
Re-using Cool URIs:
Entity Reconciliation Against LOD Hubs

Fadi Maali
Digital Enterprise

Research Institute,
NUI Galway, Ireland
fadi.maali@deri.org

Richard Cyganiak
Digital Enterprise

Research Institute,
NUI Galway, Ireland

richard@cyganiak.de

Vassilios Peristeras
European Commission

vassilios.peristeras@ec.europa.eu

ABSTRACT
We observe that “LOD hubs” are emerging. They provide
well-managed reference identifiers that attract a large share
of the incoming links on the Web of Data and play a crucial
role in data integration within communities of interest. But
connecting to such hubs as part of the Linked Data publish-
ing process is still a difficult task. In this paper, we explore
several approaches to the implementation of reconciliation
services that allow third-party publishers to link their data
to LOD hubs as part of the data publishing process. We
evaluate four approaches using the OAEI Instance Match-
ing Benchmark, and describe their implementation in an ex-
tension to the popular data workbench application Google
Refine.

Keywords
Linked Data, Google Refine, reconciliation, LOD, URI, en-
tity matching, SPARQL, link generation, Silk

1. INTRODUCTION
Linked Data is a set of standards and practices for pub-

lishing structured data on the Web [5]. It can be seen as an
approach to data integration at web-scale. It provides uni-
form data access, uniform syntax, and a uniform data model,
but does not address the issues of heterogeneous schemas,
duplicate records, and uncertain information quality. On
top of an uniform base layer, existing and new research can
be applied, on large amounts of real-world data, to yield new
insights into the challenges of data integration in heteroge-
neous, low-coordination environments.

One of these challenges is interlinking and identifier re-use.
The Linked Data Principles [2] require URIs to be HTTP-
based and dereferenceable. Other sources recommend char-
acteristics such as stability, permanence and readability [4,
20, 18]1. Minting and maintaining “cool URIs” is thus not
a simple task, but can compel other publishers to link to
them. This linking across dataset boundaries turns the Web
of Linked Data from a collection of data silos into a global
data space [5].

1http://patterns.dataincubator.org/book/hierarchical-
uris.html and http://patterns.dataincubator.org/book/natural-
keys.html

Copyright is held by the author/owner(s).
LDOW2011, March 29, 2011, Hyderabad, India.
.

We observe that hubs are emerging on the Web of Linked
Data. This is visible in the popular LOD Cloud diagram2. A
number of datasets, including DBpedia3, Geonames4, BBC
Music5, Library of Congress Subject Headings6 and Ord-
nance Survey Linked Data7, are attracting a large share of
the inlinks. This is likely because they provide compre-
hensive collections of well-managed identifiers, often from
an authoritative source. Providing “URI sets” for entities
managed by the state is a cornerstone of the UK’s national
Linked Data effort [18].

We argue that these hubs are likely to emerge in any do-
main or community of sufficient interest, and that they are
important as providers of reference identifiers that allow in-
tegration between any two datasets in their respective do-
main. We further argue that the overall ecosystem will work
best if the hubs support data publishers in linking to them,
for example by providing services that make this easier at
lower cost.

We are interested in better understanding what such ser-
vices could look like, and how they can be integrated into
RDF conversion tools for relational databases [3, 1], XML
[9] and spreadsheets [15, 12].

One important constraint on approaches to such inter-
linking is that they must stand a chance of actual adoption.
This constraint is hard to approach scientifically. The fol-
lowing is probably safe to say: Services that use existing
standards, protocols, and implementations, where possible,
stand better chances of seeing adoption.

In this paper, we identify four such approaches, assess
their suitability and discuss their limitations and associated
costs. We describe their implementation in a popular data
workbench application, Google Refine, and we report the
results of a quantitative evaluation of the approaches against
a benchmark dataset.

2. RECONCILIATION
The problem of identifying multiple representations of the

same real-world object is known under many different terms:
record linkage, duplicate detection, object identification, en-
tity consolidation, co-reference detection, and so on. In the

2http://richard.cyganiak.de/2007/10/lod/
3http://dbpedia.org/About
4http://www.geonames.org/ontology/
5http://www.bbc.co.uk/music
6http://id.loc.gov/authorities/
7http://data.ordnancesurvey.co.uk/



Table 1: Example record
City State Country
Cambridge Massachusetts United States

Semantic Web field, it is usually known as instance match-
ing and refers to identifying equivalent resources in two RDF
datasets. Throughout this paper, we will use the term recon-
ciliation, which we inherit from the environment that moti-
vated this work (Google Refine) and stresses the asymmetric
nature of the problem, with a dataset being linked against
a well-known set of reference identifiers.

As an example, table 1 shows a record representing the
city of Cambridge in Massachusetts. Our goal is to find the
corresponding URI in DBpedia. Trying to reconcile it based
on label comparison only might give a large number of het-
erogeneous results including University of Cambridge (db-
pedia:University of Cambridge)8 and Cambridge Bay (db-
pedia:Cambridge Bay). Adding a restriction to accept only
results that are cities helps narrowing the results down but
Cambridge, Ontario(dbpedia:Cambridge, Ontario) and Cam-
bridge, Maryland (dbpedia:Cambridge, Maryland) will still
be present in the results. Including additional properties,
such as limiting the results to only those cities located in
Massachusetts, helps achieving the desired result.

In principle, reconciliation is simple: compare each pair of
objects using a similarity measure and apply a threshold. If
a pair is more similar than the given threshold it is declared
a match [7]. Given the strictness of such binary decisions
and to cope better with the inherit ambiguity involved, we
consider a reconciliation service response to be a ranked list
of potential matching resources. Optionally, when the ser-
vice is confident about a result it can mark it as an “exact
match”to enable automatic reconciliation, otherwise user in-
tervention is needed to select from the candidates (or refuse
them all).

Reconciliation services must be effective and efficient [7].
Effectiveness refers to the quality of reconciliation results
usually measured in terms of precision and recall while effi-
ciency refers to the performance usually measured in terms
of reconciliation time.

3. RELATED WORK
To the best of our knowledge, no RDF translator provides

direct support for reusing existing URIs, or linking to them,
as part of the RDF conversion process. Instead, users com-
monly depend on one of the following methods:

• Build URIs programmatically: if the reference dataset
uses patterned URIs based on some natural keys, such
as ISBNs or post codes, then these URIs can be rebuilt
as part of the translation process. This requires the
pattern to be known and the keys to be part of the
source dataset. For example, the RDF Book Mashup9

uses ISBN numbers in its URIs. Book Mashup URIs
can be easily generated while translating any dataset
containing ISBN values.

8with the assumption that dbpedia is the prefix for
http://dbpedia.org/resource/
9http://sites.wiwiss.fu-berlin.de/suhl/bizer/bookmashup
/index.html

• Lookup services: via querying a service for a list of
URIs matching some keywords. The lookup service
can be a general semantic search engine (e.g. Sindice10)
or specific to a particular dataset (e.g. lookup services
for DBpedia11 and Geonames12). Some of these ser-
vices provide APIs for programmatic access, but these
APIs differ between services and therefore are not in-
tegrated into RDF generation tools.

• Custom code: A service for matching records in the
source dataset to the corresponding URIs in a refer-
ence dataset can be built. Such services handle a spe-
cific domain and a specific use case and are of limited
reusability.

Instead of re-using URIs, an alternative approach, which
is most commonly used, is to mint new URIs, and then in-
terlink them with other datasets as a second step. Movies
in LinkedMDB13 were interlinked to DBpedia and other
datasets based on comparing titles. A number of approx-
imate string matching techniques were evaluated to choose
the best performing for LinkedMDB [13]. In [21], FOAF pro-
files were linked based on comparing foaf:mbox_sha1sum as
it is an inverse functional property (IFP). These two exam-
ples represent work that is tailored to a specific domain and
utilizes domain knowledge.

Providing domain-independent support for RDF interlink-
ing is a challenging problem that has also attracted the at-
tention of the Semantic Web research community. The main
emphasis of the integration research has been put on match-
ing ontological schemata [10]. Some of these tools can be
applied to the task of instance matching. Broadly speaking,
the focus has been on research on algorithms, with little at-
tention to the question of interfaces for accessing matching
services from client applications.

Some approaches use machine learning for RDF instance
matching. For example, [22] employs supervised machine
learning to reconcile FOAF profiles. These approaches still
require the existence of training data or encoding some do-
main specific knowledge to train a classifier.

In [11], an architecture and service for storing, managing
and publishing co-reference statements between entities is
presented. It is orthogonal to the question of how the state-
ments are generated. It supports applications that use co-
reference information, not applications that seek to generate
co-reference information. The authors have a different take
on the dynamics of linking on the Web of Data. Rather than
a few hubs that are linked to by many secondary datasets,
they see links as hosted in services that are independent
from the datasets themselves.

[16] introduces “enhancement operations” to enrich RDF
data resulting from a CSV-to-RDF translator. One of these
enhancement operations is “object sameAs linking” which
adds owl:sameAs links to resources listed in a “linking file”.
Link discovery is limited as it is based on simple string
matching. The linking files need to be prepared and the
strings to be considered in comparison should be values of
dc:identifier. Consequently, this linking approach cannot
be applied against all RDF datasets.

10http://sindice.com/
11http://lookup.dbpedia.org/
12http://www.geonames.org/export/geonames-search.html
13http://www.linkedmdb.org/



Silk – Link Discovery Framework [6], is a tool for finding
relationships between entities within different data sources.
Silk incorporates a number of similarity measures that can
be flexibly aggregated to decide on link assertions. Silk is
one of the tools we consider as a reconciliation service im-
plementation.

In the next section, we discuss a number of domain-independent
services that can be used for reconciliation. We identify lim-
itations involved and the cost associated with them.

4. APPROACHES
We consider various approaches to searching, querying

and matching on RDF data that provide a well-defined API
for remote access, as well as a readily available implementa-
tion that can be deployed on arbitrary RDF datasets. In the
following we discuss how to employ a number of these ap-
proaches to perform reconciliation. Reconciliation requests
might contain any combination of label, type and related
properties constraints.

4.1 SPARQL
SPARQL [19] is a W3C Recommendation language and

protocol for querying RDF data. Providing a reconcilia-
tion service using the standard SPARQL assures that any
standard-compliant SPARQL endpoint can be used as a rec-
onciliation target. SPARQL allows building queries that re-
trieve resources based on their labels, types and their rela-
tions. Thus, reconciliation requests can be directly trans-
lated into equivalent SPARQL queries. Nonetheless, there
are two main limitations:

• No approximate matching: The only support for non-
identical string comparison in SPARQL is through reg-
ular expressions. Regular expressions are very lim-
ited as a general string comparison utility, and most
current SPARQL implementations show poor perfor-
mance when evaluating regular expressions.

• No ranking: When querying for matching resources,
SPARQL filters datasets in a set-based manner. An
item is either in the result or not. Results are not
ranked.

4.2 SPARQL with full-text search
Some SPARQL vendors provide full-text search extensions

to SPARQL. This includes Virtuoso14, LARQ15 and Lucene-
Sail16. Hybrid queries that combine SPARQL and full-text
can provide better results than using regular expressions as
they utilize matching algorithms based on IR techniques and
support scoring and ranking the results.

There is no standardized syntax to express full-text search
queries in SPARQL. The upcoming update of the standard,
SPARQL 1.1, will not address this either.

Depending on the unit of indexing, full-text search exten-
sions may not be able to adequately handle literals indirectly
associated with resources (see Fig. 1). Search indices only
consider literals directly related to resources, as extending
the considered environment to include further literals in the

14http://docs.openlinksw.com/virtuoso/sparqlextensions.html
15http://jena.sourceforge.net/ARQ/lucene-arq.html
16http://dev.nepomuk.semanticdesktop.org/wiki/LuceneSail

graph adds much noise to the results. Performance of differ-
ent SPARQL full-text search implementations was compared
in [17].

Figure 1: Indirectly related literals

4.3 Silk Server
Silk Server [14] provides a RESTful interface to interlink

an RDF stream of input data against some reference dataset.
It is based on the Silk Framework [6] and uses the Silk Link
Specification Language (Silk-LSL) to describe the interlink-
ing conditions. Silk-LSL is a declarative language that en-
ables describing heuristics to be used to interlink RDF data.
Silk represents the state of the art in RDF interlinking and
incorporates a number of similarity measures that can be
flexibly aggregated to decide on link assertions. By incor-
porating path expressions, Silk-LSL enables considering re-
source neighborhoods in the RDF graph (e.g. the case shown
in Fig. 1).

Silk Server is mainly designed to be used as an identity
resolution component within Linked Data applications. It is
not designed as an “open” reconciliation service. Using it in
that way has two problems:

• It assumes RDF input.

• It assumes that the structure of the input data is known
in advance. The interlinking specification describes
both the reference dataset and the input one. This
tightly couples the two datasets and restricts the ap-
plicability of Silk Server as a general reconciliation ser-
vice.

Both limitations can be addressed by wrapping requests into
RDF according to some specific structure that also must be
used in the interlinking specification used by the server (an
example is provided in the next section). This is still an
inflexible solution.

Unlike the SPARQL approaches, Silk Server requires that
the service operator defines a link specification. This is a
reasonable cost, as the operator, whom we assume to be the
publisher of a hub dataset, is likely interested in providing
services that maximize the dataset’s usefulness.

4.4 Semantic Web Search Engines
Semantic search engines like Sindice hold crawled copies

of large amounts of Web data, and offer search and query
services over it. As such, they can be employed as the basis
for reconciliation services.

These engines can be used to retrieve a ranked list of re-
source URIs matching some keywords. Further structural
restrictions on the results can be included depending on the
search engine’s proprietary query language. It may be pos-
sible to restrict search by site or type. Each engine defines
its own query language and API, which is usually limited in
expressivity compared to SPARQL.

Semantic search engines are particularly useful when it
is not clear what reference dataset can be used as a recon-
ciliation target, or when the data is distributed across the



web. An example is reconciling a list of Semantic Web re-
searchers to their corresponding URIs used in their FOAF
files that are distributed over the web. The results can be
noisy as the search engine usually indexes large amounts of
very heterogeneous data.

5. SCENARIO: GOOGLE REFINE
This section describes our motivating scenario.
Google Refine is a workbench for understanding and ma-

nipulating tabular data (e.g. CSV, TSV and Excel). It
provides a set of tools that work together to help users un-
derstand their data, clean it, transform it and eventually
export it in a required format. Google Refine is a Java web
application available as an open source project. Unlike the
common case of web applications, it is meant to be running
locally on user’s machine to allow handling sensitive and pri-
vate data and at the same time reap the benefits of users’
familiarity with interacting through web browsers.

At the core of Google Refine is its faceted browsing ca-
pabilities which help users navigate the data, understand
it and select a subset to apply operations upon. Google
Refine provides a set of operations scriptable using an ex-
pression language similar to JavaScript in a syntax known
as Google Refine Expression Language (GREL). It also inte-
grates a clustering engine. The rich features and capabilities
of Google Refine make it an appealing option for translating
tabular data into RDF.

5.1 RDF export
Google Refine does not support direct RDF export. In

[8] we describe an extension that provides RDF export ca-
pabilities17. The export functionality is based on describing
the shape of the desired RDF through a skeleton detailing
what resources and literals to include in the RDF graph,
what relations to set between them and what URIs to use
for resources. The skeleton design is supported through a
GUI shown in Figure 2. The exporter iterates through the
project rows and evaluates GREL expressions in the skeleton
based on cells’ content to produce a subgraph corresponding
to each row. The final RDF graph is the result of merging
all the row subgraphs. In the designed skeleton, URIs are
described as GREL expressions. The generated RDF is thus
limited to URIs that can be built via simple expressions from
the original data.

Figure 2: Simple example RDF skeleton

5.2 Freebase Reconciliation
17available at http://lab.linkeddata.deri.ie/2010/grefine-rdf-
extension/ (reconciliation extension described here is pack-
aged in the same extension since version 0.5)

Google Refine can reconcile values in a specific column
to entities in Freebase. Freebase is a large collection of en-
tity descriptions, curated by employees and a community
of volunteers. Reconciliation to Freebase is a very useful
operation as it helps mapping ambiguous textual values to
precisely identified Freebase entities.

Upon reconciliation request, Google Refine starts by in-
voking the Freebase reconciliation service with a sample set
of data values. It uses the result to guess a type for the val-
ues in the corresponding column. The list of guessed types
are presented to the user who can select a specific type or
continue without choosing any. The user can also choose to
include additional properties in the request to help enhanc-
ing the precision of the reconciliation process. Additional
properties need to be clearly identified to the reconciliation
service i.e. via IDs understandable by the service. To help
the user in that a reconciliation service can support auto-
complete for properties search. Figure 3 shows a screenshot
of the reconciliation interface resulting from reconciling a
set of city names against Freebase. In Figure 3 we see that
a set of types are suggested with City/Town/Village (with
ID /location/citytown) at the top of the list. The right
part of the figure shows property autocompletion in action.
Proceeding with reconciliation as shown in the figure means
that the set of values will be reconciled against Freebase
for entities of type /location/citytown taken into account
that the city is contained by a location matching the cor-
responding content of the state column in the data.

After receiving the response, the top three matching can-
didates for each value are presented to the user. the user can
then choose to accept one of them or refuse them all. To bet-
ter inform the user decision, a resource preview is available
per candidate where basic information about the candidate
is provided. Additionally, a numeric facet is built based on
the scores of results provided by the service, allowing the
user to find an acceptable threshold for the score and mass-
accept or reject certain results. Figure 4 shows a screenshot
where a preview for the candidate labeled “Cambridge” is
presented. Results marked as a “exact match” will be au-
tomatically accepted by Google Refine without the need of
user intervention.

Figure 3: Reconciliation interface of Google Refine



Figure 4: Reconciliation candidates presentation
and preview popup

Reconciling against Freebase is useful in many situations,
but not all datasets are ready and suitable to be loaded into
Freebase. Google Refine defines and supports a standard
API to reconcile against other data sources. The standard
API is an HTTP-based JSON-represented RESTful inter-
face. Any data source that implements the defined API be-
comes available for reconciliation from Google Refine. Third
party reconciliation services have started to appear18.

In the RDF world, a reconciliation service over Talis Plat-
form stores has been built19 and used for reconciling against
UK government data20. This depends on a Talis-specific
search API21 and does not work against other SPARQL end-
points.

Utilizing some of the already existing services and tools to
query RDF would provide a general and low-cost solution for
reconciling from RDF-producing applications such as Google
Refine, and eliminate the need to build a service from scratch
each time an RDF dataset is to be reconciled against.

6. EVALUATION
We compared the approaches described in Section 4 by

evaluating them using the Instance Matching Benchmark
(IM@OAEI2010)22 which is a track of the Ontology Align-
ment Evaluation Initiative 2010 (OAEI2010)23. The bench-
mark provides various datasets with reference alignment to
compare results to. From IM@OAEI2010 datasets, we chose
the Data Interlinking track (DI) as it uses datasets which
are part of the LOD cloud such as DBpedia, DailyMed24

and Sider25.
All the implementations described below accept requests

consisting of a label, an optional type and optional list of
related properties. Each related property is described as a
property URI and a value. Services respond with a ranked

18http://opencorporates.com/reconcile
19http://github.com/ldodds/pho-reconcile
20http://ldodds.com/gridworks/
21http://n2.talis.com/wiki/Contentbox
22http://www.instancematching.org/oaei/imei2010.html
23http://oaei.ontologymatching.org/2010/
24http://www4.wiwiss.fu-berlin.de/dailymed/
25http://www4.wiwiss.fu-berlin.de/sider/

list of matching resources along with their types and match-
ing scores.

6.1 Implementations
In the following we describe in some detail the reconcilia-

tion service implementations.

SPARQL.
The service simply translates the request into a SPARQL

query. Labels are compared using case-insensitive regular
expressions, a standard SPARQL feature. By default rdfs:label
is used for the comparison, but a service can be configured
to use other properties (also more than one property can
be used). Type constraint and related properties are di-
rectly translated into triple patterns used in the SPARQL
query. As SPARQL query results are not ranked, we rank
and score the result based on edit distance between the la-
bel of the matching resource and the request label. We used
Virtuoso as the store implementation, but the choice of store
has no effect on precision and recall as the results are fully
determined by the SPARQL language specification.

SPARQL with full-text search.
The reconciliation query is translated into a hybrid SPARQL

query (i.e. a SPARQL query with the additional constraint
for text search). As each vendor uses their own syntax for
the full-text search, we provide multiple implementations
(currently supporting Virtuoso and LARQ). LARQ is based
on Lucene26. We configured it to add the option of per-
forming a similarity-based matching using N-gram. N-gram-
based indices cope better with misspellings and other typo-
graphical mismatches that can sometimes be found in the
datasets to be reconciled. Both LARQ and Virtuoso can
return a full-text match score as part of the SPARQL query
result. We use these scores to rank results.

Silk Server.
Silk Server needs to be configured so that it knows the

shape of the input RDF it expects. Listings 1, 2 and 3
show how Silk Server is configured for the example presented
in Section 2. Listing 1 contains a snippet of the reference
dataset, Listing 2 contains a snippet of the Silk Server inter-
linking specification while Listing 3 shows a reconciliation
request wrapped as RDF. In the three listings it is assumed
that identical prefixes stand for the same namespaces. The
tightly coupling of the reconciliation request (wrapped as
RDF) and the interlinking specification can be seen by con-
sidering lines 3, 14 and 18 in the interlinking specification
(Listing 2) that precisely describe how the input data should
be structured (reflected respectively in lines 1, 2 and 3 in
Listing 3). It is reasonable to have interlinking specification
coupled with the reference dataset, but restricting the shape
of the input data assumes that any client using Silk Server
is aware of how the server interlinking is exactly defined.

26http://lucene.apache.org/java/docs/index.html



Listing 1: reference dataset snippet
1 ex:Cambridge r d f : t y p e ex :C i ty ;
2 r d f s : l a b e l ”Cambridge ” ;
3 ex :parent ex :Massachuset t s
4 .
5
6 ex :Massachuset t s r d f : t y p e e x : S t a t e ;
7 r d f s : l a b e l ”Massachusetts ”
8 .

Listing 2: Interlinking Specification snippet
1 <SourceDataset dataSource=”q ” var=”a ”>
2 <Restr i c tTo>
3 ?a r d f : t y p e ex :Reconc i l i a t i onQuery .
4 </ Restr i c tTo>
5 </ SourceDataset>
6 <TargetDataset dataSource=”geos ” var=”b”>
7 <Restr i c tTo>
8 ?a r d f : t y p e ex :C i ty .
9 </ Restr i c tTo>

10 </ TargetDataset>
11 <LinkCondit ion>
12 <Aggregate type=”average ”>
13 <Compare metr ic=”jaroWinkler ”>
14 <Input path=”?a/ r d f s : l a b e l ” />
15 <Input path=”?b/ r d f s : l a b e l ” />
16 </Compare>
17 <Compare metr ic=” l e v e n s h t e i n ”>
18 <Input path=”?a/ g : l o c a t i o n ”/>
19 <Input
20 path=”?b/ ex :parent / r d f s : l a b e l ”/>
21 </Compare>
22 </ Aggregate>
23 </ LinkCondit ion>

Listing 3: Reconciliation query wrapped as RDF
1 : 1 r d f : t y p e ex :Reconc i l i a t i onQuery ;
2 r d f s : l a b e l ”Cambridge ” ;
3 g : l o c a t i o n ”Massachusetts ”
4 .

Sindice search API.
The Sindice search API27 allows searching for keywords.

Type constraints can also be pushed to Sindice via the search
API. The result is a list of document URLs containing match-
ing RDF data, and not a list of the actual matching re-
sources. Thus, the documents listed in the search result
must be retrieved and then examined to find the URI of
the resource that caused the document to match. The doc-
uments are retrieved from the Sindice cache API28. LARQ
(SPARQL with fulltext search) queries are then used to find
the matching resource. Additional required related proper-
ties constraints are taken into account in the LARQ queries
and not pushed to the Sindice API as they adversely affect
the ranking according to Sindice API documentation.

6.2 Results
For the evaluation, the DBpedia and Sider datasets were

treated as reference datasets to be reconciled against, and
the DailyMed dump provided in the benchmark is treated
as the input dataset for which appropriate reference URIs

27http://sindice.com/developers/api
28http://sindice.com/developers/cacheapi

are sought. The dailymed:name property was used as the
reconciliation label.

For DBpedia, the Virtuoso-based public SPARQL end-
point29 was used, and tested both with standard SPARQL
and with Virtuoso full-text extension. Sindice was used with
a domain restriction to dbpedia.org. Figure 5 shows the
effectiveness (precision and recall) and efficiency (reconcilia-
tion time) of reconciling the DailyMed resources against DB-
pedia. Reconciliation without type restriction turned out to
be not feasible for SPARQL and Silk. For SPARQL, search-
ing all of DBpedia based on a regular expression shows un-
acceptable response time. Silk Server, if used without type
restriction, attempts to download labels for all DBpedia re-
sources via SPARQL queries on startup, taking an unaccept-
able amount of time.

For Sider, the dump provided in the benchmark was loaded
into a local ARQ instance. It was tested in three configura-
tions: plain SPARQL, full-text LARQ with a default Lucene
index, and full-text LARQ with an N-gram index. We didn’t
evaluate Sindice on the Sider dataset, because the Sider
benchmark dump differs considerably from the version of
Sider deployed on the Web and indexed in Sindice. Figure 6
shows the results of reconciliation against the Sider RDF
dump file.

Figure 5: Services performance against DBpedia
(performance time corresponds to the right axis)

Figure 6: Services performance against Sider RDF
dump file (performance time corresponds to the
right axis)

29http://dbpedia.org/sparql



6.3 Discussion
Examining the figures we notice:

• In general Silk Server shows the best recall values.

• The relatively good results shown for standard SPARQL
is mainly due to the nature of the DailyMed dataset, as
most resources are drugs with precise official names. It
is worth mentioning that using rdfs:label instead of
dailymed:name for reconciliation requests with SPARQL
approach results in empty results for all resources.

• N-gram handles typographical differences better than
the default Lucene index (LARQ). However with drug
names it adversely affects both precision and recall.

• Adding type restriction significantly enhances preci-
sion for datasets that cover a wide range of entities,
like DBpedia. The decrease in recall resulting from
adding type restriction for Sindice is mainly caused by
the lack of type information in documents returned
by Sindice. Most of these documents just redirect
to other resources (each contains a single triple with
dbpedia-owl:redirect predicate). This is a limita-
tion in Sindice’s data organization.

Type guessing is performed when reconciling with no type
specified. The guessing is based on examining type informa-
tion in the results of randomly selected ten requests. Results
show that the correct type was always among the top five
types suggested.

Generally, the results show the possibility to reconcile us-
ing the different approaches against an existing SPARQL
endpoint and an RDF dump file with results comparable to
those reported for the IM@OAEI201030 [23]. Results vary
depending on the approach and the involved datasets. In
the case of SPARQL, the approach is clearly limited by the
interface rather than the application. SPARQL with regular
expressions is not well-suited for the task of reconciliation.

It should be pointed out that the good performance of Silk
Server comes at the cost of running the server and configur-
ing it according to the reference dataset.

7. OUTLOOK AND CONCLUSION
We assembled the implementations described in the pre-

vious section into an extension for Google Refine (Figure 7).
It enables turning a SPARQL endpoint or RDF file into a
standard Google Refine reconciliation service. These ser-
vices also support type and property autocomplete and re-
source preview. Furthermore, reconciliation can be per-
formed against Sindice and Silk Server. All the RDF rec-
onciliation services support type restrictions and taking re-
lated values into account. Sindice reconciliation can also be
restricted to a specific domain name and the service also
helps by trying to guess appropriate domains in a similar
way that type guessing is performed.

Referring to Table 1, the City column can now be rec-
onciled against DBpedia Virtuoso endpoint31 for example.
Reconciliation can be restricted to the type
http://dbpedia.org/ontology/City and to take into con-
sideration the State column (via the property

30http://www.instancematching.org/oaei/imei2010/di.html
31http://dbpedia.org/sparql

Figure 7: RDF Reconcile extension for Google Re-
fine

http://dbpedia.org/property/subdivisionName). After the
reconciliation process, the URIs can be used for the City
node in the skeleton shown in Figure 2, overcoming the lim-
itation mentioned in Section 5.1. It is worth mentioning
that the only input needed by the user to reconcile against
DBpedia is the endpoint URL. Nothing is required on the
reference data side, as DBpedia supports full-text SPARQL.

Even when the data is not exported as RDF, removing
the ambiguity of textual labels is an added value. Further-
more, reconciled columns can be used to join datasets and
enrich them by importing additional details from the refer-
ence dataset.

With the Web of Data moving beyond the bootstrapping
phase, more emphasis needs to be put on the quality and
usability of the published data. In this paper we discussed
enabling the reuse of existing URIs while publishing RDF
data and showed an implementation integrated in a CSV-
to-RDF translator. Reuse of existing URIs can help assuring
good quality URIs and a better interlinked Web of Data.

8. REFERENCES
[1] S. Auer, S. Dietzold, J. Lehmann, S. Hellmann, and

D. Aumueller. Triplify - Light-Weight Linked Data
Publication from Relational Databases. In 18th
International World Wide Web Conference, pages
621–621, April 2009.

[2] T. Berners-Lee. Linked Data. World wide web design
issues, July 2006.

[3] C. Bizer and R. Cyganiak. D2R Server - Publishing
Relational Databases on the Semantic Web. Poster at
the 5th International Semantic Web Conference
(ISWC2006), 2006.

[4] C. Bizer, R. Cyganiak, and T. Heath. How to Publish
Linked Data on the Web. Web page, 2007. Revised
2008.

[5] C. Bizer, T. Heath, and T. Berners-Lee. Linked Data -
The Story So Far. International Journal on Semantic
Web and Information Systems (IJSWIS), 2009.

[6] C. Bizer, J. Volz, G. Kobilarov, and M. Gaedke. Silk -
A Link Discovery Framework for the Web of Data. In
18th International World Wide Web Conference, April
2009.

[7] J. Bleiholder and F. Naumann. Data Fusion. ACM
Comput. Surv., 41(1), 2008.

[8] R. Cyganiak, F. Maali, and V. Peristeras. Self-service
Linked Government Data with dcat and Gridworks. In
Proceedings of the 6th International Conference on



Semantic Systems, I-SEMANTICS ’10, pages
37:1–37:3, New York, NY, USA, 2010. ACM.

[9] D. V. Deursen, C. Poppe, G. Martens, E. Mannens,
and R. V. d. Walle. XML to RDF Conversion: A
Generic Approach. In Proceedings of the 2008
International Conference on Automated solutions for
Cross Media Content and Multi-channel Distribution,
pages 138–144, Washington, DC, USA, 2008. IEEE
Computer Society.

[10] J. Euzenat and P. Shvaiko. Ontology Matching.
Springer-Verlag, Heidelberg (DE), 2007.

[11] H. Glaser, A. Jaffri, and I. Millard. Managing
Co-reference on the Semantic Web. In WWW2009
Workshop: Linked Data on the Web (LDOW2009),
April 2009.

[12] L. Han, T. Finin, C. Parr, J. Sachs, and A. Joshi.
RDF123: From Spreadsheets to RDF. In A. Sheth,
S. Staab, M. Dean, M. Paolucci, D. Maynard,
T. Finin, and K. Thirunarayan, editors, The Semantic
Web - ISWC 2008, volume 5318 of Lecture Notes in
Computer Science, pages 451–466. Springer Berlin /
Heidelberg, 2008.

[13] O. Hassanzadeh and M. P. Consens. Linked Movie
Data Base. In Proceedings of the WWW2009 workshop
on Linked Data on the Web (LDOW2009), 2009.

[14] R. Isele, A. Jentzsch, and C. Bizer. Silk Server -
Adding Missing Links while Consuming Linked Data.
In 1st International Workshop on Consuming Linked
Data (COLD 2010), Shanghai, 2010.

[15] A. Langegger and W. WoB. XLWrap - Querying and
Integrating Arbitrary Spreadsheets with SPARQL. In
A. Bernstein, D. Karger, T. Heath, L. Feigenbaum,
D. Maynard, E. Motta, and K. Thirunarayan, editors,
The Semantic Web - ISWC 2009, volume 5823 of
Lecture Notes in Computer Science, pages 359–374.
Springer Berlin / Heidelberg, 2009.
10.1007/978-3-642-04930-9 23.

[16] T. Lebo and G. T. Williams. Converting governmental
datasets into linked data. In Proceedings of the 6th
International Conference on Semantic Systems,
I-SEMANTICS ’10, pages 38:1–38:3, New York, NY,
USA, 2010. ACM.

[17] E. Minack, W. Siberski, and W. Nejdl. Benchmarking
Fulltext Search Performance of RDF Stores. In
Proceedings of the 6th European Semantic Web
Conference on The Semantic Web: Research and
Applications, ESWC 2009 Heraklion, pages 81–95,
Berlin, Heidelberg, 2009. Springer-Verlag.

[18] C. Offices. Designing URI Sets for the UK Public
Sector. A report from the Public Sector Information
Domain of the CTO Council’s cross-Government
Enterprise Architecture, October 2009.

[19] E. Prud’hommeaux and A. Seaborne. SPARQL Query
Language for RDF. W3C Recommendation, January
2008. http://www.w3.org/TR/rdf-sparql-query/.

[20] L. Sauermann and R. Cyganiak. Cool URIs for the
Semantic Web. World Wide Web Consortium, Note
NOTE-cooluris-20081203, December 2008.

[21] L. Shi, D. Berrueta, S. Fernández, L. Polo,
S. Fernández, and A. Asturias. Smushing RDF
Instances: Are Alice and Bob the Same Open Source
Developer? In ISWC2008 workshop on Personal

Identification and Collaborations: Knowledge
Mediation and Extraction (PICKME 2008), 2008.

[22] J. Sleeman and T. Finin. A Machine Learning
Approach to Linking FOAF Instances. In Proceedings
of the AAAI Spring Symposium on Linked Data Meets
Artificial Intelligence. AAAI Press, January 2010.

[23] X. Zhang, Q. Zhong, F. Shi, J. Li, and J. Tang.
Rimom results for oaei 2009. In OM’09, 2009.


