Transforming Between UML Conceptual Models
And OWL 2 Ontologies

Jesper Zedlitz! and Norbert Luttenberger?

! German National Library for Economics
? CAU Kiel

Abstract. The ISO 19103 standard—defining rules and guidelines for
conceptual modeling in the geographic domain—has deliberately chosen
the Unified Modeling Language (UML) as “conceptual schema language”
for geographic information systems. From today’s perspective—i.e. when
taking into account today’s mature semantic web technology—another
language might also be envisioned as language for specifying application-
oriented conceptual models, namely the Web Ontology Language OWL 2.
Both language definitions refer to comparable meta-models laid down in
terms of OMG’s Meta Object Facility, but in contrast to UML, OWL 2 is
fully built upon formal logic which allows logical reasoning on OWL 2 on-
tologies. In this paper, we investigate language similarities and differences
by specifying and implementing the transformation on the meta-model
level using the QVT transformation language.

Keywords: OWL 2, UML, conceptual modeling, ontology, model transforma-
tion, GML, Semantic Web, QVT, meta-modeling

1 Introduction

In its introduction, ISO Standard 19103 states: “Standardization of geographic
information requires the use of a formal CSL [(conceptual schema language)]
to specify unambiguous schemes that can serve as a basis for data interchange
and the definition of interoperable services.” In focusing on ”the combination of
the Unified Modeling Language (UML) static structure diagram with its asso-
ciated Object Constraint Language (OCL)”—a combination, which is probably
the most often used CSL—ISO standard 19103:2005 follows mainstream. To
illustrate its use, Fig. 1 shows a UML class diagram taken from the Geogra-
phy Markup Language (GML) standard, where it serves as conceptual model
for some application-specific purpose. Advantages are obvious: UML’s graphical
syntax lets also non-computer scientists easily comprehend the intention of such
diagrams. Also in favor of UML is the rich tool support for UML class diagrams
which recommends UML as a good starting point for software development.
Unfortunately, UML class models are not completely backed up by formal
logic, and we do not enjoy reasoning support as we do for ontologies. The OWL 2

<<FeatureType>> <<Enumeration>>
<<FeatureType>> Building BuildingType
Parcel -
thasBuilding | + extent : GM_Surface + church
+area: Area 0. + address : Address + school
+ extent : GM_Surface + type : BuildingType + garage
+ residential houses
+owns | 0..* + unknown
+ mixed
<<DataType>>
Address
+owner [1.* + street [0..1] : CharacterString <<CodeList>>
<<FeatureType>> + housenumber [0..1] : CharacterString CountryCode
Person + poBox [0..1] : CharacterString +DE
- + city : CharacterString +US
+ firstName : CharacterString + postalCode : CharacterString +CA
+ lastName : CharacterString + country [0..1] : CountryCode = DE + ...

Fig. 1. Example for a UML conceptual model taken from the GML specification [6].

Web Ontology Language® or suitable subsets thereof in contrast are completely
backed up with formal logical and there is out-of-the-box reasoning support of
OWL ontologies. Reasoning over ontologies can be used to discover inferences not
detected by programmers, among them subsumption relations between classes
and properties in the ontology schema, which helps to determine where a concept
can be located in a class hierarchy. Reasoning also helps to assert the consistency
of the conceptual model (e.g. validity of intentional definitions or in other words:
class satisfiability), and it allows us to inspect the conceptual knowledge encoded
in the model. (Bucella et al. [1] follow the same line of arguments when giving
their outline for an integration tool for geographical schemas.)

Having given this background, we feel that the following “What-if” question
suggests itself: What if OWL 2 were taken as CSL for geographic information
systems? Three further arguments back up the validity of our question:

A closer look at conceptual models reveals the systematic use of the object-
property model that “has been the basis of the GML encoding model since the
first version was adopted by OGC” [6]. It is deeply elaborated in [9]. Needless to
be mentioned here, the object-property modeling pattern is at heart of RDF4,
RDF Schema®, OWLS, and OWL 2.7

Secondly, OWL is one of the building blocks of the semantic web and the
Linked Open Data (LoD) Cloud, even if Jain, Hitzler et al. argue that currently
the LoD cloud is missing conceptual descriptions [10]. The integration of geo-
graphical information systems with the semantic web is an obvious necessity—
and might profit much from being built upon common concepts and languages.

3 http:/ /www.w3.org/ TR /owl2-syntax/

4 http://www.w3.org/ TR /rdf-concepts/

® http://www.w3.org/TR/rdf-schema/

5 http:/www.w3.org/TR/owl-ref/

" GML even contains a references to RDF: ¢[...], GML follows RDF (W3C, 1999)
terminology [...]”[6, p. 20]

Thirdly, both UML and OWL 2 refer to comparable meta-models laid down
in terms of OMG’s Meta Object Facility. Thus replacing UML by OWL 2 seems
to be a feasible task.

We have chosen a special approach to examine the question if OWL 2 can be
used for conceptual modeling. Instead of looking at a bunch of examples (which
is always problematic because you cannot be sure to cover all relevant cases
with your examples) we approach the question by trying to transform between
UML class models and OWL ontologies automatically (in both directions). This
systematic approach will show what is possible and what is not.

This paper shows the transformation between a UML model and a OWL 2
ontology with special care for restrictions and extensions GML applies to UML
models. We specify a transformation using OMG’s Query/View/Transformation
(QVT) transformation language and the meta-models of UML and OWL 2.

This paper is organized as follow: Section 2 presents the relation of UML
and GML and the restrictions resp. extensions it applies. In Section 3 we show
some existing work on the transformation of UML and OWL. Section 4 explains
our approach in general. Section 5 shows general differences between UML and
OWL 2. In section 6 we present some of our transformations en detail. Section
7 gives a short summary of the paper.

2 UML and GML

The ISO 19109 standard [9] defines rules how to create “UML Application
Schema” in a common way. Basis for these application schemas is the Gen-
eral Feature Model (GFM). However, the GFM only defines the semantics of the
meta-model but does not provide a concrete syntax how to write the schemas.
In ISO 19103 [8] UML is chosen as “conceptual schema language”. By defining
rules for the usage of UML a so called “UML profile” is defined.

The restrictions made by ISO 19103 limit the number of UML model ele-
ments and their use. Also defined are extensions—particularly noteworthy are
the stereotypes «CodeList> and <Unions. However, these are not without con-
troversy, as can be seen below. The ISO 19136 standard—GML [6] picks up the
restrictions and amplifies them to some extent. A complete list of restrictions
can be found in the GML specification [6].

— All UML elements have the visibility “public”. [6, E.2.1.1.1]

— Class names within a class diagram are unique. [6, E.2.1.1.2].

— Operations are ignored. [6, E.2.1.1.2]

— A class can either be a FeatureType if it is marked with the stereotype <Fea-
tureType>, a DataType if it is marked with the stereotype «DataTypes or
an ObjectType—classes without any stereotype. [6, E.2.1.1.2]

— A generalization between two classes is only allowed if both classes are Fea-
tureTypes, both classes are ObjectTypes or if both classes are DataTypes.
[6, E.2.1.1.2]

— A generalization between classes must not be marked with a stereotype. [6,
E.2.1.1.2]

— Multiple inheritance is not allowed. [6, E.2.1.1.2]

— Every association must have exactly two ends which links to a FeatureType,
ObjectType or DataType. [6, E.2.1.1.3]

— Associations must not be marked with stereotypes and must not contain
attributes. [6, E.2.1.1.3]

As [4, 2.4.3] observed, the UML profile described in the ISO 19103 standard
is not a profile within the meaning of the definition of UML profiles given by the
OMG. One reason is that the profile defines two stereotypes for data types that
are applied to classes. The two stereotypes <CodeList> and «Union> are no
semantics conserving specializations. For the transformation of classes marked
with the disputed stereotypes this observation, however, plays no role. We will
use the newly defined semantic of the marked classes.

3 Related Work

Several publications deal with general transformation of UML models into on-
tologies. Most of them work on XML serializations using XSLT. [2], [5], [3], and
[11] fall into this category.

Milanovié [12] describes the transformation of a UML model into a OWL
ontology using the Atlas Transformation Language, Hoglund [7] uses MOF Script
for a transformation to OWL 2. However, the goal of his work is validation of
models—therefore additional elements needed for the validation are inserted into
the ontology that hinder further use in an information system.

Tschirner et al. [13] describe conversion rules from UML-data models to
OWL. They specify four main rules to map UML classes and attributes to OWL-
classes and properties. However, the constraints specific model elements (e.g. a
Union) impose on the model are not mapped.

4 Basic idea

Commonly model driven architecture uses a four-layer architecture: meta-meta-
model (M3), meta-model (M2), model (M1) and instance (MO) layer. OMG’s
MOF is a standard M3-system with a well-developed suite of software tools.

Instead of transforming elements of a M1l-model directly we describe the
transformation using elements of the M2-meta-models. By describing the trans-
formation on a higher meta-level the transformation does not depend on the
models that are going to be transformed. It only depends on the involved meta-
models. This enables an elegant description of the transformation—for example
compared to a XSLT-based transformation that works with the concrete syntax
of M1-models.

It is very common that additional to one or more concrete syntaxes for a
language an abstract syntax exists. For example for OWL 2 has various concrete
syntaxes: Functional-Style Syntax, Turtle Syntax, OWL/XML Syntax, Manch-
ester Syntax, etc. By working with the abstract syntax our transformation be-
comes independent of any particular representation.

We choose OMG’s QVT Relations Language for our transformations because
it is declarative and works with MOF-based meta-models. The support by the
OMG consortium and several independent implementations makes it future-
proof.

5 Differences of UML and OWL 2

To assess the usage of OWL 2 as CSL we first take a look at some fundamental
differences of UML and OWL 2 and point out ways to circumvent some of them.

5.1 Open-World vs. Closed-World Assumption

In UML class models we work under a Closed-World Assumption (CWA): All
statements that have not been mentioned explicitly are false. In contrast OWL 2
uses an Open-World Assumption (OWA) where missing information is treated
as undecided. These different semantics make it necessary to add various restric-
tions to the ontology during the transformation process from a UML model to
an OWL 2 ontology to preserve the original semantics of the model.

5.2 Profiles

UML has the concept of “profiles” which allow extensions of meta-model ele-
ments. There is no corresponding construct in OWL 2. In most cases UML pro-
files are used to define stereotypes to extend classes. The information of these
stereotypes can be mapped to OWL 2 by clever creation of some new classes and
generalization assertions. However a large part of an UML profile is too specific
and would require transformation rules adapted for the particular profile.

5.3 Abstract Classes

Abstract classes can not be transformed into OWL2. If a class is defined as
abstract in UML no instances of this class (objects) can be created. In contrast
OWL 2 has no language feature to specify that a class must not directly contain
any individual. An approach to preserve most of the semantics of an abstract
class is the usage of a DisjointUnion. This would ensure that any individual
belonging to a subclass would also belong to the abstract superclass. However,
it does not prohibit to create direct members of the abstract superclass.

5.4 Access Control and Operations

In UML the visibility of model elements can be reduced by marking them as
“public”, “private”, etc. It is also possible to declare UML model elements as
read only. OWL 2 does not have this kind of control mechanism to restrict the
access to model elements. OWL 2 ontologies also do not contain any operations.
However, in the list of restriction show in section 2 we have seen that both access
control and operations are ignored.

AW N e

5.5 Global Properties

In OWL2 it is possible to define (object) properties at ontology level. Connec-
tions to classes (in the form of domain and range definitions) are optional. The
following listing shows both cases:

Declaration(ObjectProperty(:belongsTo))
Declaration(ObjectProperty(:owns))
ObjectPropertyDomain(:owns :Person)
ObjectPropertyRange(:owns :Parcel)

owns is a connection between individuals belonging to the classes Person
and Parcel. No domain or range has been specified for belongsTo, therefore the
default value of owl:Thing is used for domain and range. The belongsTo object
property can be used to connect any two individuals because every individual
belongs to the class owl:Thing.

UML offers two ways to connect classes: class-dependent attributes and as-
sociations. As the name states, class-depended attribute belong to a class and
connect it with an other class or data type. Associations are package level el-
ements themselves. However, they need (at least) two so called members-ends
which require classes as types. Therefore UML associations are not completely
suitable to represent (generic) object properties.

5.6 Complement

In many places OWL 2 allows you to work with the complement of classes and
data types. In UML, this is not generally possible.

6 Transformations

Several transformation rules for the transformation direction UML — OWL 2 can
be found in our article [14] where we have first presented our idea to use a declara-
tive transformation language on meta-model level for transforming generic UML
class models into OWL 2 ontologies. However, to answer the question whether
OWL2 could be used as CSL for geographic information systems special chal-
lenges of 1SO19100/OGC conceptual models have to be taken into account (e.g.
available top-level-classes and stereotypes with extended semantics). Therefore
we would like to highlight these areas:

6.1 Global Properties

One way to map object properties with owl:Thing as domain and range to
UML is the definition of a single top-level class that is super-class Csyper Of
all other classes in the model (like the AbstractGMLType) that represents the
owl:Thing class. In that case a generic object property can be mapped onto a
UML association with two members ends of type Csyper-

6.2 Complement

As already mentioned the definition of a complement which is possible in OWL 2
is difficult. Only if you define a single top-level class, a GeneralizationSet marked
disjoint can be used to model a class C and its complement —C.

TopLevelClass

{disjoint}

Fig. 2. UML diagram showing how the complement of a class C can be modelled.

In GML such a single top-level class exists: AbstractGMLType. Since each
object can only be instances of either FeatureType, DataType or ObjectType it
would also be possible to use these three classes as TopLevelClass when dealing
with complements.

For conceptual models following GML’s restrictions it is not even necessary
to mark the generalization set as disjoint. GML does not allow an object to be
instance of more than one element type.[6, E.2.1.1.2]

6.3 Associations and Class-Dependent Attributes

In UML two ways to connect classes exist: associations and class-dependent
attributes. In the UML meta-model both kinds are represented by the model
element Property as shown in Fig. 6.3. In general an association can connect two
or more objects (cardinality 2..*). However, GML restricts associations to have
exactly two ends. That means both class-dependent attributes and associations
are connections between two element types. Therefore it stands to reason that
the transformation of both associations and attributes can be handled together.

Since the model element Association is a subclass of Classifier all associ-
ations in a UML class diagram are direct members of a package. Therefore an
OWL 2 concept that is similar to a association is an object property which is also
direct members of an ontology. Associations can be directed or bi-directional.
A directed association can be transformed into one object property. For a bi-
directional association two object properties will be created—one for each direc-
tion. To preserve the information that both resulting object properties were part
of one association a InverseObjectProperties axiom is added to the ontology.

The transformation of class-dependent attributes is more complex. There are
no directly corresponding concepts in OWL 2 that allow a simple transforma-
tion. The main problem is that classes in OWL2 do not contain other model
elements which would be necessary for a direct transformation. The most similar
concepts in OWL 2 for class-dependent attributes are object properties and data
properties.

TypedElement

[[|
| DataType | | StructuredClassified | | Association

memberEnd | 2..*

| EncapsulatedClassifier | —[)*b| Property

ownedAttribute

class
0..1

Class

Fig. 3. Excerpt from the UML meta-model showing both possibilities to connect
classes.

In both cases the decision whether a Property is transformed into an object
property or a data property depends on the type-association of the Property: If
it is associated with an instance of Class an object property is needed. If it is
associated with an instance of DataType a data property is needed.

The OWA would allow that two properties that have been transformed from
distinct UML properties are interpreted as one. To avoid that and to map UML’s
CWA best we mark all properties that are not in a generalization relationship
(i.e. a SubPropertyOf axiom exists for them) as disjoint. To do this we add
DisjointObjectProperties and DisjointDataProperties axioms to the on-
tology: For all pairs of UML Property elements we check if they were transformed
into a OWL 2 property, are not identical, no generalization relationship exists
between them, and they have not been marked disjoint before.

6.4 Codelist

A Codelist is a special kind of enumeration defined by the ISO 19103 standard. A
class that is a Codelist is marked with the stereotype «Codelist>. In addition to
the fixed values of a normal Enumeration a Codelist might contain other values,
too. The GML standard specifies the lexical form of these additional entries.

Similar to the mapping of an Enumeration a Codelist can be transformed to
OWL 2 by using DataUnion0f to add the additional values of the Codelist to
the DataOneOf element that has been created for a normal Enumeration. The
DataTypeRestriction element allows an elegant way to add the restrictions
for additional values to the data-type—we can use the same syntax from XML
Schema® that is used in the GML standard.

8 http://www.w3.org/TR/xmlschema-2/

Declaration(DataType(:CountryCode))
«Codelist»
CountryCode DatatypeDefinition(
+DE :Country;ode
+Us DatauUnionOf(
CA DataOneOf("DE" "US" "CA")
+ DatatypeRestriction(
xsd:string xsd:pattern "other: \w{2,}"""xsd:string
)))
Fig. 4. Transformation of a GML Codelist.
6.5 Union

Another GML specific stereotype is Union. The semantics of a Union is that
only one element of a set of properties may be present at any time. In UML a
Union is modelled as a class annotated with the «Union> stereotype. The set
of properties is the collection of class-dependent attributes.

We have developed two different mappings to transform a Union to OWL 2.
The first solution works if the type of all attributes are either data-types or
classes. In that case the transformation of the attributes results in ObjectProp-
erty or DataProperty elements, not a mixture of both.

Let C be a class representing a Union with properties p; ...p,. To assure
that only one property p, € p1...p, is specified for an individual we insert a
helper property punion with the domain C and p; C pyaionVi € 1.0

Now we can add a DataExactCardinality axiom to the ontology which
limits the use of our helper property pu.i.. to exactly one per individual of class
C. That prohibits the use of two or more different properties. However, due to
the OWA we cannot make sure that at least one property is present—there might
be an individual that is simply not listed in the ontology.

Declaration(Class(:Classl))

- Declaration(DataProperty(:name))
«([jjlmonl» DataPropertyDomain(:name :Classl)
ass DataPropertyRange(:name xsd:string)

name : String
uri : anyURI Declaration(DataProperty(wuri))
DataPropertyDomain(:uri :Classl)
DataPropertyRange(:uri xsd:anyURI)

Declaration(DataProperty(:Classl__UnionProperty))
DataPropertyDomain(:Classl__UnionProperty :Classl)
SubDataPropertyOf(:name :Classl__UnionProperty)
SubDataPropertyOf(:uri :Classl_UnionProperty)

SubClassOf(:Classl DataExactCardinality(1 :Classl_UnionProperty))

Fig. 5. First solution for a transformation of a GML Union.

The second solution also works with a mixture of ObjectProperty and Dat-
aProperty elements. However, the resulting ontology becomes a bit more com-
plex.

For each property p; € pi1...p, of the union we create a helper class C;.
With a disjoint classes axiom we state that all of these classes are pairwise dis-
joint: DisjointClasses(C; ... Cp,). Each class is stated as equivalent to a
set that contains all those individuals connected by p; with exactly one individ-
ual/literal: EquivalentClasses(C; DataExactCardinality(1 p;)) resp.
EquivalentClasses(C; ObjectExactCardinality(1 p;))

Declaration(Class(:Classl))
Declaration(Class(:Class2))

«Union» Declaration(DataProperty(:name))
Classl DataPropertyDomain(:name :Classl)
name : String DataPropertyRange(:name xsd:string)

resource : Class2

Declaration(ObjectProperty(:resource))
ObjectPropertyDomain(:resource :Classl)
ObjectPropertyRange(:resource :Class2)

Declaration(Class(:Union_Classl_name))
EquivalentClasses(:Union_Classl_name
DataExactCardinality(1: name))

Declaration(Class(:Union_Classl_resource))
EquivalentClasses(:Union__Classl_resource
ObjectExactCardinality(1: resource :Class2))

DisjointClasses(:Union__Classl_name :Union_Classl_resource)

Fig. 6. Second solution for a transformation of a GML Union.

While the first solution only adds (n 4 3) axioms per UML property of the
union to the ontology the second solution requires (2n + 1) additional axioms
per property. Therefore it is clever to choose the first solution if all attributes of
a union only link to data-types resp. classes and only choose the second solution
if it is a mixture of both.

6.6 Stereotypes

In UML stereotypes can be applied to classes (and other model elements). A
few stereotypes are defined in the UML specification. A user can define his own
stereotypes in UML profiles. One of the advantages of QVT is the possibility to
access profiles and stereotypes.

As mentioned earlier, some of ISO 19103’s stereotypes modify the semantics
of the model element they are applied to. In that case a modified transforma-
tion is necessary. We have shown these specialized transformation above for the
stereotypes <CodeList> and <Union.

W N e

[

¥

w

'

Declaration (Class(:Person))

«FeatureType» i
Person Declaration(Class(:FeatureType))

SubClassOf(:Person :FeatureType)

Fig. 7. Transformation of the stereotype <FeatureType>.

For the other three stereotypes defined by ISO 19103 («FeatureTypes, «Ob-
jectType», and «DataTypes) OWL 2 classes are defined in the ontology. Classes
to which these stereotypes have been applied to become sub-classes of those
classes in the ontology. Fig. 7 shows an example of such a transformation.

The transformation of stereotypes into classes in OWL 2 is reasonable since
we can connect additional axioms with these classes. That allows us to write
down some of the semantics of GML/ISO 19103 in a machine interpretable way:

[6, E.2.1.1.2] states that each element type must be either a FeatureType, a
DataType or an ObjectType. There are exclusively these three groups of element
types. This can be expressed with a DisjoinUnion axiom:

Declaration(Class(gml:DataType))

Declaration(Class(gml:FeatureType))

Declaration(Class(gml: ObjectType))

DisjointClasses(owl: Thing gml:DataType gml: FeatureType gml:
ObjectType)

—

Both FeatureType and ObjectType have a unique identifier?. In constract,
DataType must not have such an identifier. This can be expressed in OWL by
defining a DataProperty like this:

Declaration(DataProperty(gml:id))

DataPropertyDomain(gml:id ObjectUnionOf(gml:FeatureType gml
:ObjectType))

DataPropertyRange(gml:id xsd:string)

FunctionalDataProperty (gml:id)

Since all classes to which the stereotype «FeatureType> or «ObjectType> had
been applied to in the UML class diagram become sub-classes of either Feature-
Type ObjectType in the ontology the data property gml:id can be used for them.
Instances of classes which had the stereotype «DataTypes applied must not use
the key: The domain of the property is FeatureType or ObjectType and these
classes are disjoint with the class DataType.

9 “Object types are types where the instances shall have an identity, [. ..]”[6, E.2.1.1.2]

7 Summary

We have shown differences and similarities between UML conceptual models
following the 1SO19100/OGC guidelines and OWL 2 ontologies. The use of QVT
Relations Language enables us to describe the transformations between both
technology spaces declaratively and to use model elements of the meta-models.

In further work the ideas presented here could be used for a real-world ge-
ographic information system that makes use of semantic web technology. Using
our transformations the implementation could be based on either an existing
UML conceptual model or a newly created OWL 2 ontology or even using alter-
nate editing in UML and OWL 2.

References

1. Buccella, A., Gendarmi, D., Lanubile, F., Cechich, A., Colagrossi, A.: Ontology-
Driven Generation of a Federated Schema for GIS. Semantic Web Applications and
Perspectives p. 31 (2007)

2. Cranefield, S.: Networked knowledge representation and exchange using UML and
RDF. Journal of Digital information 1(8) (2001)

3. Djurié¢, D.: MDA-based ontology infrastructure. Computer Science and Information
Systems 1(1), 91-116 (2004)

4. Eisenhut, C., Kutzner, T.: Vergleichende Untersuchungen zur Modellierung und
Modelltransformation in der Region Bodensee im Kontext von INSPIRE (Sep 2010)

5. GasSevié, D., Djuric, D., Devedzic, V., Damjanovi, V.: Converting UML to OWL
ontologies. In: Proceeding WWW Alt. ’04. pp. 488-489. ACM (2004)

6. GML 3.2.1: Geography Markup Language (GML) Encoding Standard 3.2. 1 (2007)

7. Héglund, S., Khan, A., Liu, Y., Porres, I.: Representing and Validating Meta-
models using the Web Ontology Language OWL 2. Tech. rep., D. of Information
Technologies, Abo Akademi University (2010)

8. ISO 19103: Norm ISO/TS 19103:2005 Geographic information — Conceptual
schema language. ISO, Geneva, Switzerland (2005)

9. ISO 19109: Norm ISO 19109 Geographic information — Rules for application
schema. ISO, Geneva, Switzerland (2005)

10. Jain, P., Hitzler, P., Yeh, P., Verma, K., Sheth, A.: Linked data is merely more
data. Linked Data Meets Artificial Intelligence pp. 82-86 (2010)

11. Leinhos, S.: OWL Ontologieextraktion und -modellierung auf der Basis von UML
Klassendiagrammen (2006)

12. Milanovié¢, M., Gasevié, D., Guirca, A., Wagner, G., Devedzié, V.: On Interchanging
Between OWL/SWRL and UML/OCL. In: Proceedings of 6th Workshop on OCL
for (Meta-) Models in Multiple Application Domains (OCLApps). pp. 81-95 (2006)

13. Tschirner, S., Scherp, A., Staab, S.: Semantic access to INSPIRE. Terra Cognita
Workshop (2011)

14. Zedlitz, J., Jorke, J., Luttenberger, N.: From UML to OWL 2. In: Proceedings of
Knowledge Technology Week 2011. Springer (2012)

