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Abstract. We suggest soft constraints as a mean to parametrically rep-
resent and solve “weighted” Argumentation problems: different kinds of
preference levels related to arguments, e.g. a score representing a “fuzzi-
ness”, a “cost” or a probability level of each argument, can be represented
by choosing different semiring algebraic structures. The novel idea is to
provide a common computational and quantitative framework where the
computation of the classical Dung’s extensions, e.g. the admissible ex-
tension, has an associated score representing “how much good” the set is.
Preference values associated to arguments are clearly more informative
and can be used to prefer a given set of arguments over others with the
same characteristics (e.g. admissibility). Moreover, we propose a map-
ping from weighted Argumentation Frameworks to Soft Constraint Sat-
isfaction Problems (SCSPs); with this mapping we can compute Dung
semantics (e.g. admissible and stable) by solving the related SCSP. To
implement this mapping we use JaCoP, a Java constraint solver.

1 Introduction

Interactions are a core part of all multi-party systems (e.g. multi-agent systems).
Argumentation [12] is based on the exchange and the evaluation of interacting
arguments which may represent information of various kinds, especially beliefs
or goals. Argumentation can be used for modeling some aspects of reasoning, de-
cision making, and dialogue. For instance, when an agent has conflicting beliefs
(viewed as arguments), a (nontrivial) set of plausible consequences can be de-
rived through argumentation from the most acceptable arguments for the agent.
Argumentation can be seen as the process emerging from exchanges of among
agents to persuade each other and and bring about a change in intentions [21,
19]. Argumentation has become an important subject of research in Artificial In-
telligence and it is also of interest in several disciplines, such as Logic, Philosophy
and Communication Theory [23].

Many theoretical and practical developments build on Dung’s seminal the-
ory of argumentation. A Dung Argumentation Framework (AF) is a directed



graph consisting of a set of arguments and a binary conflict based attack rela-
tion among them. The sets of arguments to be considered are then defined under
different semantics, where the choice of semantics equates with varying degrees
of scepticism or credulousness.

The other ingredient in our research is Constraint Programming [24], which
is a powerful paradigm for solving combinatorial search problems that draws
on a wide range of techniques from artificial intelligence, computer science,
databases, programming languages, and operations research. The idea of the
semiring-based formalism [7, 5] was to further extend the classical constraint no-
tion by adding the concept of a structure representing the levels of satisfiability
of the constraints. Such a structure (see Sec. 3 for further details) is a set with
two operations: one + is used to generate an ordering over the preference levels,
while X is used to combine these levels. Because of the properties required on
such operations, this structure is similar to a semiring (see Sec. 3). Problems
defined according to this semiring-based framework are called Soft Constraint
Satisfaction Problems (SCSPs).

In this paper we show that different weighted AF's based on fuzziness, prob-
ability or a preference in general (and already studied in literature, e.g. in [23,
3]), can be modeled and solved with the same soft constraint framework by
only changing the related semiring in order to optimize the different criteria.
Also classical AF's can be represented inside the soft framework by adopting the
Boolean semiring. We provide a mapping from AF's to (S)CSPs in a way that the
solution of the SCSP consists in the “best” desired extension, where “best” is
computed by aggregating (with x) the preference scores of all the chosen argu-
ments, and comparing the final values (with 4). The classical extensions of Dung
can be found with our mapping, i.e. admissible, preferred, complete, stable and
grounded ones. At last, we show an implementation of a CSP with JaCoP [22],
a Java Constraint Programming solver.

Clearly, the classical attack relationship is not enough informative to deal
with problems where we however need to take a decision: suppose a judge must
decide between the arguments of two parties, and often no conclusive demon-
stration of the rightness of one side is possible. The arguments will not have
equal value for the judge and the case will be decided by the judge preferring
one argument over the other [23]. Moreover, having a quantitative framework
permits us to quantify the aggregation of chosen arguments and to prefer a set
of arguments over another. Examples in the real world are represented by scores
given to comments in Youtube or news in Slashdot, or topics in Discussion Fora
in general [18]. As the set of arguments gets wider, the search of the best solu-
tions becomes a demanding task, and constraint-based frameworks come with
many and powerful solving techniques: notice that deciding if a set is a preferred
extension is a CO-N P-complete problem [4]. Moreover, preference score can be
used to cut not promising solutions during the search and, however, to refine it
by finding the only the best solutions. In this paper we start from qualitative
argumentation [23,3,2] and we move towards a quantitative solution.



The remainder of this paper is organized as follows. In Sec. 2 we report the
theory behind Dung Argumentation, while in Sec. 3 we summarize the back-
ground about soft constraints. Section 4 shows the basic idea of weighted AF
based on semirings; in Sec. 5 we propose the mapping from AFs to SCSPs, the
proofs of their solution equivalence and we show a practical encoding in JaCoP.
A comparison with related work is given in Sec. 6. Finally, Sec. 7 presents our
conclusions.

2 Dung Argumentation

In [12], the author has proposed an abstract framework for argumentation in
which he focuses on the definition of the status of arguments. For that purpose,
it can be assumed that a set of arguments is given, as well as the different
conflicts among them. An argument is an abstract entity whose role is solely
determined by its relations to other arguments.

Definition 1. An Argumentation Framework (AF) is a pair (Args, R) of a set
Ags of arguments and a binary relation R on Aygs called the attack relation.
Va;,a; € A, a;Ra; means that a; attacks a;. An AF may be represented by
a directed graph (the interaction graph) whose nodes are arguments and edges
represent the attack relation. A set of arguments B attacks an arqgument a if a is
attacked by an argument of B. A set of arguments B attacks a set of arguments
C if there is an argument b € B which attacks an argument c € C.

The “acceptability” of an argument [12] depends on its membership to some
sets, called extensions. These extensions characterize collective “acceptability”.
Let AF = (A,4s, R), B C Ayg4s. The main characteristic properties are:
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Fig. 1. An example of Dung Argumentation Framework; e.g. ¢ attacks d.

In Fig. 1 we show an example of AF represented as an interaction graph: the
nodes represent the arguments and the directed arrow from ¢ to d represents
the attack of ¢ towards d, that is ¢ Rd. Dung [12] gave several semantics to
“acceptability”. These various semantics produce none, one or several acceptable
sets of arguments, called extensions. In Def. 2 we define the concepts of conflict-
free and stable extensions:



Definition 2. A set B C A, 4, is conflict-free iff it does not exist two arguments
a and b in B such that a attacks b. A conflict-free set B C A,q4s is a stable
extension iff for each argument which is not in B, there exists an argument in
B that attacks it.

The other semantics for “acceptability” rely upon the concept of defense:

Definition 3. An argument b is defended by a set B C A, 45 (or B defends b)
iff for any argument a € A,g4s, if a attacks b then B attacks a.

An admissible set of arguments according to Dung must be a conflict-free set
which defends all its elements. Formally:

Definition 4. A conflict-free set B C A,q4s is admissible iff each argument in B
is defended by B.

Besides the stable semantics, three semantics refining admissibility have been
introduced by Dung [12]:

Definition 5. A preferred extension is a mazimal (w.r.t. cardinality) admissible
subset of Apgs. An admissible B C A,gs is a complete extension iff each argument
which is defended by B is in B. The least (w.r.t. cardinality) complete extension
18 the grounded extension.

A stable extension is also a preferred extension and a preferred extension
is also a complete extension. Stable, preferred and complete semantics admit
multiple extensions whereas the grounded semantics ascribes a single extension
to a given argument system.

Notice that deciding if a set is a stable extension or an admissible set can be
computed in polynomial time, but deciding if a set is a preferred extension is a
CO-N P-complete problem [4].

3 Soft Constraints

A c-semiring [7, 5] S (or simply semiring in the following) is a tuple (A, +, x,0,1)
where A is a set with two special elements (0,1 € A) and with two operations
+ and X that satisfy certain properties: + is defined over (possibly infinite)
sets of elements of A and thus is commutative, associative, idempotent, it is
closed and O is its unit element and 1 is its absorbing element; X is closed,
associative, commutative, distributes over 4+, 1 is its unit element, and O is
its absorbing element (for the exhaustive definition, please refer to [7]). The +
operation defines a partial order <g over A such that a <g b iff a + b = b; we
say that a <g b if b represents a value better than a. Other properties related
to the two operations are that 4+ and x are monotone on <g, 0 is its minimum
and 1 its maximum, (4, <g) is a complete lattice and + is its lub. Finally, if
x is idempotent, then + distributes over x, (A4, <g) is a complete distributive
lattice and x its glb.



A soft constraint [7,5] may be seen as a constraint where each instantiation
of its variables has an associated preference. Given S = (4, +, x,0,1) and an
ordered set of variables V over a finite domain D, a soft constraint is a function
which, given an assignment 7 : V' — D of the variables, returns a value of the
semiring. Using this notation C =  — A is the set of all possible constraints
that can be built starting from S, D and V. Any function in C involves all the
variables in V', but we impose that it depends on the assignment of only a finite
subset of them. So, for instance, a binary constraint c, , over variables x and y, is
a function ¢, : V' — D — A, but it depends only on the assignment of variables
{z,y} C V (the support of the constraint, or scope). Note that cn[v := d;] means
cn’ where 1 is  modified with the assignment v := d;. Note also that cn is the
application of a constraint function ¢: V — D — A to a function n : V. — D;
what we obtain, is a semiring value cn = a. 0 and 1 respectively represent the
constraint functions associating 0 and 1 to all assignments of domain values (i.e.
the @ function returns the semiring value a).

Given the set C, the combination function ® : C x C — C is defined as
(c1 ® e2)n = c1m X cam (see also [7,5]). Informally, performing the ® or between
two constraints means building a new constraint whose support involves all the
variables of the original ones, and which associates with each tuple of domain
values for such variables a semiring element which is obtained by multiplying the
elements associated by the original constraints to the appropriate sub-tuples.

Given a constraint ¢ € C and a variable v € V, the projection [7,5, 6] of ¢ over
V —{v}, written ¢ |}y () is the constraint ¢’ such that ¢'n =}, , enfv := dJ.
Informally, projecting means eliminating some variables from the support.

A SCSP [5] defined as P = (C, con) (C is the set of constraints and con C V,
i.e. a subset the problem variables). A problem P is a-consistent if blevel(P) =
a [5]; P is instead simply “consistent” iff there exists « >g 0 such that P is a-
consistent [5]. P is inconsistent if it is not consistent. The best level of consistency
notion defined as blevel(P) = Sol(P) |y, where Sol(P) = (Q C) Jcon [5]-

<a>—1 <a,a>— 5 <a>—+5
<b>—9 <a,b>— 1 <b>—+5
<b,a>— 2
Cy <b,b>— 2 Cs
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Fig. 2. A soft CSP based on a Weighted semiring.

A SCSP Ezxample. Figure 2 shows a weighted CSP as a graph: the semiring
used for this problem is the Weighted semiring, i.e. (Rt min, 4, 00,0) (+ is the
arithmetic plus operation). Variables and constraints are represented respectively
by nodes and by undirected arcs (unary for ¢; and c3, and binary for ¢3), and



semiring values are written to the right of each tuple. The variables of interest
(that is the set con) are represented with a double circle (i.e. variable X). Here
we assume that the domain of the variables contains only elements a and b.
For example, the solution of the weighted CSP of Fig. 2 associates a semiring
element to every domain value of variable X . Such an element is obtained by first
combining all the constraints together. For instance, for the tuple (a, a) (that is,
X =Y = a), we have to compute the sum of 1 (which is the value assigned to
X = a in constraint ¢1), 5 (which is the value assigned to (X = a,Y = a) in
¢2) and 5 (which is the value for Y = a in ¢3). Hence, the resulting value for
this tuple is 11. We can do the same work for tuple (a,b) — 7, (b,a) — 16 and
(b,b) — 16. The obtained tuples are then projected over variable x, obtaining
the solution (a) — 7 and (b) — 16. The blevel for the example in Fig. 2 is 7
(related to the solution X =a, Y = ).

4 Weighted Argumentation

Weighted argumentation systems [10, 13] extend Dung-style abstract argumen-
tation systems by adding numeric weights to every node (or attack) in the attack
graph, intuitively corresponding to the strength of the attack, or equivalently,
how reluctant we would be to disregard it. To illustrate the need to extend the
classical AF with preferences, we consider two individuals P and @) exchanging
arguments A and B about the weather forecast (the example is taken from [23]):

P: Today will be dry in London since BBC forecast sunshine = A
Q: Today will be wet in London since CNN forecast rain = B

A and B claim contradictory conclusions and so attack each other. Under
Dung’s preferred semantics, there are two different admissible extensions repre-
sented by the sets {A} and {B}, but neither argument is sceptically justified.
One solution is to provide some means for preferring one argument to another
in order to find a more informative answer, for example, the most trustworthy
extension. For example, one might reason that A is preferred to B because the
BBC are deemed more trustworthy than CNN. Suppose to have a fuzzy trust
score associated with each argument, as shown in Fig. 3. This score, (between 0
and 1 that is between low and high trustworthiness) can be then used to prefer
{A} with a score of 0.9 over { B} with a score of 0.7, i.e. forecast from BBC than
from CCN.

0.9 0.7
BBC
sunshine

Fig. 3. The CNN/BBC example with trust scores.




In some works [17] the preference score is associated with the attack rela-
tionship instead of with the argument itself and, thus, it models the “strength”
of the attack, e.g. a fuzzy attack. This model can be cast in ours by compos-
ing these strengths in a value representing the preference of the argument, as
in Fig. 4, where the trustworthiness of argument CNN-rain can be computed
as the mathematical mean (or in general a function o, as defined also in [9] for
computing the trust of a group of individuals) of the values associated with the
attack towards it, i.e. (0.9 4+ 0.5)\2 = 0.7. Computing a trust evaluation of a
node by considering a function of the links ending in it is a well-known solution,
e.g. the PageRank of Google [18]. By composing attack and support values, it is
also possible to quantitatively study bipolar argumentation frameworks [1].

-

Fig. 4. A fuzzy Argumentation Framework with fuzzy scores modeling the attack
strength.

Notice that in [23,3,2] the preference among arguments is given in a quali-
tative way, that is argument a is better than argument b, which is better than
argument c; in this section we study the problem from a quantitative point of
view, with scores associated with arguments. We suggest the algebraic semiring
structure (see Sec. 3) as a mean to parametrically represent and solve all the
“weighted” AF's presented in literature (see Sec. 6), i.e. to represent the scores;
in the following we provide some examples on how semirings fulfil these different
tasks.

An argument can be seen as a chain of possible events that makes the hy-
pothesis true. The credibility of a hypothesis can then be measured by the total
probability that it is supported by arguments. The proper semiring to solve this
problem consists in the Probabilistic semiring [5]: ([0..1], maz, X,0, 1), where the
arithmetic multiplication (i.e. x) is used to compose the probability values to-
gether.

The Fuzzy Argumentation [27] approach enriches the expressive power of
the classical argumentation model by allowing to represent the relative strength
of the attack relationships between arguments, as well as the degree to which
arguments are accepted. In this case, the Fuzzy semiring ([0..1], min, max, 0, 1)
can be used.

In addition, the Weighted semiring (R*, min, +,0, 1), where + is the arith-
metic plus, can model the (e.g. money) cost of the attack: for example, during
an electoral campaign, a candidate could be interested in how many efforts or
resources he should spend to counteract an argument of the opposing party.



At last, with the Boolean semiring ({true, false},V, A, false,true) we can
cast the classic AF's originally defined by Dung [12] in the same semiring-based
framework.

Moreover, notice that the cartesian product of two semirings is still a semir-
ing [7,5], and this can be fruitfully used to describe multi-criteria constraint
satisfaction and optimization problems. For example, we can have both a prob-
ability and a fuzzy score given by a couple (¢, f); we can optimize both costs at
the same time.

We can extend the definitions provided in Sec. 3 in order to express all these
weights of the attack relations with a semiring based environment. The following
definitions model the semiring-based problem.

Definition 6. A semiring-based Argumentation Framework (AFs) is a quadru-
ple (Aygs, R,W,S) of a semiring S = (A,+,x,0,1), a set A,4s of arguments,
the attack binary relation R on A,gs, and a unary function W : A.ge — A
called the weight function. Va € A, 45, W(a) = s means that a has a preference
level s € A.

Therefore, the weight function W associates each argument with a semir-
ing value (s € A) that represents the preference expressed for that argument
in terms of cost, fuzziness and so on. For example, using the Fuzzy semiring
([0..1], min, max,0,1) semiring for the problem represented in Fig. 3 allows us
to state that the admissible extension {A} (with a score of 0.9) is better than
the other admissible extension {B} (with a s.core of 0.7) since 0.9 > 0.7. There-
fore, with an AFg our goal is to find the extensions proposed by Dung (e.g. the
admissible extensions), but with an associated preference value. Therefore, soft
constraints can be used to solve these problems while considering also the best
solution(s) (according to the notion of blevel, and to cut the solutions with a
preference below a threshold a.

Ezample 1. Concerning the interaction graph in Fig. 5, it represents the Weighted
AFs W = (Apgs, R) with S = (R* min, +,00,0) and A,,s = {a,b,c,d,e},
R(a,b) = 0.7, R(c,b) = 0.8, R(¢,d) = 0.9, R(d,c) = 0.8, R(d,e) = 0.5, R(e,e) =
0.6 and W(a) = 7,W(b) = 20,W(c) = 6,W(d) = 10,W(e) = 12. Notice that
e attacks itself, that is in contrast with itself, e.g. “We have sunshine and it’s
raining” (it may be possible).

5 Mapping AFs to SCSPs

Our second result is a mapping from AF (and AFs) to (S)CSPs. Given an
AFg = (Aygs, R, W, S), we define a variable for each argument a; € A,g4s, i.e.
V = {a1,as9,...,a,} and each of these argument can be taken or not, i.e. the
domain of each variable is D = {1,0}, and if it is taken, a cost in the semiring
can be assigned, mapping the level of preference of this argument.

To represent the quantitative preference over arguments, in this mapping we
need only unary soft constraints on each variable, while the other constraints
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Fig. 5. An example of a weighted interaction graph.

modeling, for example, the conflict-free relationship (see Sec. 2) are crisp even
if represented in the soft framework. We plan to extend also these constraints
to properly-said soft ones as suggested in Sec. 7. In the following explanation,
notice that b attacks a meas that b is a parent of a in the interaction graph,
and c attacks b attacks a means that ¢ is a grandparent of a. To compute the
(weighted) extensions of Dung we need to define specific sets of constraints:

1. Preference constraints. The weight function W(a;) = s (s € A) of an AFg
can be modeled with the unary constraints cq, (a; = 1) = s, otherwise, when
a; is assigned to 0), the argument is not taken in the considered extension
an so its cost must not be computed.

2. Conflict-free constraints. Since we want to find the conflict-free sets, if
R(a;,a;) is in the graph we need to prevent the solution to include both
a; and a; in the considered extension: ¢, q;(a; = 1,a; = 1) = 0. For the
other possible assignment of the variables ((a = 0,b = 1)(a = 1,0 = 0) and
(@ =0,b=0)), cq;a; = 1, since these assignments are permitted: in these
cases we are choosing only one argument between the two (or none of the
two) and thus, we have no conflict.

3. Admissible constraints. For the admissibility, we need that, if child ar-
gument a; has a parent node ay but a; has no grandparent node a, (parent
of ay), then we must avoid to take a; in the extension because it is attacked
and cannot be defended by any ancestor: expressed with a unary constraint,

Cq;(a; =1)=0.

Moreover, if a; has several grandparents ag1,ag2, ..., agr and only one par-
ents ay (child of ag1,a42,...,a4r), we need to add a k + l-ary constraint
Cayagr,age (@ = 1,091 = 0,...,ag, = 0) = 0. The explanation is that at

least a a grandparent must be taken in the admissible set, in order to defend
a; from one of his parents as. Notice that, if a node is not attacked (i.e. he
has no parents), he can be taken or not in the admissible set.

4. Complete constraints. To compute a complete extension B, we need that
each argument a; which is defended by B is in B (see Sec. 2). This can
be enforced by imposing that for each a; taken in the extension, also all its
s1, 052, - - - , Gsk grandsons must be taken in the extension, i.e. ¢4, a4, 0., (@i



l,as1 = 1,...,a4 = 1) = 1 and also if a; = 0 this constraint is satisfied; 0

otherwise.

5. Stable constraints. If we have a child node a; with multiple parents
afi,aga, ..., apk, we need to add the constraint ca,a;,,....as (@i = 0,051 =
0,...,a5, = 0) = 0. In words, if a node is not taken in the extension (i.e.

a; = 0), then it must be attacked by at least one of the taken nodes, that
is at least a parent of a; needs to be taken in the stable extension (that is,
ap; = 1).

Moreover, if a node a; has no parent in the graph, it has to be included
in the stable extension (notice a; cannot be attacked by nodes inside the
extension, since he has no parent). The corresponding unary constraint is
Cq;(a; =0) = 0.

Notice that by using the Boolean semiring, also the class of preference con-
straints becomes crisp and we can consequently model classical Dung AFs, that
is not weighted frameworks. The following proposition states the equivalence
between solving an AFg and its related SCSP.

Proposition 1 (Solution equivalence). Given an AFg = (A, 45, R, W, S) and
S = (A, +,x,0,1), the solutions of the related SCSP obtained with the mapping
corresponds to find over AFg the best(according to +)

— conflict-fee extensions by using preference and conflict-free constraint classes.

— admissible extensions by using preference, conflict-free and admissible con-
straint classes.

— complete extensions by using preference, conflict-free and admissible con-
straint classes.

— stable extensions by using preference, conflict and stable constraint classes.

By using the Boolean semiring the solutions of the (S)CSP respectively corre-
spond to all the classical admissible, complete and stable extensions of Dung [12].

Moreover, to find the preferred extension (see Sec. 2) we simply need to find
all the maximal (w.r.t. set inclusion) admissible extensions of A,4s, that is to
find all the admissible sets (using the first three classes of constraints) and then
returning only those subsets with the highest number of variables assigned to 1.
Similar considerations hold for the grounded extension (see Sec. 2), that is we
need to find all the complete extensions (the first four classes of constraints) and
then to return only those subsets with the lowest number of variables assigned
to 14

As suggested in Sec. 4, an AFg can be represented as a weighted interaction
graph as in Fig. 5, where we instead suppose to use a Weighted semiring, i.e.
(R* min, +, 00,0), e.g. the argument a has received 7 negative comments. The
goal in this case is to choose the extensions of Dung and to minimize the sum of
the negative comments at the same time.

4 Different interpretations of grounded /preferred extensions can be given by consider-
ing their cost instead of their the cardinality.



Notice that the presented soft constraint framework can be easily used to
solve argumentation problems with additional constraints, as proposed in [11]
only for boolean constraints. We can find further requirements on the sets of
arguments which are expected as extensions, like “extensions must contain ar-
gument a when they contain b” or “extensions must not contain one of ¢ or d
when they contain a but do not contain b”.

Solving with JaCoP

The Java Constraint Programming solver [22], JaCoP in short, is a Java li-
brary, which provides Java user with Finite Domain Constraint Programming
paradigm. It provides different type of constraints: most commonly used prim-
itive constraints, such as arithmetical constraints, equalities and inequalities,
logical, reified and conditional constraints, combinatorial (global) constraints.
The last version of JaCoP proposes many features, such as pruning events, mul-
tiple constraint queues, special data structures to handle efficiently backtracking,
iterative constraint processing, and many more [22]. Moreover, it can run also
large examples, e.g. ca. 180000 constraints.

// Defining the Variables of the SCSP
v[0] = new BooleanVariable(store, "a");
v[1] = new BooleanVariable(store, "b"
v[2] = new BooleanVariable(store, "c"
v[3] = new BooleanVariable(store, "d"
v[4] = new BooleanVariable(store, "e"

/I conflict-free constraints

public static void imposeConstraintConflictFree(Store store, BooleanVariable[] v) {
store.impose(new ExtensionalConflictVA(new BooleanVariable[]{v[0], V[l

new intf][K{{1, 1}}));
store.impose(new ExtensionalConflictVA(new BooleanVariable[]{v[2], V[l

new intl][K{{1, 1}}));
store.impose(new ExtensionalConflictVA(new BooleanVariable[]{v[2], v[3]},

new intl][{{1, 1}}));
store.impose(new ExtensionalConflictVA(new BooleanVariable[]{v[3], v[2]},

new intl][[{{1, 1}}));
store.impose(new ExtensionalConflictVA(new BooleanVariable[]{v[3], v[4]},

new intl][K{{1, 1}}));
store.impose(new ExtensionalConflictVA(new BooleanVariable[l{v[4], v[4]},

new intf][{{1, 1}})); }

// stable constraints
public static void imposeConstraintStableExtensions(Store store, BooleanVariable[] v) {
store.impose(new ExtensionalConflictVA(new BooleanVariable[]{v[0]}, )

_ , _ _ new int{J[1{{O}));
store.impose(new ExtensionalConflictVA(new BooleanVariable[|{v[0], v[2], V[1]},

_ , _ _ new int{][}{{0, 0, O}}));
store.impose(new ExtensionalConflictVA(new BooleanVariable[]{v[2],

=
“«

new int{J[}{{0, O}));

store.impose(new ExtensionalConflictVA(new BooleanVariable[]{v[3], v[4]},

new intf][I{{0, 0}})); }

Fig. 6. The constraint in JaCoP for the mapping of Fig. 5.



In Fig. 6 we show the definition in JaCoP of all the conflict-free and stable
constraints used to solve the AFg example in Fig. 5. The full description of the
code can be found in [8]. Considering for example the first conflict-free constraint
in Fig. 5, v[0], v[1], means that the constraint is between a and b and (1, 1) that
the the constraint is not satisfied if both variables are taken in the set.

Considering the example in Fig. 5 the admissible sets are: {a}, {c}, {d}, {a, ¢},
{a, d}. Dung’s semantics induce the following acceptable sets: one stable exten-
sion {a, d}, two preferred extensions PE; = {a,c}, PEy = {a, d}, three complete
extensions CE, = {a,c}, CEy = {a,d}, CE3 = {a} and the grounded extension
= {a}. With our quantitative interpretation of AFs with preferences and con-
sidering the Fuzzy semiring (RT, min, 4, 00,0), we can prefer PE; over PEj
(W(a)+W(c)) = 13, W(a)+W(d) = 17 and CFE3 over CE; and CE,, since
W (a) = 7. All these best solutions are obtained by using JaCoP.

6 Related Work

In [27], the authors have developed the notion of fuzzy unification and incor-
porated it into a novel fuzzy argumentation framework for extended logic pro-
gramming: the attacks are associated to a fuzzy strength value, i.e. a V-attack.
As well, a V-argument A is V-acceptable w.r.t. the set Args of V-arguments if
each argument V-attacked A is V-attacked by an argument in Arygs.

In [3], AFs have been also extended to Value Based Argumentation Frame-
works (VAF) where V is a generic nonempty set of values and Val is a function
which maps from elements of Args to elements of V.

The work in [2] concerns the “acceptability” of arguments in preference-
based argumentation frameworks. Preferences are represented with a preordering
relationships (partial or total) that resembles the ordering defined by the +
operator of semirings (see Sec. 3).

Probabilistic Argumentation [16,20]. This theory is an alternative approach
for non-monotonic reasoning under uncertainty. It allows to judge open ques-
tions (hypotheses) about the unknown or future world in the light of the given
knowledge. From a qualitative point of view, the problem is to derive arguments
in favor and against the hypothesis of interest.

In [23] the author has extended Dung’s theory of argumentation to integrate
metalevel argumentation about preferences. Dung’s level of abstraction is pre-
served, so that arguments expressing preferences are distinguished by being the
source of a second attack relation that abstractly characterizes application of
preferences by attacking attacks between the arguments that are the subject of
the preference claims.

A close work is represented by [14]: there the authors introduce and inves-
tigate a natural extension of Dungs well known model of argument systems in
which attacks are associated with a weight, indicating the relative strength of
the attack. A key concept in that framework is the notion of an inconsistency
budget, which characterizes how much inconsistency we are prepared to tolerate:



given an inconsistency budget 8, we would be prepared to disregard attacks up
to a total cost of (.

Comparison. The framework proposed in this paper is able to solve all the
above reported AFs (including the classical Dung framework [12]), both from
the qualitative and (main novelty) quantitative point of view. Since in this paper
we mainly propose a solving framework, we compare it with other related works.

In [14] weights are associated with attacks instead of arguments, as in our
proposal. Moreover, no solving mechanism is proposed to solve the problems
presented in the paper, even if their solution is proved to be difficult in the
paper (e.g. NP-Complete). Moreover, in [14] the combination of the weights and
the preference of the solution correspond to our Weighted semiring, while other
possibilities are not considered.

In [19] crisp constraint have been used to model argumentation as constraint
propagation in Distributed Constraint Satisfaction Problem (DSCP). Different
agents represent the distributed points in the problem. The paper shows the ap-
propriateness of constraints in solving large-scale argumentation systems. How-
ever, it seems to only solve classical problems, (i.e. no qualitative or quantitative
extensions).

The are some frameworks based on Logic Programming-like languages. For
example, the system ASPARTIX [15] is a tool for computing acceptable exten-
sions for a broad range of formalizations of Dung’s argumentation framework
and generalizations thereof, e.g. value-based AF's [3] or preference-based [2]. AS-
PARTIX relies on a fixed disjunctive datalog program which takes an instance
of an argumentation framework as input, and uses the answer-set solver DLV
for computing the type of extension specified by the user. However, ASPARTIX
does not solve any quantitative argumentation case, as well as other Answer Set
Programming systems [25].

In [10] the authors solve over-constrained weighted AF problems, where
weights are associated with arcs and represent the cost of the attack between
two arguments. to relax the notion of conflict-free extensions to a-conflict-free
ones (and also for hte other extensions of Dung), in order to include in the same
set also attacking arguments, whose attack costs are not worse than a threshold
Q.

7 Conclusions and Future Work

In the paper we have revised the notions provided by Dung [12] in order to as-
sociate the argument preference with a weight (taken from a semiring structure)
that represents the “goodness” of the argument in terms of cost, fuzziness, prob-
ability or else. Further on, we have suggested the Dung’s semantics in their soft
version. Moreover, we have presented a mapping from SCSPs to AF's and solved
the obtained SCSP with JaCoP, a Java Constraint Programming solver, thus
finding the solution of the related AF. We have proposed an unifying computa-
tional framework with strong mathematical foundations and solving techniques,



where by only parametrically changing the semiring we can deal with different
weighted (or not) AFs. By having a uniform framework, it may be possible to
see more clearly the relationships between different proposals. It may also offer
the possibility to identify new results concerning classes of these proposals.

The user only needs to state the problem, while the underlying machinery
is able to efficiently satisfy the constraints. Constraint solving techniques prove
to be able to deal with large scale problems [19], even if the treated problems
are difficult: for example, deciding if a set is a preferred extension is a CO-
N P-complete problem [4]. Practical applications may consist, for example, in
automatically study Discussion Fora where arguments are rated by users.

In the future, we would like to cluster arguments according to their (for
example) coherence, still using soft constraints as the framework to obtain the
solution. This can be useful to check the discrepancies/likeness during a negotia-
tion process, inside different interviews to the same political candidate or during
discussions in general. As an example, “We do not want immigrants with the
right to vote” is clearly closer to “Immigration must be stopped”, than to “We
need a multicultural and open society in order to enrich the life of everyone and
boost our economy”, and should belong to the same cluster.

At last, we want to generate a small-world network, for example with the Java
Universal Network/Graph Framework (JUNG) [26] in order to test automatically
give an interaction graph as input and test the related performance.
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