
Semantic Web Services and Agents: A Reality Check

Davide Cavone
Dipartimento di Informatica

Università di Bari

70126, Bari, Italy

Federico Bergenti
Dipartimento di Matematica

Università di Parma

43100, Parma, Italy

Danilo Gotta
Telecom Italia Lab

Via Reiss Romoli, 274

10148, Torino, Italy

davide.cavone@uniba.it federico.bergenti@unipr.it danilo.gotta@telecomitalia.com

Abstract— This paper aims at analyzing the state of the art of

Web services to understand how they can now play a crucial

role in the landscape of agent systems, after several years of

uncertainty. The study is first outlined by illustrating the main

interfaces and protocols that are now emerging and by

providing a list of the main repositories of Web services that

are really available in the network. The results of the study

clearly show that Representational State Transfer (RESTful)

services are overtaking Simple Object Access Protocol (SOAP)

services. Moreover, the results emphasize the lack of really

effective repositories. The study also highlights the almost total

absence of semantics in surveyed repositories, thus severely

limiting the accurate rating of Web services. The overall

judgment on the situation of Web service repositories is that it

is surprisingly still immature, especially in the Italian and

European landscapes. This is the reason why we decided to

propose a novel Web portal meant to become an active and

maintained collector of semantic Web services accessible to

users (especially in Italy) and able to create a solid base for

developing agent-based service systems.

Keywords-Agent; semantic Web services; RESTful services;

SOAP services

I. INTRODUCTION

The enormous potential of combining agent technology and

Web Services became a certainty some years ago (see, e.g.,

[4, 18]). However, for several reasons, the great steps

forward in the academic field did not keep their expectations

in the global market. This paper aims at understanding such

reasons, and in particular, at trying to find a possible solution

to the impasse in the implementation and use of Web

services (semantic Web services in particular). In the purse

of this goal, we analyze the strengths and weaknesses of two

types of Web services that are currently in competition: the

classic SOAP/WSDL Web services and the so called

RESTful Web services (also known as Web APIs). Despite

the massive growth of latter, in reality the two approaches

are not alternatives; rather, they are meant to fit the context

of use: more rigorous and standardized the first, while lighter

and easier to use the latter. Thereafter, our study focuses,

always following a parallel trend, on analyzing the current

standards to enable semantic search and publication of both

types of services.

Unfortunately the results of our study reveals a still too

immature situation that severely limits the wide use of

semantic Web services at a business level. For this reasons,

our research has led (i) to create a novel portal of Web

services, which is useful as a collector of Web services (with

or without explicit semantics) and (ii) to introduce a

Semantic Web Services Register (SWSR) available through

a FIPA-based Matchmaker Agent.

II. AGENTS AND SEMANTIC WEB SERVICES

It is known that the purely syntactic description of a Web

service strongly limits its use both for search and for

automatically combining atomic services into complex

services. In particular, an agent that provides a search tool on

purely syntactic services cannot customize the search

according to user needs and it must also depend on a specific

service and on its actual availability. For these reasons, it is

of paramount importance to have explicit semantics to be

published at the stage of discovery. Moreover, RESTful Web

services, in comparison with traditional semantic

annotations, are problematic with this regard since most Web

APIs are described in free text in Web sites and they do not

have machine-understandable documentation.

Nowadays the literature provides numerous studies that

deal with the issue of semantic matchmaking and that

accomplish important results. Our research, however, puts

emphasis on the entire business semantics that the agent will

perform. In particular, it stresses the importance of the phase

of Testing and Select, immediately following the

matchmaking phase as described in detail below, through

which the agent is able to overcome problems of a specific

Web service.

Generally speaking, the publication and use of semantic

Web services follows a common scheme:

1. Given the services and the syntactic domain of

interest, the developer chooses an ontology (e.g., in

OWL [14]) to share among requester agent and

service providers;

2. If no ontology is available, the developer is in

charge of providing a new ontology for describing

the services;

3. Given the shared ontology, each service is described

semantically, thus producing a set of description

documents (e.g., in OWL-S [12]);

4. Agents read and reason on the shared descriptions

to decide which service to use and how to use it.

The idea behind semantic Web services is about the use

of formal descriptions of the characteristics of services to

facilitate the reuse and to automate some of the most

common processes, such as discovery, composition and

mailto:davide.cavone@uniba.it

invocation. In order to have such a scenario ready for

adoption, there are nowadays two different approaches that

are used to semantically describe Web Services:

1. Bottom-up: an incremental approach that adds

semantics to existing Web services by linking

semantic annotation to available WSDL

annotations;

2. Top-down: an approach that makes extensive use of

high-level ontology to semantically describe the

characteristics of Web services.

The top-down approach uses the OWL-S, which derives

from OWL ontologies and, in particular, it uses the

ServiceProfile [13]. Briefly, the ServiceProfile describes

three basic types of information: the organization providing

the service, what the service provides, and other service

relevant features. The ServiceProfile is mainly used for the

discovery of a service; a service query is built from

functional properties (i.e., Inputs, Outputs, Preconditions and

Effects–IOPEs) and non-functional properties (that are to be

interpreted by human users, e.g., service name and

parameters that defines metadata about the service itself).

The discovery phase is performed by an agent in the need to

invoke a Web service. Given a service need, the agent

prepares a service request form (via an OWL-S description)

and a so called Matchmaker agent is in charge of discovering

the best service on the basis of a semantic matching. To

clarify how this complex task works, Figure 1 summarizes

the steps involved in using a semantic Web service.

Figure 1. Steps of the use of a semantic Web service.

Please note that the whole process is asynchronous and

transparent to the user. In details:

1. MATCHMAKING. It is a way to identify the best

match available to fulfill a request (even in part),

and to provide a list of tenders ordered on their

degree of match. In our case we are talking about

the Semantic Matchmaking as requests and offers

are expressed in an appropriately structured

knowledge domain, i.e., a proper ontology. The

input of this step is therefore a query (commonly

expressed via OWL-S) while the output is a list of

found Web services ordered from the most

interesting to the least interesting.

2. TESTING and SELECT. Once we get the ranking

of available Web services, it is deemed necessary to

carry out a test phase before we hand it for

invocation and, in the likely event of positive test

results, we can actually move on to the next step.

3. INVOKING. Once the previous phase concretized

the details of the service for its successful

invocation(e.g., the physical address of the service

and the names of operations), we pass to the

invocation phase. This is not a simple static call;

rather the adopted approach is that of a classic DII

(Dynamic Invocation Interface).

4. PARSING. The last phase is meant to extrapolate

from the (XML) response obtained the much

anticipated output and to transform it into the

desired shape for our purposes.

As anticipated earlier, the provision of semantics to

RESTful Web Services is still undertaking slightly

difficulties (see, e.g., [19, 7, 3, 11]). Many RESTful Web

services are simply described in natural language, thus

losing any ability to be machine-processable even if there

are already standards both for syntactically describing

services, e.g., the Web Application Description Language

(WADL) [6], and for describing semantic annotations.

Without going into too much in details, we can say that,

given a good description of a syntactic RESTful Web

service we can get to describing it semantically by means of

everyday OWL-S. In fact, the OWL-S approach, created to

semantically describe WSDL Web services, has recently

been extended to accommodate this scenario: in particular,

OWL-S provides an abstract layer that allows you to create

multiple grounding strategies. In particular, a

RESTfulGrounding is already available to serve as a link

between OWL-S and RESTful Web Services. Obviously, in

order to effectively exploit the RESTfulGrounding, the

RESTfulGrounding ontology must be built in OWL format,

or even better in OWL 2 (which is a modern reengineering

of older OWL).

III. WEB SERVICES: WSDL/SOAP VS RESTFUL

It is nowadays clear that the technology of Web services

ensures a uniform method for accessing software

components located in different platforms and written in

different programming languages. At the technological level,

it is not instead clear what is the best protocol stack to use

and, in fact, today there are still two main types of Web

services: WSDL/SOAP Web services and Web APIs [15].

The first, i.e., the classic Web services, play an important

role in the development of distributed applications among

enterprises. Such an approach uses the standard Web Service

Description Language (WSDL 2.0) to provide a machine-

processable description of the structure of a service, its

operations and input and output messages, and it uses the

standard Simple Object Access Protocol (SOAP) for

encoding the messages that the consumer and the provider

exchange. On the contrary,Web services APIs, more

commonly known as RESTful services, use resources as

their key concept and such resources are accessible and

editable through a set of well-defined operations, including

GET (retrieve the current state of resource), POST (transfer

the current state of resource), PUT (create new resource) and

DELETE (delete a resource). As far as the Web interface

description is concerned, RESTful services use the Web

Application Description Language (WADL), which is

suitable to describe Web-Based HTTP applications.

Glancing to the market trend until the end of 2010 and in

particular considering the Web Services collected by

seekda.com portal, we can say that, while classic Web

services are still more numerous (around 28,000
1

), the

number of RESTful Services is growing quickly (around

1,900
2
) and above all they are quite clearly the choice of the

software giants such as Google and Yahoo [17]. Obviously

such figures are first approximations of the true (dynamic)

situation, yet they are useful to show the current unbalanced

situation about the use of SOAP against RESTful Web

services.

Moreover, since the last two years, several important

companies have been developing tools for mash-up creation

that require no programming knowledge and therefore they

are pushing the use of simpler and lighter Web APIs against

more rigorous, yet complex, classic approach. Such tools,

through a simple interface, allow selecting a number of

RESTful Web services and chaining them together by piping

one service’s output into the next service’s input while

filtering content and making (slight) format changes.

A. WADL vs WSDL 2.0

The two most promising specifications that emerged in

recent years have the main objective of providing machine-

processable interfaces: Web Service Description Language

(WSDL 2.0) for the classic services and Web Application

Description Language (WADL) for Web APIs. While

WSDL 2.0 (released by the W3C as a Recommendation on

June 26
th
, 2007) is a formal standardization of WSDL 1.1,

WADL (submitted to the W3C as a member submission two

years ago) is designed to provide a machine processable

protocol description format for use with HTTP-based Web

applications, especially those using XML.

The two specifications may appear similar but, in reality,

the differences that distinguish them are essential. In general

WADL is simpler yet somewhat more limited, while WSDL

2.0 is more feature rich but complex. Coming into more

technical detail, the following is a list of the most important

differences:

 Resources vs interfaces: WADL is a resource-
centric description language where documents are
composed of a set of resource descriptions. On the
other hand, WSDL is an interface-centric
description language where documents are
composed of a set of interface definitions.

1
 End of 2010, http://webservices.seekda.com/

2
 Numbers from April 2010, http://www.programmableweb.com/

 HTTP-only vs transport protocol independence:
WADL is bound to HTTP transport protocol while
WSDL is transport protocol independent.

B. WSDL/SOAP Services: Strengths and Weaknesses

As mentioned above, WSDL/SOAP Web services are mainly

characterized by the complexity of their descriptions, yet

they stand out for their wide dissemination because of their

ability to provide a valuable tool for interoperability between

heterogeneous systems. Another strong point of such

services is the protocol transparency and independence, i.e.,

their ability to deliver the same message, in the same format,

not only via HTTP but also via any other suitable transport

protocol. Moreover WSDL description provides fine-

grained, machine-processable details of request and response

message syntax.

Looking for important weaknesses, SOAP is typically

slower than other middleware technologies, e.g., CORBA,

because it is based on XML format. Moreover, there is also a

characteristic that at first sight might seem an advantage:

SOAP was designed to slip through firewalls as HTTP using

port 80 and people now sees that this might be a danger as

“SOAP goes through firewalls like a knife through

butter” [10].

TABLE I. CLASSIC WEB SERVICES STRENGTHS AND WEAKNESSES

SOAP/WSDL Web Services

PROs CONs

 Protocol trasparence and

independence;

 Request and response

message descriptions are

machine processable;

 Ideal for data centers and

structured communication

 Slower than others;

 Messages pass too easily
through firewalls;

 There is no possibility to
use SOAP message easily

from JavaScript

C. RESTful Services: Strengths and Weaknesses

Although RESTful is not appropriate for every scenario, it

clearly provides interesting features for creating and

interacting with Web services in a simple way and with a

uniform interface that is highly stable (with no problems of

compatibility or potential client break). Its simplicity is

evident also because we just need a browser to start using

Web services and there is no need of a Web service

middleware. RESTful Web services leverage on existing

well-known W3C standards, e.g., HTTP, XML, URI, and

MIME, and the effort required to implement a client for a

RESTful service is limited. Finally, since the possibility to

choose among several lightweight message formats, e.g., the

JavaScript Object Notation (JSON), RESTful services

provide greater flexibility to optimize general performances.

Despite the clear advantages listed above, RESTful Web

Services have several important weaknesses. First, we lack a

unique method for building this type of Web services. In

fact, we can choose between Hi-REST, using all of the 4

available verbs (GET, POST, PUT, and DELETE) and the

use of “nice URIs” and Lo-REST, in which only 2 of the 4

verbs are used (GET, POST). The latter type of RESTful

Web services born to (i) cope with the fact that firewalls may

not allow HTTP connections that use other verbs than GET

and POST, and (ii) support the method attribute of an

XHTML form. Such limitations have led to several

workarounds but these may not be understood by all Web

services, thus requiring additional development and testing

efforts.

TABLE II. RESTFUL WEB SERVICES STRENGTHS AND WEAKNESSES

RESTful Web Services

PROs CONs

 Simpler than others;

 Uniform, very stable
interface;

 Leverage on existing W3C
Standars;

 Testable by any browser;

 Possibility to choose among

several lightweight message
formats;

 Services can act like

resources;

 There is the possibility to

easily invoke resources from
client side code

 Can work only with HTTP;

 Restricted set of allowed

verbs;

 Potential confusion between

Lo-REST and Hi-REST
services;

 Difficult to build strongly
typed objects to work

within server side code;

D. Discussion

Comparative analysis revealed substantial differences

between the two schools of thought. In general we can say

that the most appropriate use heavily depends on the context

of use. So, if the context of use is, e.g., a data center where

you need interoperability between different servers and

performance is of crucial importance, then the SOAP/WSDL

approach is still the best choice. On the contrary, the use of

the RESTful architectural style becomes an important choice

if you need a simpler client side.

It is not accidental that the features that characterize the

RESTful style services coincide with the first three principles

of simplicity in software engineering: reduction, organization

and time [10].

Finally, we must consider that such a simpler and high level

approach is proving a huge success in the world so that most

of new public services from large vendors (see, e.g., Google,

Yahoo!, Microsoft, and Amazon) invest on RESTful Web

services to share information.

IV. THE WEBSERVICES4AGENTS PORTAL

One of the first activities of our research was to look for a

large group of Web services primarily by linking research

institutions in the attempt to select a set of efficient and

accessible services, especially in Europe and particular in

Italy.Despite that the possibility to search for the right Web

service is an essential prerequisite for their composition and

reuse, search and discovery has become very problematic

with the ever increasing number of services. Moreover, we

experienced frequent discontinuity from the most important

service providers: many repositories, working until a few

years ago, are now off-line and those that are still running do

not have efficient and effective search engines. In addition,

today we have a very low availability of semantically

described, working and accessible Web services. Given that

such a premise is not encouraging, we decided to focus

initially on the selection of purely syntactic Web services and

then leave semantic annotations at a later stage.

In recent years the landscape of the Web Service

repositories has changed substantially [17, 5]. Some

repositories have ceased to provide their service, others

continue to be available but they are not updated, while new

repositories emerged in the International landscape.

The first result of our research is a prioritized list of

service repositories that are now available and that offer

good expectations for the near future. The following list

discusses the repositories we found in our research, in

relative order of importance:

1. IServe
3
: it can be considered as a hybrid provider

that supports both service types . Although for

what concerns the search it makes available a small

number of service of type WSDL/SOAP, it was

extremely interesting for finding many Web

services described semantically. IService can be

considered the first true global provider of

Semantic Web Services.

2. Seekda! Services
4
: the largest, it has about 28,500

Web Services. It is active and very helpful.

3. Service-Finder
5
: the second largest and busiest,

with about 20,000 Web Services assets. Also very

active.

4. WebserviceX.NET
6

: it provides about 70 Web

services grouped into seven categories. This

provider was established about six years ago but

since then it has never been updated. Many Web

services tested were faulty and inefficient.

5. Xmethods
7
: it provides hundreds of services but it

also stalled frequently and it has no search engine.

On the one hand the large and almost vain effort made to

catalog a series of useful Web services, and on the other the

need of a folder of active Web services, pushed for an

independent solution: to create a portal to host fully usable

Italian (syntactic) Web services and hopefully, in the near

future, an Italian community centered around the exchange

of useful semantic Web services.

Moreover, in addition to providing a collection point for

Web services in Italy, offering a Web interface for their

search, our goal is primarily to provide an interface for

3

http://iserve.kmi.open.ac.uk
4

http://webservices.seekda.com/
5

http://demo.service-finder.eu/index
6

http://www.webservicex.net
7
 http://www.xmethods.com

FIPA agents. In particular we would like to offer clients the

opportunity to communicate with a matchmaker agent that,

by using a shared ontology and the FIPA standard, returns

the most suitable Web Services after the appropriate

matchmaking task. We have short term and long term goals.

The long term goal is to create a collection of thousands of

Web services described by semantic standards (e.g., OWL-

S) and to make them searchable by full semantics-aware

techniques through any agent capable to formalizing a

request in the form of IOPEs. In particular, we will make

available to any agent, a Semantic Web Services Register

(SWSR) containing all the semantically described Web

Services. Our idea is to use the well-know OWLS-MX

Semantic Matchmaker [9] because it provides a hybrid

semantic Web service matching facility and it utilizes both

logic-based reasoning and content-based information

retrieval techniques for services specified in OWL-S. In

addition, for an adequate control of the messages used to

communicate with the agent, we will provide shared

vocabulary (i.e., an ontology for communication) and

interaction protocols. We decided to use JADE for

implementing the matchmaker agent and to exploit its

functionality to support a standard-based, reliable

communication.

However, the successful provision of semantics to Web

services has already been a difficult undertaking: all the

attempts carried out so far, despite some relevant positive

results, have led to final negative results. The difficulty lies

trivially in still not having a large group of semantically

described services. For this reason, our first short term goal

is to create a portal for bringing together a set of

syntactically described Web services, that are meant to be

useful and immediately effective for the Italian market. For

example, the portal is expected to publish interesting Web

services targeting concrete problems like the discovery of

opened pharmacies of a certain Italian city in a certain day,

or secretarial service for a student of an Italian University.

Thanks to our novel Web services folder it will be possible

to create an interface through which FIPA agents could seek

and discover Web services. Up to this point, the beneficial

results of the proposed portal would be essentially the

availability of services for the Italian market and their ease

of access.

Before entering the big issue of semantics, we will then

consider hybrid approaches intended to empower the pure

syntactic search, as follows:

1. To give the possibility of using so-called social

tagging of Web Services, to make them searchable

via different, yet related, keywords than those used

in descriptions;

2. To use the Italian WordNet Ontology API [16] to

exploit the synonyms of keywords.

Starting by these two intermediate steps, toward the

heavier and true semantic approach, we can have both a

folder Web services ready to use, and the opportunity to

carry out interesting research on hybrid syntactic/semantic

search approaches.

Figure 2. www.webservices4agents.com portal for Web services

V. DISCUSSION

In this paper we intended to make a reality check on the

overall status of the Web service technology and we also

aimed at better understanding the relationship between

agents and Web services today. Thus, the research presented

here has led to ask ourselves a number of interesting

questions and to observe that the Web service technology is

still far from its full maturity.

Glancing at the current trends, we can certainly say that

the RESTful Web services standard is quickly taking place

over other approaches mainly because of its lightweight

nature. Furthermore, it is equally clear that the advent of the

Semantic Web would accelerate the rise of semantic Web

services and, in particular it would boost the need of agents

to effectively use semantic Web services.

For all these reasons, we have recently created the

WebServices4Agents Portal (www.webservices4agents.com)

in the intent to provide both an up-to-date repository for

(even RESTful) Web services and to open an access to such

services to FIPA agents. We hope that the portal will be an

important and useful meeting point for all agentswho want

to discover and invoke useful Web services.

Our first goal is to set up a large repository of Web

Services and to have an agent capable of providing a

matchmaking service on such a repository.After that we

immediately want to match with the reality of semantic Web

services landscape: first by trying with semi-semantic

approaches, e.g., using social tagging, and finally going to

the full power of the Semantic Web.

We conclude this paper with a list of questions that arose

during our work and that are still open and demanding for

discussions.

What are the results of efforts made so far to make

semantics to Web services available? Are there “less

invasive” ways capable to bring (softer) semantic to Web

services?

The issues about the Semantic Web have been subjects

of extensive discussions since about ten years. However,

even today, especially from the point of view of Web

services, there is not a great use of semantics. The lowering

of performances and the difficulties for service providers to

offer semantically annotated Web services are just two of

the problems hindering the rise of semantic Web services. In

order to avoid this bottleneck, our idea is to propose softer

approaches: (i) the use of keywords by exploiting the power

of WordNet, and (ii) the adoption of ordinary social tagging

to make richer and more effective searches.

Taking now formal semantics into account and noting

the sudden growth of RESTful Web Services, can we use

OWL-S descriptions for this kind of Web services?

As briefly discussed in earlier, we can say that, starting

from a good description of a syntactic RESTful Web

service, we can get a semantic description by means of

OWL-S because it has been recently extended to exploit the

semantics of RESTful Web services. In particular, the recent

introduction of the RESTfulGrounding should provide the

possibility of using OWL 2 for semantically annotating

RESTful Web services.

Will service developers be encouraged to advertise their

services syntactically and also semantically?

First, please remember that in Italy the development of

truly efficient and free Web services is still far from reality

and we do not have yet a means to expose them and to make

the effectively available. Through the WebServices4Agents

portal producers of Web services and their respective

consumers would finally meet through an interface capable

of selecting the best service for a consumer’s needs. The

portal would give the possibility to query a JADE

matchmaker agent which would then return the best service.

Under the assumption that we have a folder of

semantically described services in the portal and a

matchmaker agent for searching, what would the

implications be from the point of view of agent systems?

This is definitely one of the most interesting points

emerged during our research. Our vision is to have a large

number of accessible Web services and to have the

possibility of composing such services with the help of a

semantic infrastructure. In recent years, Telecom Italia

S.p.A. and the University of Parma have already

implemented WADE (Workflow Agent Development

Environment) [2], a software platform based on JADE

capable of bringing to agents the possibility of structuring

their work by means of workflows. Therefore the idea that

we propose in the long term is to harness the power of

WADE to bring to the consumer the best Web services at

the right time and in the right place in a fully personalized

way.

ACKNOWLEDGMENT

This research project has been supported by Working
Capital Initiative of Telecom Italia S.p.A.

REFERENCES

[1] Bellifemine, F., Caire, G., and Greenwood, D. (2007) Developing

multi-agent systems with JADE. Wiley Series in Agent Technology.
[2] Caire, G., Gotta, D., and Banzi, M. (2008) WADE: A software

platform to develop mission critical applications exploiting agents

and workflows, Proceedings of the 7th International Joint
Conference on Autonomous Agents and Multiagent Systems.

[3] Gomadam, K., Kopecký, J., and Sheth, A. P. HTML Microformat for

Describing RESTful Web Services and APIs, In IEEEWICACM
International Conference on Web Intelligence and Intelligent Agent

Technology (2008) Volume: 1, Publisher: Ieee, Pages: 619-625.

[4] Greenwood, D., and Callisti, M. (2004) Engineering Web Service-
Agent Integration. In Proceedings of the IEEE Conference of

Systems, Man and Cybernetics.

[5] Hagemann, S., Letz, C., and Vossen, G. (2007) Web Service
Discovery - Reality Check 2.0, in Proceedings of the Third

International Conference on Next Generation Web Services

Practices (NWeSP'07).
[6] Hardley, M. (2006) Web Application Description Language

(WADL), Technical report, Sun Microsystems.

[7] Hernandez, A. G., and Garcia, M. N. (2010) A Formal Definition of
RESTful Semantic Web Services, In 1st International Workshop of

RESTful Design, Carolina pp. 39-45.

[8] JADE - Java Agent Development framework, http://jade.tilab.com.
[9] Klusch, M., Fries, B., Khalid, M., and Sycara, K. (2005) OWLS-

MX: Hybrid OWL-S Service Matchmaking, Agents and the

Semantic Web Papers in Proceedings of the AAAI Fall Symposium,
AAAI Press.

[10] J.(2006) Cambridge (Ma), MIT Press.

[11] Maleshkova, M., Pedrinaci, C., and Domingue, J. (2008) Supporting
the Creation of Semantic RESTful Service Descriptions, In

Proceedings of ISWC09, Washington D.C., USA, 2009

[12] Martin Davide, Mark Burstein, Jerry Hobbs, Ora Lassila, Drew
McDermott, Sheila McIlraith, Srini Narayanan, Massimo Paolucci

(2004),OWL-S, Semantic markupfor web services; W3C member

submission.

[13] Martin, D., Paolucci, M., and Wagner, M. (2007) Bringing Semantic

Annotations to Web Services: OWL-S from the SAWSDL

Perspective. In Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee,
K.-I., Nixon, L., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R.,

Schreiber, G., Cudré-Mauroux, P. (eds.) Proceedings of ISWC 2007.

LNCS, 4825:340-352. Springer, Heidelberg.
[14] McGuinness, D. L., and van Harmelen, F. (2004) OWL Web

Ontology Language Overview, W3C Recommendation.

[15] Pautasso, C. (2008) RESTful Web Services vs. “Big” Web Services:
Making the Right Architectural Decision, In Proceedings of the 17th

International World Wide Web Conference (WWW2008), Bejing,

China, April 2008.
[16] Pianta, E., Bentivogli, L., and Girardi, C. (2002) MultiWordNet,

Developing an aligned multilingual database, In Proceedings of the

First International WordNet Conference, 293-302.
[17] Sabou, M., Maleshkova, M. and Pan, J. (2010) Semantically

Enabling Web Service Repositories, in Pan, J. Z., and Zhao, Y. (eds.)

Semantic Web Enabled Software Engineering.

[18] Savarimuthu, B. T. R., Purvis, M., Purvis, M., and Cranefield, S.

(2005) Integrating Web services with agent based workflow
management system (WfMS), In Proceedings of IEEE/WIC/ACM

International Conference on Web Intelligence (WI 2005).

[19] Sheth, A. P., and Lathem, J. (2007) SA-REST Semantically
Interoperable and Easier-to-Use Services and Mashups, Published

in Journal IEEE Internet Computing, Volume 11 Issue 6.

[20] Takase, T., Makino, S., Kawanaka, S., Ueno, K., Ferris, C., and
Ryman, A. (2008) Definition languages for RESTful Web services:

WADL vs. WSDL 2.0, IBM Reasearch.

