
PROCE: an agent-based PROcess Composition and
execution Environment

Francesco De Luca
Herzum Software Solution Center – Srl
87036, c.da Lecco, Rende (CS), Italy

fdeluca@herzumsoftware.com

Andrea Tundis*, Alfredo Garro
Dipartimento di Elettronica, Informatica e Sistemistica (DEIS)

Università della Calabria
87036, Arcavacata di Rende (CS), Italy

{atundis, garro}@deis.unical.it

Abstract—The paper presents PROCE (PROcess Composition
and execution Environment), an agent-based CAME and CASE
tool which supports the composition of software development
processes, based on the Method Engineering paradigm, and their
execution. In particular, the current release of PROCE provides
an integrated and flexible environment for the design of SOA
applications.

Keywords-Multi Agent System; Method Engineering; Method
Fragment; Service Oriented Architecture; Services Composition.

I. INTRODUCTION

The development of complex software applications can be
supported by Software Engineering Processes (SEPs) which,
according to the Method Engineering (ME) paradigm, are
obtained by composing a set of purposely selected method
fragments [6]. This approach allows combining the need of
defining specifically tailored methodologies with the
possibility of reusing existing methodologies (or their portions)
well documented and experimented. However, the concrete use
of the ME paradigm requires the availability of suitable models
and techniques to represent method fragments and their
composition. In addition, a central issue is represented by the
availability of Computer-Aided Method Engineering (CAME)
tool, to support the composition of development processes
through discovering and assembling of method fragments, and
of Computer-Aided Software Engineering (CASE) tool, to
support the execution of obtained processes.

In this context, the paper presents PROCE (PROcess
Composition and execution Environment) which represents
both a CAME and a CASE tool and then is capable to support
both the definition of a development process, by the selection
and composition of method fragments, and its subsequent
execution.

PROCE is a Multi Agent System, in which both method
fragments and the processes derived from their composition are
represented by agents. This approach provides an effective
solution to the issue of fragment composition that can be based
on the cooperation among agents. Moreover, the agent-based
representation of the development process allows a more
effective process execution. In fact, the agentified method
fragments, in the CAME phase, cooperate to build up the
development process, whereas, in the CASE stage, cooperate to
support its execution (each agent is in charge of a portion of the
process and interacts with the others by exchanging fragment
work products).

In order to verify the effectiveness and the efficacy of
PROCE in method fragments composition and processes
execution, a preliminary experimentation was carried out in the
Service Oriented Architecture (SOA) domain [1]. In fact,
despite its popularity, the development of SOA applications is
not well supported by methodologies and tools that easily adapt
to the needs of specific applications to be implemented; as a
consequence, the efforts required for adapting an existing
methodology often makes profitable to define a new one [10].
Therefore, also in the SOA domain, the ME approach can
provide, as for the Object Oriented (OO) [6] and Agent
Oriented (AO) domains [2], an effective solution able to
combine the definition of ad-hoc methodology with the reuse
of existing ones.

The paper is organized as follows: Section II and III present
system requirements and design respectively. The system
implementation details are presented in Section IV, whereas
Section V reports an application example. Finally, conclusions
are drawn and future works delineated.

II. SYSTEM REQUIREMENTS

PROCE should provide both CAME and CASE features so the
following main requirements have been identified:

1. Method Base management: the tool should be able to
access and manage a repository (Method Base) in which
method fragments are stored and collected.

2. Process definition and verification: the tool should allow
the selection and Work Products (WPs) based
composition of the available method fragments and
should provide techniques for checking the feasibility of
the obtained development process.

3. Process execution: the tool should be able to instantiate
and support the execution of a process obtained from
method fragments composition.

III. SYSTEM DESIGN

PROCE has been designed following the Organization-based
Multi Agent System Engineering (O-MASE) methodology [4]
and the fragment definition provided by the IEEE FIPA
specifications [3]. In particular, the logical architecture of
PROCE and its behavior are described in Section A and B
respectively.

*corresponding author

A. High Level architecture

PROCE is organized as a cooperative society of agents each of
which covers at least one Role. A Role represents a relationship
between a Goal and the Capability used by a software agent to
achieve it. The following Roles have been identified: (i)
Process Builder Role who has in charge the definition of
specific Software Engineering Processes (SEPs); (ii) Process
Coordinator Role who has in charge the execution of a specific
development process; (iii) Method Fragment Role who has in
charge the execution of a specific method fragment and the
management of its WPs (Figure 1).

Figure 1. Logical Architecture

B. System behavior

System behavior depends on the Roles played by the
component Agents and their interactions.
In particular, two main phases can be identified: Process
Composition and Process Execution. In the first phase, the
system supports the ad-hoc definition of a new process through
the composition of method fragments available in a Method
Base. In particular, an Agent which perform the Process
Builder Role, interact with the user for the definition of the
specification of the process under construction. According to
SPEM [8], the process is specified in terms of the component
Activities, their relationships and the exchanged WPs. Starting
from this process specification, the Builder interacts with the
agents which perform the Method Fragment Role, requiring
them, by exploiting a contract-net based protocol [5], to cover
specific Activities of the process. If this fragments negotiation
phase successfully completes, an Agent which performs the
Process Coordinator Role is instantiated by specifying the
process to coordinate in terms of the involved Fragments.

In the Process Execution phase Agents which perform the
Method Fragment Role are in charge of executing the
associated Activities of the development process. These Agents
are orchestrated by the Agent which performs the Process
Coordinator Role who drives the exchange of WPs among the
involved Agents.

IV. SYSTEM IMPLEMENTATION

PROCE has been currently implemented as a stand-alone Java
application. The development of the CAME features is in

progress whereas the CASE features have been fully
implemented. Moreover, due to the increasing interested in the
SOA domain, the current experimentation has involved
development processes and method fragments related to the
development of service-oriented applications as it requires
addressing several issues ranging from the definition of the
application to the discovery, development, composition,
integration and testing of SOA services.

In particular, the following agents have been implemented:
(i) SOA Process Agent covering and extending the Process
Coordinator Role to support the execution of a SEP for the
development of SOA applications; (iii) several Method
Fragment (MF) Agents that cover and extend the Fragment
Role to support the execution of specific portions of the above
introduced SOA process.

As an example, the MF-Service Composer Agent has been
associated to a MF which, starting from an Application
Choreography, represented by a WS-CDL (Web Services
Choreography Description Language) document, and from a
mapping among roleTypes of the Choreography and real Web
Services, produces a WS-BPEL (Web Services Business
Process Execution Language) document specifying the
orchestration among the involved services in terms of data and
messages exchanged and task execution sequences [11].

PROCE has been developed by adopting various platform-
independent technologies and open standards to ensure
interoperability; in particular JADE (Java Agent Development
Framework), an agent-based framework that allows the
development of MAS and provides a runtime execution
platform, has been exploited [7].

V. USING PROCE

Figure 2 shows the PROCE GUI; in the left column the list of
the available SEPs is reported; currently only the SOAProcess
is available which is briefly described on the right side.

Figure 2. The PROCE Graphical User Interface (GUI)

By selecting the available SOAProcess a SPEM diagram of
the process is shown; in the diagram the Activities composing
the selected process and their work products are reported (see

Figure 3). Each Activity is associated to a Method Fragment
which can be then executed. Before starting the execution of a
MF, the SOAProcess Agent verifies that the required input WPs
are available and in the format expected by the related MF
Agent. In this case, the SOAProcess Agent provides the input
WPs to the MF Agent, on the contrary it informs the MF Agent
so that it can ask the user for the required input WPs.

In the following, the execution of the Services Composition
MF carried on by the MF-Service Composer Agent is shown.

Figure 3. A SEP for the development of SOA Applications

In this first phase of the MF execution, the MF-Service
Composer Agent obtains the two input WPs (see Figure 3); in
particular, the provided Role-Service Mapping and the
Application Choreography are represented on the upper-left
and on the upper-right side of Figure 4 respectively.

Figure 4. The Services Compositon Environment

In the next phase, for each roleType in the Choreography a
specific Web Service is selected among those available in the

mapping. As the selected Services can be managed by different
SOA domains, it is necessary to check and validate their
policies; thus, the MF Service Composer Agent supports the
user in getting (Get Policies button) the policies associated to
each service and validating them (Validate Policies button).

Figure 5. Management of Services Policies

Finally, Figure 6 shows the last phase of the execution of
the Services Composition MF, in which a WS-BPEL is
produced (Verify and End button) after verifying that the
selected services correctly cover all the roles involved in the
Application Choreography.

Figure 6. Services Orchestration

VI. CONCLUSIONS AND FUTURE WORK

PROCE, a MAS for method fragments composition and
execution of software development processes, has been
presented along with an application example in the SOA
domain showing its effectiveness and user-orientation. The
current release of PROCE is available under the LGPL license
on the Web Site of the OpenKnowTech project [9].

Future efforts are geared to: (i) the definition of new
method fragments concerning the different aspects of the
development of SOA applications; (ii) the implementation of
the CAME features of the tool ; (iii) the implementation of the

future release of PROCE as an Eclipse plug-in so to benefit
from its popularity and supporting community.

REFERENCES
[1] Bruni, R., Lluch Lafuente, A., Montanari, U., Tuosto, E.: Service

Oriented Architectural Design. In: Proceedings of the 3rd International
Symposium on Trustworthy Global Computing (TGC’07). LNCS, vol.
4912, pp. 186--203, Springer, Heidelberg (2008).

[2] Cossentino, M., Fortino, G., Garro, A., Mascillaro, S., Russo, W.:
PASSIM: a simulation-based process for the development of multi-agent
systems. Int. J. of Agent-Oriented Software Engineering, vol. 2, n.2, pp.
132--170, Inderscience Enterprises Ltd., United Kingdom (2008).

[3] Cossentino, M., Gaglio, S., Garro, A., Seidita, V.: Method fragments for
agent design methodologies: from standardisation to research. Int. J. of
Agent-Oriented Software Engineering, vol. 1, n. 1, pp. 91--121,
Inderscience Enterprises Ltd (2007).

[4] Deloach, S. A., Gracia-Ojieda, J. C., Oyenan, W. H., Valenzuela, J.: O-
MaSE: A Customizable Approach to Developing Multiagent

Development Processes. In the 8th International Workshop on Agent
Oriented Software Engineering, Honolulu, USA (2007).

[5] FIPA - Contract Net Interaction Protocol Specification -
http://www.fipa.org/specs/fipa00029/.

[6] Henderson-Sellers, B.: Method engineering for OO systems
development. Communications of the ACM, vol. 46, n. 10, pp. 73--78,
ACM press (2003).

[7] JADE - Java Agent Development Framework - http://jade.tilab.com/

[8] OMG SPEM - Systems Process Engineering Metamodel Specification -
http://www.omg.org/spec/SPEM/2.0/

[9] OpenKnowTech Project - http://www.openknowtech.it/

[10] Ramollari, E., Dranidis, D., Simons, A.J.H.: A survey of service-
oriented development methodologies. In: Proceedings of the 2nd Young
Researchers' Workshop on Service Oriented Computing, Leicester, UK,
pp. 75--80 (2007).

[11] W3C Web of Services, standards and technologies,
http://www.w3.org/standards/

