PROCE: an agent-based PROcess Composition an
execution Environment

Francesco De Luca
Herzum Software Solution Center — Srl
87036, c.da Lecco, Rende (CS), Italy
fdeluca@herzumsoftware.com

Abstract—The paper presents PROCE (PROcess Composition
and execution Environment), an agent-based CAME and &SE
tool which supports the composition of software deslopment
processes, based on the Method Engineering paradigemnd their
execution. In particular, the current release of PROCE provides
an integrated and flexible environment for the degin of SOA
applications.

Keywords-Multi Agent System; Method Engineering; Method
Fragment; Service Oriented Architecture; Services Composition.

. INTRODUCTION

The development of complex software applicationa ba
supported by Software Engineering Processes (S&Righ,
according to the Method Engineering (ME) paradigme
obtained by composing a set of purposely selectethad
fragments [6]. This approach allows combining treed of
defining specifically tailored methodologies withhet
possibility of reusing existing methodologies (oeit portions)
well documented and experimented. However, theretaaise
of the ME paradigm requires the availability oftable models

and techniques to represent method fragments aed th

composition. In addition, a central issue is repnésd by the
availability of Computer-Aided Method EngineeringAME)

tool, to support the composition of developmentcpseses
through discovering and assembling of method fragsjeand
of Computer-Aided Software Engineering (CASE) totu,
support the execution of obtained processes.

Andrea Tundis*, Alfredo Garro

Dipartimento di Elettronica, Informatica e Sistetiaia (DEIS)
Universita della Calabria
87036, Arcavacata di Rende (CS), Italy
{atundis, garro}@deis.unical.it

In order to verify the effectiveness and the efficaof
PROCE in method fragments composition and processes
execution, a preliminary experimentation was cdraat in the
Service Oriented Architecture (SOA) domain [1]. fact,
despite its popularity, the development of SOA maplns is
not well supported by methodologies and tools daaily adapt
to the needs of specific applications to be implated; as a
consequence, the efforts required for adapting sistiey
methodology often makes profitable to define a e [10].
Therefore, also in the SOA domain, the ME approeah
provide, as for the Object Oriented (OO) [6] andeAQ
Oriented (AO) domains [2], an effective solutionlealio
combine the definition o&d-hoc methodology with the reuse
of existing ones.

The paper is organized as follows: Section Il dhgdresent
system requirements and design respectively. Theersy
implementation details are presented in Sectionvitereas
Section V reports an application example. Finalbynclusions
are drawn and future works delineated.

Il. SYSTEM REQUIREMENTS

PROCE should provide both CAME and CASE featuretheo
following main requirements have been identified:

1. Method Base management: the tool should be able to
access and manage a repository (Method Base) ichwhi
method fragments are stored and collected.

In this context, the paper presents PROCE (PROcesg' Process definition and verification: the tool should allow

Composition and execution Environment) which repnés
both a CAME and a CASE tool and then is capablsufmport
both the definition of a development process, tey gblection
and composition of method fragments, and its sulesgq
execution.

PROCE is a Multi Agent System, in which both method

fragments and the processes derived from their ositipn are

the selection and Work Products (WPs) based
composition of the available method fragments and
should provide techniques for checking the fedsjbaf

the obtained development process.

3. Process execution: the tool should be able to instantiate
and support the execution of a process obtainesh fro
method fragments composition.

represented by agents. This approach provides an effective

solution to the issue of fragment composition tat be based
on the cooperation among agents. Moreover, thetdigesed

representation of the development process allowmaae

effective process execution. In fact, thgentified method

fragments, in the CAME phase, cooperate to buildtheg

development process, whereas, in the CASE stagpecate to
support its execution (each agent is in chargepafrdon of the

process and interacts with the others by exchanfjagment

work products).

*corresponding author

Ill. SYSTEM DESIGN

PROCE has been designed following tBiegani zation-based
Multi Agent System Engineering (O-MASE) methodology [4]
and the fragment definition provided by the IEEEPKI
specifications [3]. In particular, the logical aitelcture of
PROCE and its behavior are described in Sectionnéd B
respectively.

A. High Leve architecture

PROCE is organized as a cooperative society oftagath of
which covers at least ofi®le. A Role represents a relationship
between aoal and theCapability used by a software agent to
achieve it. The followingRoles have been identified: (i)
Process Builder Role who has in charge the definition of
specific Software Engineering Processes (SEP$)P(ocess

progress whereas the CASE features have been fully
implemented. Moreover, due to the increasing isteckin the
SOA domain, the current experimentation has inwblve
development processes and method fragments refatdioe
development of service-oriented applications aseduires
addressing several issues ranging from the definitf the
application to the discovery, development, compmsit

Coordinator Role who has in charge the execution of a specificintegration and testing of SOA services.

development process; (iiMethod Fragment Role who has in
charge the execution of a specific method fragnamt the
management of its WPs (Figure 1).

SEP Fragmertation
cqures
exuies
. [e=Capabilig>s
SEP Definition

<cCapabilitys>
Method Fragment Composition

c<Goal>>
SEP Execution
igves |

Registration Request

‘Activation done

Miethod Fragment Selection

Methed Fragment achieves/ <<Goal>>
------3 Activity Execution

<<Capability>>
Wanagement of Work Froducts

Figure 1. Logical Architecture

B. System behavior

System behavior depends on thiRoles played by the
componenfgents and their interactions.
In particular, two main phases can be identifi€@tocess
Composition and Process Execution. In the first phase, the
system supports thaal-hoc definition of a new process through
the composition of method fragments available iMethod
Base. In particular, amdgent which perform theProcess
Builder Role, interact with the user for the definition of the
specification of the process under constructioncoiding to
SPEM [8], the process is specified in terms of chmponent
Activities, their relationships and the exchanged WPs. Btarti
from this process specification, tfBeilder interacts with the
agents which perform thi#lethod Fragment Role, requiring
them, by exploiting @ontract-net based protocol [5], to cover
specific Activities of the process. If thiragments negotiation
phase successfully completes, Agent which performs the
Process Coordinator Role is instantiated by specifying the
process to coordinate in terms of the involfedgments.

In the Process Execution phaseAgents which perform the
Method Fragment Role are in charge of executing the

associated\ctivities of the development process. These Agent:

are orchestrated by the Agent which performs Fhnecess
Coordinator Role who drives the exchange of WPs among th
involved Agents.

IV. SYSTEMIMPLEMENTATION

PROCE has been currently implemented as a stang-diava
application. The development of the CAME featurssin

In particular, the following agents have been impated:

(i) SOA Process Agent covering and extending thiérocess
Coordinator Role to support the execution of a SEP for the
development of SOA applications; (iii) severalethod
Fragment (MF) Agents that cover and extend tHeragment
Role to support the execution of specific portionstad aibove
introduced SOA process.

As an example, th&F-Service Composer Agent has been
associated to a MF which, starting from a@pplication
Choreography, represented by a WS-CDL (Web Services
Choreography Description Language) documamd from a
mapping amongroleTypes of the Choreography and realWveb
Services, produces a WS-BPEL (Web Services Business
Process Execution Language) document specifying the
orchestration among the involved services in tesfdata and
messages exchanged and task execution sequenges [11

PROCE has been developed by adopting various piatfo
independent technologies and open standards toreensu
interoperability; in particular JADE (Java Agent\u@opment
Framework), an agent-based framework that allows th
development of MAS and provides a runtime execution
platform, has been exploited [7].

V. UsINGPROCE

Figure 2 shows the PROCE GUI; in the left colume likt of
the available SEPs is reported; currently only $0&\Process
is available which is briefly described on the tiglde.

B rrOCE W=
PROCE: PROcess Composition and execution Environment

based on the Method Engineering approach

Software Enginesring Processes SEP Description

SOAPIOCESS

SOA Process: a complete process obtained by composing the following
Method Fragments (MFs) which cover from requirements specification
to testing of SOA applications:

- Reguirements Specification, which formalizes the application
requirements

- Application Definition, which, starting from application requirements,
makes available a choreography of a SOA application.

- Service Discavery, which discovers, on a given research domain, the set
of services able to cover the roles of a given choreography of a SOA
application

- Ser

velopment, which builds and makes available a SOA Service

a specific service contract.

mposiiion, which specifies the interactions of a set of services

selected to cover the roles of an application choreography

- Service Integration, which implements the communication infrastructure
amang the services constituting a SOA application

- Application Testing, which aims at validating and evaluating a SOA
application

Figure 2. The PROCE Graphical User Interface (GUI)

By selecting the availablBOAProcess a SPEM diagram of
the process is shown; in the diagram #otivities composing
the selected process and their work products qrerter (see

Figure 3). Each Activity is associated to a Metherdgment

which can be then executed. Before starting thewdian of a

mapping. As the selected Services can be managdiffésent
SOA domains, it is necessary to check and validhggr

MF, the SOAProcess Agent verifies that the required input WPs policies; thus, theMF Service Composer Agent supports the
user in getting Get Policies button) the policies associated to

are available and in the format expected by thatedIMF

Agent. In this case, th&0AProcess Agent provides the input

WPs to theMF Agent, on the contrary it informs tHdF Agent

so that it can ask the user for the required iNgBs.

In the following, the execution of ttervices Composition
MF carried on by th&F-Service Composer Agent is shown.

PROCE

A SEP for the Development of SOA Applications

!
= o 55 e S

Requirements Specification
nput

Application Description

B =

e - t. ResearchDomain
Application Definition "

~.input 2

= El - g

Service Structure Service Specification _ Services Discovery v,

mous “VV’I"M ‘ =2

Role-Service Mapping

,,,,,,,,,,,,,,,,,, - <&
Application Choreography,

Service Development [service

[all services input
not available] i

output” are available]
I

E

Service Implementation Service Contract

. output

Comunication Tnfrastructure Services Integration Services Orchestration

- input

Application Testing Reslts

Application Testing

Figure 3. A SEP for the development of SOA Applications

In this first phase of the MF execution, tMF-Service

Composer Agent obtains the two input WPs (see Figure 3); in
the providedRole-Service Mapping and the

particular,

Application Choreography are represented on the upper-left
and on the upper-right side of Figure 4 respegtivel

Services Composition

ton to store it ina File

Save ‘ Set Policies Validate Policies

Mappings WS-CDL Document
[mappings b . . . N . . . [
i <interaction name="confimmRoom” channelVariable="tns hotel” operation="reserveRoom’ iniiate=""alse">
<pariicipate relationshipType="ns TravelAgent_Hotel" ‘i “tns HotelRole’f
[rote CustomerRole “exchange name= action="re quest'=
cust ool in
¢ B manping <receive variable="cdl getvariable(insro0mReseNvatonTyp e, s HoteIR0le) =
[role AifineRole <fexchange=
i <exchange name="o0mo action="tespond’>
= ool th HotelRole)'s>
LI mapping , =receive variable="cdl. tns i =
[} role HotelRole B <fexchange> =
votell™] o] <nnteraction= I~/
{0 T 1] |l 1 |)
nfo e
WS.BPEL Document
White the WS-BPEL Docu
ment and then click Save but

Figure 4. The Services Compositon Environment

In the next phase, for eacbleType in the Choreography a
specific Web Service is selected among those dilaila the

each service and validating thexfalidate Policies button).

Services Composition

I Palicies

9~ [hitpuitesiful.altervista.orghwsc
[http:itesifd a tevista.orol

[httpuitesiful.altervista.orgwsc
[http:itesifdl altewista.orgl

9 [hitpuitesifal.altervista.orgwsc
[} itpitesiat atenvista.org/

¢ [httpifitesifal. altervista.orgiwsc
[} httesia attervista. g/

Mappings {[Ws-coL Document
= mappings - =
i <interaction name="confrmRaan” channelVariable="ins hatel operalion="resenveRaor" infate="false">
=<participate relationshipType="tns TravelAgent_Hotel tn: i TypeRef="tns:HotelRole"f>
[rolle CustomerRole Sihange nares . Tyne" action="request’>
Custo = in
§ C3mapping tns:HotelR ole)'l>
[role irlineRale <fexchange~
Alline =exchange name="roome: action="respond">
— , tns HotelRole)'/>
¢ L manping <receive variable="cdl e, fn =
[rote HotelRole L <lexchange =
Hoter (=] | <ineraction- =
(K- L] [l] I 0]
Policies

(K1 I

WS.BPEL Document
<nvokes
<assign>
scopy
<fom>tue=iiror=
<to>roomsConfirmation<fio=
<feopy>
<fassian>
sisequences
<scope>
<condition>roomsConfirmationi=true<jcondition=
<epeatuntil-
<assign>
scopy
=ffom=§ roomsCanfrmationHotel roomiD</rom=
<to>$roomsConfimationCustomer.raomD<o>
<feopy-
<assign>
<reply partnerLink="Customer"
aperation="confimRooms’
variable="roomsConfirmationCustamer'>
<iteply-
<fsequences
siprocess=

(R

< || Validate policies |

Figure 5. Management of Services Policies

Finally, Figure 6 shows the last phase of the ecof

the Services

Composition MF, in which a WS-BPEL is

produced Yerify and End button) after verifying that the
selected services correctly cover all the roleolved in the
Application Choreography.

Services Composition

Add eventual Fxgeption or Te
rminal Operation to WS-BPE
L @ocument

Mappings {[Ws-coL Document
= mappings - =
i <interaction name="confrmRaan” channelVariable="ins hatel operalion="resenveRaor" infate="false">
=<participate relationshipType="tns TravelAgent_Hotel tn: toRoleTypeRef="tns HotelRole"i»
[rolle CustomerRole Sihange nares . Tyne" action="request’>
custo) =redl in
§ C3mapping tns:HotelR ole)'l>
[role irlineRale <fexchange~
- sexchange name="1oomo action="respond">
— , tns HotelRole)'/>
¢ L manping <receive variable="cdl e, fn =
[rote HotelRole L <lexchange =
Hoter (=] | <ineraction- =
(K- L] [l] I 0]
Info

WS.BPEL Document
<nvokes
<assign>
scopy
<fom>tue=iiror=
<to>roomsConfirmation<fio=
<feopy>
<fassian>
sisequences
<scope>
<condition>roomsConfirmationi=true<jcondition=
<epeatuntil-
<assign>
scopy
=ffom=§ roomsCanfrmationHotel roomiD</rom=
<to>$roomsConfimationCustomer.raomD<o>
<feopy-
<assign>
<reply partnerLink="Customer"
aperation="confimRooms’
variable="roomsConfirmationCustamer'>

<iteply- E
<isequence> E
“fnrocess> =
save][GetPalicies Validate Policies Verity and End

Vv
PROCE, a

Figure 6. Services Orchestration

I. CONCLUSIONS ANDFUTURE WORK
MAS for method fragments composition and

execution of software development processes, han be
presented along with an application example in §@A
domain showing its effectiveness and user-oriematiThe
current release of PROCE is available under thell Bense

on the Web

Site of th@penKnowTech project [9].

Future efforts are geared to: (i) the definition mméw
method fragments concerning the different aspedtshe

developmen

t of SOA applications; (ii) the implensian of

the CAME features of the tool ; (iii) the implemation of the

future release of PROCE as an Eclipse plug-in sbetoefit
from its popularity and supporting community.

(1

(2

(3]

(4]

REFERENCES

Bruni, R., Lluch Lafuente, A., Montanari, U., TuostE.: Service
Oriented Architectural Design. In: Proceedingsta 8rd International
Symposium on Trustworthy Global Computing (TGC'OEZNCS, vol.

4912, pp. 186--203, Springer, Heidelberg (2008).

Cossentino, M., Fortino, G., Garro, A., Mascillar8,, Russo, W.:
PASSIM: a simulation-based process for the deve@ayrof multi-agent
systems. Int. J. of Agent-Oriented Software Engiimeg vol. 2, n.2, pp.
132--170, Inderscience Enterprises Ltd., Unitedgdiom (2008).

Cossentino, M., Gaglio, S., Garro, A., Seidita, Method fragments for
agent design methodologies: from standardisatiare¢earch. Int. J. of
Agent-Oriented Software Engineering, vol. 1, n. dp. 91--121,

Inderscience Enterprises Ltd (2007).

Deloach, S. A., Gracia-Ojieda, J. C., Oyenan, W.\Flenzuela, J.: O-
MaSE: A Customizable Approach to Developing Muléag

(5]
(6]
(7]
8l

19
[10]

[11]

Development Processes. In the 8th Internationalkéfmp on Agent
Oriented Software Engineering, Honolulu, USA (2007)

FIPA - Contract Net Interaction Protocol Specifioat -
http://www.fipa.org/specs/fipa00029/.
Henderson-Sellers, B.: Method engineering for OOstesys

development. Communications of the ACM, vol. 4618, pp. 73--78,
ACM press (2003).

JADE - Java Agent Development Framework - httpl#jélab.com/
OMG SPEM - Systems Process Engineering Metamodstifsgation -
http://www.omg.org/spec/SPEM/2.0/

OpenKnowTech Project - http://www.openknowtech.it

Ramollari, E., Dranidis, D., Simons, AJ.H.: A seyvof service-
oriented development methodologies. In: Proceedifigse 2nd Young

Researchers' Workshop on Service Oriented Computigigester, UK,
pp. 75--80 (2007).

W3C Web of Services,
http://iwww.w3.org/standards/

standards and

technologies,

