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ABSTRACT
An ideal semantic representation of text corpus should ex-
hibit a hierarchical topic tree structure, and topics residing
at different node levels of the tree should exhibit different
levels of semantic abstraction( i.e., the deeper level a topic
resides, the more specific it would be). Instead of learn-
ing every node directly which is a quite time consuming
task, our approach bases on a nonparametric Bayesian topic
model, namely, Hierarchical Dirichlet Processes (HDP). By
tuning on the topic’s Dirichlet scale parameter settings, two
topic sets of different levels of abstraction are learned from
the HDP separately and further integrated into a hierar-
chical clustering process. We term our approach as HDP
Clustering(HDP-C). During the hierarchical clustering pro-
cess, a lower level of specific topics are clustered into a higher
level of more general topics in an agglomerative style to get
the final topic tree. Evaluation of the tree quality on sev-
eral real world datasets demonstrates its competitive perfor-
mance.

1. INTRODUCTION
The ever-increasing explosion of online unstructured in-

formation puts forward a strong demand to organize online
resources in a more efficient way. Hierarchical structures are
widely used in knowledge representation, resource organiza-
tion or document indexing. For example, the web directo-
ries organize web pages into a hierarchical tree, providing a
comprehensive navigation tool. The discovery of such rich
semantic hierarchies from raw data collections becomes a
fundamental research in data analysis.

In this paper, we aim to learn a semantic representation
of text corpus in the form of a topic tree structure. This can
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be regarded as a kind of high level summarization on the
content of any document collection, as a topic tree expresses
a shared conceptualization of interests in certain domain.
Such a topic tree functions as an outline to help readers
get the main idea of the document collection, which works
similarly to the table of content(TOC) of a printed book.

Instead of learning every node directly which is a quite
time consuming task, we treat the the construction process
of the topic hierarchy mainly as a two-phase task: 1) the
identification or definition of topics; 2) the derivation of hi-
erarchical relationships between or among the topics. Our
approach is built on a nonparametric Bayesian topic model,
namely, Hierarchical Dirichlet Processes(HDP)[13]. By tun-
ing on the topic’s Dirichlet scale parameter settings, two
topic sets are learned from the HDP separately with dif-
ferent levels of semantic abstraction. One as the top level
which represents a small collection of general topics and an-
other as the down level which corresponds to a relatively
larger collection of specific topics. Topics from the two dif-
ferent sets exhibit different topic granularity on semantic
representation. Based on these, we can efficiently construct
the “middle” level topics directly without modeling them
explicitly. As a result, the hierarchical structure comes out
straightforwardly and the whole learning process speeds up.

Fig.1 shows a sub-tree of our learned topic tree on the
JACM1 dataset which contains 536 abstracts of the Journal
of the ACM from 1987-2004. There are two super topics
on this sub-tree, one as system related topic and another
as database related topic. When we look into the database
topic, we find that it is further divided into 3 specific aspects,
which are “Scheme Design”, “DB Robust” and “Transaction
Control”. Also we observe that the super topic mainly con-
tain some widely used function words or stop words, result-
ing in the most “general” topic as the root.

The organization of the paper is as follows. In Section 2
we briefly introduce the related works. We define in Section
3 our problem formulation and propose the HDP-C model.
Our experiment on several real world datasets is presented
in Section 4, and we conclude our work in Section 5.

1http://www.cs.princeton.edu/∼blei/downloads/jacm.tgz
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Figure 1: A sub-tree learned from JACM dataset

2. RELATED WORK
Topic modeling as a task of document modeling has at-

tracted much attention in recent years. But much work just
focuses on inferring hidden topics as a flat cluster over the
term space[1]. One of the basic and also the most widely
used ones is the Latent Dirichlet Allocation(LDA)[4]. LDA
can learn a predefined number of topics under a bag-of-
topics. A question that comes with LDA is how many topics
we should take for the model to estimate. To address this
problem, another nonparametric Bayesian model, namely,
Hierarchical Dirichlet Processes(HDP), was introduced and
adopted[13]. In both LDA and HDP, no relationship is de-
fined explicitly between topics during learning, and the es-
timated topics are “flat”.

Comparing to the “flat” models, hierarchical modeling of
topics can learn more accurate and predictive models, be-
cause hierarchical modeling is more likely to capture the gen-
erative nature of text collections([11],[9],[10]). The Corre-
lated Topic Models(CTM)[3] which is an extension of LDA,
captures the relations between topics, but it only models
the pair-wise correlations. The Pachinko Allocation Model
(PAM)[10] uses a directed acyclic graph(DAG) structure to
learn and represent the topic correlations. PAM connects
the words and topics on a DAG, where topics reside on the
interior nodes and words reside on the leaf nodes, but PAM
is unable to represent word distributions as parents of other
word distributions. Zavitsanos et al.[16] learned a topic tree
using LDA for each level, by starting with one topic at level
0 and incrementing the number of topics in each further iter-
ation/level, and used the symmetric KL divergence between
neighbor hierarchies to indicate the convergence. The ba-
sis of their work is quite similar to ours, but they learn the
predefined number of topics for each level explicitly. The Hi-
erarchical Latent Dirichlet Allocation(hLDA)[2] is the first
model to learn a tree-structure topic distribution. In hLDA,
each document spans a single path starting from the root
node to a leaf node of the tree with a predefined depth, then
words of that document are generated via topics on that
path. This model arranges the topics into a tree, with the
desideratum that more general topics should appear near
the root and more specialized topics should appear near the
leaves[8].

Hierarchical HDP(hHDP)[15], on the other hand, learns a
topic hierarchy from text by defining an HDP for each level
of the topic hierarchy. The topic hierarchy is learned in a
bottom-up fashion: starting with a document corpus, the
leaf topics are inferred first, then, the word distributions of
all leaf topics make up the observations for the estimation
of the next up level. The procedure repeats until the root
topic is inferred. In hHDP, the parent/child relationships
between up/down topics are not clearly identified. Also,
this recursive definition of HDP is likely to suffer from the
low time efficiency.

Our work is also built on HDP, but only for the most
root level and lowest level topics. We construct the interior
level topics by a simple clustering algorithm which is quite
efficient, and an evaluation on the final tree quality also
demonstrates its competitive performance. Different from
traditional hierarchical clustering, which gives a hierarchi-
cal partition on documents[12], points in our hierarchical
clustering refer to the word distributions.

Evaluation on the learned tree is also a relevant and an
interesting topic. In [14], an ontology evaluation method is
proposed, and we adopt the same evaluation method for our
work here due to the close relevance.

3. HDP-C MODEL
In this section, we firstly analyze the impact of the scale

parameter of Dirichlet distribution, then introduce the HDP
briefly, followed by describing our clustering algorithm(HDP-
C) in detail.

3.1 Dirichlet distribution and its scale param-
eter η

Our HDP-C model is built upon the HDP, the idea of
which lies on tuning on topic’s Dirichlet scale parameter
settings, so as to help control the topic granularity which is
used to model the text content. Dirichlet distribution is a
multi-parameter generalization of the Beta distribution, and
it defines a distribution over distributions, i.e., the samples
from a Dirichlet are distributions on some discrete proba-
bility space. The Dirichlet is in the exponential family, and
is a conjugate prior to the parameters of the multinomial
distribution which facilitates the inference and parameter
estimation.

Let θ be a k-dimensional Dirichlet random variable with
θi ≥ 0,

∑k
i=1 θi = 1, it lies in the k-1 dimensional probability

simplex with the following probability density:

p(θ|α) =
Γ(

∑k
i=1 αi)∏k

i=1 Γ(αi)
θα1−1
1 · · · θαk−1

k (1)

where the parameter α is a k-vector with components αi > 0,
and αi can be interpreted as “prior observation counts” for
events governed by θi. Furthermore, α0 =

∑
i αi is called

the scale or concentration parameter with the base measure
(α1/α0, · · · , αi/α0), and Γ(x) is the Gamma function.

A frequently used special case is the symmetric Dirich-
let distribution, where α1 = · · · = αk = η, indicating that
we have no idea of which components are more favorable in
our prior knowledge, and as a result, we use a uniform base
measure. The scale parameter η plays an important role in
controlling the variance and sparsity of the samples. For ex-
ample, when η = 1, the symmetric Dirichlet distribution is
equivalent to a uniform distribution over the k-1 probabil-



ity simplex, i.e., it is uniform over all points in its support.
Values of the scale parameter above 1 prefer variates that
are dense, evenly-distributed distributions, i.e., all probabil-
ities returned are similar to each other. Values of the scale
parameter below 1 prefer sparse distributions, i.e., most of
the probabilities returned will be close to 0, and the vast
majority of the mass will be concentrated on a few of the
probabilities.

Fig.2 depicts five samples for each different η setting (η =
0.1, η = 1, η = 10) from a 10-dimensional Dirichlet distri-
bution. Obviously, η = 0.1 leads to getting samples biasing
probability mass to a few components of the sampled multi-
nomial distribution; η = 1 leads to a uniform distribution,
and η = 10 leads to a situation that all samples are closer
to each other(in another word, each component gets similar
probability mass).

In a word, a smaller η setting encourages fewer words to
have high probability mass in each topic; thus, the posterior
requires more topics to explain the data. As a result, we get
relative more specific topics. Based on this characteristic,
we can further obtain two topic sets with different granular-
ity measure, corresponding to the up-bound and low-bound
topic sets in the sense of granularity .

3.2 Hierarchical Dirichlet Processes

Figure 3: HDP graphical model

HDP is a nonparametric hierarchical Bayesian model which
can automatically decide the number of topics. Fig.3 shows
the graphical model proposed in [13]. A global random
probability measure G0 is distributed as a Dirichlet pro-
cess(DP)[5] with a concentration parameter γ and the base
probability measure H. For each document d, a probability
measure Gd is drawn from another Dirichlet process with
concentration parameter α0 and base probability measure
G0, where:

G0|γ,H ∼ DP (γ,H) (2)

Gd|α0, G0 ∼ DP (α0, G0). (3)

The Chinese restaurant franchise is a good metaphor for
HDP. Assume there is a restaurant franchise holding a global
shared menu of dishes across all restaurants. At each table
of each restaurant, only one dish is served from the global
menu selected by the first customer who sits there, and it
is shared among all customers who sit in the same table.
The same dish can be served for multiple tables in multiple
restaurants. For the document modeling scenario, each doc-
ument corresponds to a restaurant, each word corresponds
to a customer, and topics are dishes of the global shared
menu. As a result, using HDP, we can finally learn a set of
global topics, and each document should cover a subset of
the topics.

For our particular application, the base measure H is the
Dirichlet distribution over term space, i.e., H ∼ Dirichlet(η).

1: learn a low-level topic set from HDP with η = 0.125,
M = {tl1, · · · , tl|M|}

2: learn a top-level topic set from HDP with η = 1.0,
N = {tu1, · · · , tu|N|}

3: for each tli ∈M , find its “closest” topic tuj ∈ N :
4: for i = 1 to |M | step 1 do
5: tuj = argMintuj∈U (D(tli, tuj))
6: tuj .childList.add(tli)
7: tuj .nchild++
8: end for
9: cluster the top-lever topics’s children in an

agglomerative hierarchical clustering style:
10: for i = 1 to |N | step 1 do
11: while tui.nchild > 3 do
12: find the most closest children pair (tx, ty)
13: merge (tx, ty) into a new inner topic tm
14: tui.childList.remove(tx)
15: tui.chileList.remove(ty)
16: tui.chileList.add(tm)
17: tuj .nchild−−
18: end while
19: end for

Algorithm 1: Hierarchical clustering algorithm(HDP-
C) from low-level topics to the top level

So, the scale parameter η is used as the granularity indicator
in our experiment.

3.3 Hierarchical clustering on topics
Based on the top-level topic and down-level topic sets, we

use an agglomerative clustering algorithm to build up the
interior nodes.

The top level topics give a raw partition on the topic dis-
tribution and can be directly combined to form the root
topic node. Also it can help supervise the agglomerative
clustering process for the low level topics. So, the whole
algorithm is divided into three phrases:

1. assign all low level topics into their immediate top level
topics;

2. for all subsets of low level topics indexed under each
top level topic, an agglomerative clustering process is
invoked;

3. finally, define the root topic node as a combination of
top level topics.

So, the size of the final topic tree is determined by the num-
ber of topics on the top level and down level, and we decide
the depth of the tree afterward according to user require-
ment by truncating unwanted lower levels.

During the clustering process, a pair of “closest” topics are
merged for each iteration. The whole algorithm is presented
as Algorithm 1.

Algorithm 1 use a “bottom up” approach instead of “top
down” approach. That is because we have no idea on how to
split a topic distribution into two sub topics, while merging
of two sub topics into one is much more straightforward.

4. EXPERIMENT
In this section, we set up our golden line[14] topic trees

from hierarchical data collections, test the tree quality with
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Figure 2: Samples of Dirichlet distributions with different scale parameter settings (x-axis are the components
[1-10], y-axis is the probability)

Table 1: General Statistics on Data sets
Dataset rootId #Docs TermSpace #Golden Topics
JACM N/A 536 1809 N/A
wiki1 2020309 748 7032 36
wiki2 2337326 420 7047 46
wiki3 2319090 310 5516 29
dmoz1 38825 781 15082 68
dmoz2 39220 289 6290 16
dmoz3 38997 625 13907 87

different probability metrics as distance measure of our clus-
tering, and use hLDA as the baseline to compare the tree
quality in the terms of Precision, Recall, F-Score.

4.1 Data set
To evaluate the learned tree quality, we use the Wikipedia

(WIKI) dataset from the third Pascal Challenge on Large
Scale Hierarchical Text Classification(LSHTC3)2 and the
Open Directory Project(DMOZ) dataset from Second Pas-
cal Challenge onLarge Scale Hierarchical Text Classification
(LSHTC2)3. Totally, we obtain three datasets from each of
these two sources. All these datasets contain a hierarchy
file defining the organization of each document into a hier-
archical tree structure. Each document is assigned to one or
more leaf nodes. The general statistics over these datasets
and the JACM one are shown in Table 1.

Given the hierarchical relationship, we randomly choose
some sub-trees from it and build their corresponding golden
line topic trees according to the term frequencies from doc-
uments’ assignments.

4.2 Scale effect of η settings on HDP
The scale parameter η is used as the granularity indica-

tor in our experiment. Fig.4 shows how the count of topics
learned from HDP on our datasets changes under different

2http://lshtc.iit.demokritos.gr/LSHTC3 DATASETS
3http://lshtc.iit.demokritos.gr/LSHTC2 datasets
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Figure 4: Topic counts estimated by HDP vs η set-
tings ranging in [0.1,1]

η settings. Fig.5 shows the distribution variances of the
learned topic collection from HDP on our datasets. For each
η setting, the inner variance of that learned topic collection
is measured by taking an average on the symmetric KL di-
vergence between every topic and the centroid distribution
of that collection. As shown, the variances almost drop con-
sistently while the η ranges from 0.1 to 1.0. This observation
is consistent with the η’s consideration.

4.3 Evaluation method
Given the learned topic tree and the golden line topic tree,

we want to measure how close these two structures are in a
quantitative metric. We use the ontology evaluation method
proposed in [14], which can capture, quite accurately, the
deviations of learned structure from the gold line by means of
ontology alignment techniques. In this method, the ontology
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Figure 5: Average Symmetric KL distance between
learned topics under different Dirichlet scale param-
eter setting)

concepts are defined as vector space representations which
are the same as ours. We summarize this method as follows:

1. set up a one-to-one matching collectionM = {1, · · · , |M |}
based on the dissimilarity measure between nodes of
the learned tree L = {tl1, · · · , tl|L|} and nodes of the
golden tree G = {tg1, · · · , tg|G|}, where
|M | = smaller(|G|, |L|);

2. for each matching m = (tli, tgj), compute the Prob-
abilistic Cotopy Precision(PCPm) and Probabilistic
Cotopy Recall(PCRm);

3. take a weighted average of PCP and PCR to compute
the P, R and the F-score, the weight is the similarity
between the nodes of the matching pair.

The corresponding formulas needed for steps 2 and 3 above
are shown in the following:

PCPm =
|CS(tli)

⋂
CS(tgj)|

|CS(tli)|
(4)

PCRm =
|CS(tli)

⋂
CS(tgj)|

|CS(tgj)|
(5)

TV D =
1

2

∑
i

|p(i)− q(i)|, TV D ∈ [0, 1]. (6)

P =
1

|M |

|M|∑
m=1

(1− TV Di)PCPm (7)

R =
1

|M |

|M|∑
m=1

(1− TV Di)PCRm (8)

F =
P ∗R
P +R

(9)

In above equations, the CS(t) is the Cotopy Set of node t,
which includes all its direct and indirect super and subtopics
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Figure 6: F-Scores of learned tree on different prob-
ability metrics for hierarchical clustering distance
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and itself. TVD is the Total Variational Distance[7], it is
used to measure the dissimilarity of two probability distri-
butions.

4.4 Probability metrics for hierarchical clus-
tering’s distance measure

Gibbs et al.[6] reviewed on ten of the most popular prob-
ability metrics/distances used by statisticians and proba-
bilists. We choose four of these and test their influence on
our learned tree quality. The selected metrics are symmetric
KL divergence(Dskl), Hellinger distance(Dh), and symmet-
ric χ2 distance(Dsχ2) whose definitions are given below, as
well as the TVD(Dtvd) defined in Equation.6.

KL(p, q) =

V∑
i=1

pilog(
pi
qi

)

Dskl(p, q) = 1/2[KL(p, q) +KL(q, p)] (10)

Dh(p, q) = (

V∑
i=1

(
√
pi −
√
qi)

2)1/2 (11)

Dχ2(p, q) =

V∑
i=1

(pi − qi)2

qi

Dsχ2(p, q) = 1/2[Dχ2(p, q) +Dχ2(q, p)] (12)

Fig.6 plots the F-Scores of our learned topic trees from all
the datasets with different distance measures. As observed
from this figure, all choices perform similarly, so we choose
the symmetric KL divergence as our distance measure of the
clustering in further experiment. The relationship between
those measures can be found in [6].

4.5 Performance of HDP-C
We use hLDA as the baseline to learn a 4-depth topic tree

with the scale parameter settings η = 1.0, η = 0.5, η = 0.25,
and η = 0.125 for each level. This is then compared to the
top 4-depth sub-tree of our learned tree through HDP-C. To
be consistent with hLDA’s η settings, the top-level topics are
learned with η = 1.0 and down-level topics are learned with
η = 0.125. We use the default value for other parameters:
γ = 1.0, α0 = 1.0, and the max iteration is 1000. For hLDA,
we set the max iteration to be 2000 due to that it gets a
bigger learning space than HDP.



Table 2: Comparison of tree quality with baseline
hLDA HDP − C Enhancement(%)

P R F P R F P R F
wiki1 0.323 0.459 0.189 0.346 0.464 0.198 7.1 1.1 4.8
wiki2 0.333 0.461 0.193 0.401 0.460 0.214 20.4 -0.2 10.9
wiki3 0.335 0.532 0.205 0.432 0.574 0.247 29.0 7.9 20.5
dmoz1 0.350 0.449 0.197 0.437 0.432 0.217 24.9 -3.8 10.2
dmoz2 0.234 0.472 0.156 0.389 0.497 0.218 66.2 5.3 39.7
dmoz3 0.302 0.364 0.165 0.445 0.392 0.208 47.4 7.7 26.1

The evaluation result is given in Table.2(Note that JACM
dataset is not included here due to the lack of golden line
topic tree). In terms of the F-Score, our approach performs,
on average, 12.1% better on wiki datasets and 25.3% better
on dmoz datasets. One reason is that, for hLDA each docu-
ment only spans a single path from the root to a leaf node,
which is a quite tough restriction in the mixture of topics
for each document. In contrast, our approach does not make
any prior restriction on each document’s topic choice. Actu-
ally, each document can span any arbitrary sub-tree, which
can explain its generative nature.

Besides, we observe from Table 2 that the improvement
in terms of P is much better that R, which indicates that
our approach is more preferable to those tasks which care
the precision more.

5. CONCLUSIONS
This paper builds a semantic topic tree representation for

a document collection based on a non-parametric Bayesian
topic model. Only the up-bound and low-bound topic sets
are directly inferred with the tuning on topic’s Dirichlet scale
parameter for different levels of abstraction. A hierarchi-
cal clustering algorithm(HDP-C) is proposed to derive the
middle level topics in order to construct the final topic tree.
Our experimental study on several real world datasets shows
competitive performance of our approach.
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