in the states of the model. It can be represented in ASP by the
predicates next(State, State′), occurs(Action, State) and holds(Literal, State).
Predicate next must be defined so that each state has exactly one successor state.
An action law 2([a]l ← l1, . . . , lm) can be easily translated as holds(l, S′) ←
next(S, S′), occurs(a, S), holds(l1, S), . . . , holds(lm, S) and similarly for the other
kind of formulas of the action theory5. Occurrence of exactly one action in each
state is also encoded. To deal with constraints, we use the predicate sat(Form, S),
to express satisfiability of a formula DLTL α in a state of a model, where Form
is an ASP atom representing formula α, and S is a state. Let at[α] be the ASP
atom representing the formula. We exploit the equivalence between regular ex-
pressions and finite automata and we make use of an equivalent formulation of
DLTL formulas in which until formulas are indexed with finite automata rather
than regular expressions [14]. Thus we have αUA(q)β instead of αUπβ, where
L(A(q)) = [[π]]. More precisely, let A = (Q, δ,QF ) be an ε-free nondeterministic
finite automaton over the alphabet Σ without an initial state, where Q is a finite
set of states, δ : Q×Σ → 2Q is the transition function, and QF is the set of final
states. Given a state q ∈ Q, we denote with A(q) an automaton A with initial
state q.

In the definition of predicate sat for until formulas, we make use of the
following axioms [19]:

αUA(q)β ≡ (β ∨ (α ∧
∨
a∈Σ〈a〉

∨
q′∈δ(q,a) αUA(q′)β))

(q is a final state of A)
αUA(q)β ≡ α ∧

∨
a∈Σ〈a〉

∨
q′∈δ(q,a) αUA(q′)β

(q is not a final state of A)

The definition of sat is:

fluent: sat(at[f ], S)← holds(f, S).

or: sat(at[α ∨ β], S)← sat(at[α], S).
sat(at[α ∨ β], S)← sat(at[β], S).

neg: sat(at[¬α], S)← not sat(at[α], S).

until: sat(at[αUA(q)β], S)←
sat(at[α], S),
occurs(a, S),
next(S, S′),
sat(at[αUA(q′)β], S′).

5 For instance, the causal law 2(©l ← l1 ∧ ©l2) is trasnslated to holds(l, S′) ←
next(S, S′), holds(l1, S), holds(l2, S

′); the precondition law 2([a]⊥ ← l1, . . . , lm), to
← occurs(a, S), holds(l1, S), . . . , holds(lm, S).



(for each a ∈ Σ and q′ ∈ δ(q, a))
sat(at[αUA(q)β], S)←

sat(at[β], S).
(if q is a final state of A)

Since states are complete, we can identify negation as failure with classical
negation, thus having a two valued interpretation of DLTL formulas.

We must also add a constraint ← not sat(at[α], 0) for each temporal con-
straint α in the domain description.

Given a DLTL formula α, we can generate the corresponding ASP rules with
the above transformation. It is easy to see that the number of the rules will
be finite, since each rule will be applied to a subformula of α, or to a formula
derived from an until subformula. We say that a formula γUA(q′)β is derived
from a formula γUA(q)β if q′ is reachable from q in A.

It can be proved that there is a one to one correspondence between the
extensions of a temporal domain description and the answer sets of its translation
in ASP.

Available ASP systems allow to deal only with finite sets of ground literals,
and thus they do not allow to represent infinite sequences of states. To cope
with this problem we exploit the property that any infinite LTL (and DLTL)
model can be finitely represented by a finite sequence of states with a loop. Of
course, the definition of predicate next must be modified accordingly, to capture
the fact that each state has a unique next state and the last state has one of its
predecessors in the sequence as the next state6

We show that the above definition of sat works also in this case by consid-
ering, in particular, the case of until formulas. If S is a state belonging to the
loop the goal sat(at[αUA(q)β], S) can depend cyclically on itself. This happens if
the only rule which can be applied to prove the satisfiability of αUA(q)β or one
of its derived formulas in each state of the loop is the first rule of until. In this
case sat(αUA(q)β, S) will be undefined, which amounts to say that αUA(q)β is
false. This is correct, since, if this happens, α must be true in each state of the
loop, and β must be false in all states of the loop corresponding to final states
of A. Thus, by unfolding the cyclic sequence into an infinite sequence, αUA(q)β
will never be satisfied.

Following the approach used in bounded model checking [5], satisfiability of
a domain description D can be proved by iteratively increasing the length k of

6 Special attention is also required in the computation of the fluents which hold in
the state si of the sequence which is the next state of the last state (the target
of the loop back). Such a state is the next state of two different states (the last
state and the state si−1). To deal with this case, we have added a new predicate
holds next(L, S), which computes the literals L which are caused to hold in the
state next to S, according to the application of the action, causal and persistency
laws. The predicate hold next is used to freeze the effects of action execution and is
defined as holds in the translation above. Then, holds is defined from hold next, by
the rules: holds(L, S) : −holds next(L, S) and ¬holds(L, S) : −¬holds next(L, S).



the sequence searched for, until a cyclic model is found (if one exists). On the
other hand, validity of a formula α can be proved, as usual in model checking, by
verifying that D extended with ¬α is not satisfiable. For instance, the translation
of the domain description in section 4, for a given k > 5, has a finite number
of answer sets, some in which no fault occurs, some in which the fault occurs
in state 0, 1, . . . , k − 6. Such extensions correspond to temporal answer sets of
the given domain description and the formula 2(p low →©©©p ok) holds in
these extensions. The techniques in [5] (in particular, section 5.1) can be used,
in general, to achieve completeness in proving validity.

In many cases (e.g. planning) we want to reason only on finite prefixes of
infinite models. This can be achieved by just adding to the domain description
one action dummy, and the constraints 3〈dummy〉true and 2(〈dummy〉true→
〈dummy〉〈dummy〉true) stating that, from some point on, only dummy will be
executed. If the ASP computation return a model, it consists of a finite sequence
satisfying the domain description ending with a loop of dummy actions.

7 Conclusions and related work

In this paper we developed an extension of ASP for dealing with temporal action
theories with general DLTL constraints, which include regular programs indexing
temporal modalities. The approach naturally deals with non-terminating com-
putations and relies on bounded model checking techniques for the verification
of temporal DLTL formulas.

In the last decade, ASP has been shown to be well suited for reasoning
about dynamic domains [11]. In [3] Baral and Gelfond provide an encoding in
ASP of the action specification language AL, which extends the action descrip-
tion language A [10] by allowing static and dynamic causal laws, executability
conditions and concurrent actions. The proposed approach has been used for
planning [23] and diagnosis (see[1]). In [8, 9] a logic-based planning language,
K, is presented which is well suited for reasoning about incomplete knowledge
and is implemented on the top of the DLV system. In [16, 15] the languages C
and C+ provide an account of causality and deal with actions with indirect and
non-deterministic effects and with concurrent actions. While our action language
does not deal with concurrent actions and incomplete knowledge, our proposal
extends the ASP approach for reasoning about dynamic domains with infinite
computations.

Bounded model checking [5] is based on the idea to search for a counterex-
ample of the property to be checked in executions which are bounded by some
integer k. The value of k is increased until a counterexample is found, the prob-
lem becomes intractable or a known upper bound is reached. SAT based bounded
model checking methods do not suffer from the state explosion problem as the
methods based on BDDs. Helianko and Niemelä [18] have developed a compact
encoding of bounded model checking of LTL formulas as the problem of finding
stable models of logic programs. In this paper, we have defined a similar ap-
proach for encoding bounded model checking of DLTL formulas in ASP. While



the construction of a Büchi automaton [19, 14] from a DLTL formula requires a
specific machinery to deal with program expressions with respect to the usual
construction for LTL, bounded LTL model checking can be naturally extended
to deal with program expressions in temporal modalities, by a direct encoding
in ASP of the recursive definition of the modalities.

The presence of temporal constraints in our action language has some rela-
tion with the work on temporally extended goals in [7, 4]. These papers, however,
are concerned with the problem of expressing preferences among goals and ex-
ceptions in goal specification.

The action language presented in this work is an ASP formulation of the
action theory defined in [13] which, instead, was based on a monotonic solution
to the frame problem. Due to the different treatment of the frame problem,
the notion of extension defined here is not equivalent to the one in [13]. In
particular, the formalization of causal rules in [13] does not allow reasoning by
cases. Moreover, the completion solution requires action and causal laws to be
stratified to avoid unexpected extensions when action and causal laws contain
cyclic dependencies.
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24. A. Panati and D. Theseider Dupré. Causal simulation and diagnosis of dynamic
systems. In AI*IA 2001: Advances in Artificial Intelligence, Springer Verlag LNCS
2175.

25. R. Reiter. The frame problem in the situation calculus: a simple solution (some-
times) and a completeness result for goal regression. In Artificial Intelligence and
Mathematical Theory of Computation: Papers in Honor of John McCarthy, V. Lifs-
chitz, ed., 359–380, Academic Press, 1991.

26. M. Sachenbacher and P. Struss. Task-dependent qualitative domain abstraction.
Artificial Intelligence, 162(1-2), 121–143, 2005.


