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Abstract.
and the association of the product configuratiosk taith the
planning of its production process while trying nonimize cost
and cycle time. We consider a two steps approaahfitist permit
to interactively (with the customer) achieve a tfirgroduct
configuration and first process plan (thanks to -negotiable
requirements) and then optimize both of them (wimaining
negotiable requirements). The communication corsctira second
optimization step. Our goal is to evaluate a recamdlutionary
algorithm (EA). As both problems are consideredcasstraints
satisfaction problems, the optimization problemcinstrained.
Therefore the considered EA was selected and adiaptéit the
problem. The experimentations will compare the EAthwa
conventional branch and bound according to thelprotsize and
the density of constraints. The hypervolume meisicused for
comparison..

1 INTRODUCTION

This paper deals with mass customization and mmserately with
aiding the two activities, product configurationdaproduction
planning, achieved in a concurrent way. Accordirg the
preferences of each customer, the customer regeism
(concerning either the product or its productioan de either non-
negotiable or negotiable. This situation allows sidering a two-
step process that aims to associate the two ctinfiexpectations,
interactivity and optimality. The first interactivestep, that
sequentially processes each non-negotiable regeitem
corresponds with a first configuration and plannpgcess that
reduces the solution space. This process is preisemhany
commercial web sites using configuration techniquidee
automotive industry for example. Then, a secondgs® optimizes
the solution with respect to the remaining negd¢iabquirements.
As the solution space can quickly become very lartge
optimization problem can become hard. Thus, thisabi®r is not
frequent in commercial web sites. Meanwhile sominsific
works have been published on this subject (seeXample [1] or
[2]) and the focus of this article is on the optiation problem. In
some previous conferences we proposed an integestiapted
evolutionary algorithm for this problem [3]. Howeyethe
presentation was rather descriptive and experirtienawere not
significant. Therefore, the goal of this paper ascompare this
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This communication deals with mass customizationalgorithm with a classical branch and bound. Thisial section

introduces the problem and the organization ofotyer.

1.1 Concurrent configuration
processes as a CSP

and planning

Deriving the definition of a specific or customizgaroduct

(through a set of properties, sub-assemblies drobimaterials,

etc...) from a generic product or a product familyhiler taking

into account specific customer requirements, caimeleroduct

configuration [4]. In a similar way, deriving a jifec production

plan (operations, resources to be used, etc.m Bome kind of
generic process plan while respecting product cheriatics and
customer requirements, can define production ptanib]. As

many configuration and planning studies (see fange [6] or

[5]) have shown that each problem could be sucalgsf
considered as a constraint satisfaction problem JC®&E have

proposed to associate them in a single CSP in dod@rocess
them concurrently.

This concurrent process and the supporting comstfeamework

present three main interests. First they allow icimsg constraint
that links configuration and planning in both diiens (for

example: a luxury product finish requires additiomanufacturing

time or a given assembly duration forbids the usa particular

kind of component). Secondly they allow processmgny order

product and planning requirements, and thereforeidavhe

traditional sequence: configure product then pispioduction [7].

Thirdly, CSP fit very well on one side, interactipmcess thanks to
constraint filtering techniques, and on the othide,soptimization

thanks to various problem-solving techniques. Hamwevwe

assume infinite capacity planning and consider gratiuction is

launched according to each customer order and ptiotiucapacity
is adapted accordingly.

In order to illustrate the addressed problem wesicar a very
simple example dealing with the configuration ahanping of a

small plane. The constraint model is shown in fglir The plane
is defined by two product variables: number of se¢deats,
possible values 4 or 6) and flight range (Rangesiptessvalues 600
or 900 kms). A constraint Ccl forbids a plane witkeats and a
range of 600 kms. The production process containsoperations:
sourcing and assembling. (noted Sourc and Asseach Bperation
is described by two process variables: resourcedamdtion: for

sourcing, the resource (R-Sourc, possible resouifeast-S” and

“Slow-S”) and duration (D-Sourc, possible value824, 6 weeks),
for assembling, the resource (R-Assem, possibleuress “Quic-

A” and “Norm-A”") and duration (D-Assem, possiblelwas 4, 5, 6,
7 weeks). Two constraints linking product and pssceariables



modulate configuration and planning possibilitiese linking seats
with sourcing, Cpl (Seat, R-Sourc, D-Sourc), anceeosd one
linking range with the assembling, Cp2 (Range, R-Ass®-
Assem). The allowed combinations of each constei@tshown in
the 3 tables of figure 1. Without taking constraiitito account,
this model shows a combinatory of 4 for the prod@gR) and 64
for the production process (2x4) x (2x4) providagombinatory
of 256 (4 x 64) for the whole problem. Consideriogstraints lead
to 12 solutions for both product and productioncess.
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Figure 1 Concurrent configuration and planning CSP model

1.2 Optimizing configuration and planning

concurrently

Given previous problem, various criteria can chidme a
solution: on the product configuration side, perfance and
product cost, and on the production planning sigele time and
process cost. In this paper we only consider ctiohe and cost.
The cycle time matches the ending date of the pastiuction
operation of the configured product. Cost is the sifithe product
cost and process cost. We are consequently dealthga multi-
criteria optimization problem. As these criteri@ & conflict, it is
better for decision aiding to offer the customesed of possible
compromises in the form of Pareto Front.
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Figure 2 Concurrent configuration and planning model to ropte

In order to complete our example, we add a costayete time

criteria as represented in figure 2. For cost, qaciluct variable
and each process operation is associated withtgpacsmeter and
a relevant cost constraint: (C-Seats, Csl), (C-Raf@g2), (C-

Sourc, Cs3) and (C-Assem, cs4) detailed in the sablidigure 2.

The total cost is obtained with a numerical coristrand the cycle
time, sum of the two operation durations, is albtamed with a
numerical constraint as follow:

Total cost = C-Seats + C-Range + C-Sourc AgSem.

Cycle time = D-Sourc + D-Assem

The twelve previous solutions are shown on therédai with the
Pareto front gathering the optimal ones. In thgsiffe, all solutions
are present. When non-negotiable requirements apeegsed
during interactive configuration and planning, sorf these
solutions will be removed. Once all these requinetdeare
processed, the identification of the Pareto frart be launched in
order to propose the customer a set of optimatisois.
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Figure 3 Optimal solutions on the Pareto Front

A strong specificity of this kind of problems isaththe solution
space is large. It is reported in [8] that a camfigion solution
space of more than 1.4* H0is required for a car configuration
problem. When planning is added, the combinatatialcture can
become huge. Specificity lies in the fact that gimpe of the
solution space is not continuous and in most cakesvs many
singularities. Furthermore, the multi-criteria aspand the need
for Pareto optimal results are also strong probkpectations.
These points explain why most of the articles mmiigd on this
subject (as for example [9]) consider genetic ool@ionary
approaches to deal with this problem. However aass
evolutionary algorithms have to be adapted in otdetake into
account the constraints of the problem as explaim¢tio]. Among
these adaptations, the one we have proposed inig[3an
evolutionary algorithm with a specific constrainedolutionary
operators and our goal is to compare it with asita$ branch and
bound approach.

In the following section we characterize the optation problem
and briefly recall the optimization techniques. iThe
experimentation results are presented and discugssete last
section.



2 OPTIMIZATION PROBLEM AND

OPTIMIZATION TECHNIQUES

2.1 Optimization problem

The problem of figure 2 is generalized as the draws in figure
4. The optimization problem is defined by the quadiet <V, D, C,
f > where V is the set of decision variables, D se¢ of domains
linked to the variables of V, C the set of constion variables of
V and f the multi-valuated fithess function. Hethe aim is to
minimize both cost and cycle time. The set V gath#ite product
descriptive variables and the resource variables. Set C gathers
constraints (Cc and Cp). Cost variables and operditioations are
deduced from the variables of the set V thankshtoremaining
constraints.
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Figure 4 Constrained optimization problem

Experimentations will consider different problenzes: different
numbers of product variables, different number obdpction
operations and different number of possible valfas these
variables. Different constraint densities (percgetaf excluded
combinations of values) will be also considered.

2.2 Optimization techniques

The proposed evolutionary algorithm is based on/PHE1] with
an added constraints filtering process that avaid®asible
individuals (or solutions) in the archive. This pides the six steps
following approach:

1. Initialization of individual set that respect the@nstraints
(thanks to filtering),

2. Fitness assignment (balance of Pareto dominanceaution

density)

Individuals selection and archive update

Stopping criterion test

5. Individuals selection for crossover and mutatiorerapors
(binary tournaments)

6. Individuals crossover and mutation that respectstamts
(thanks to filtering)

7. Return to step 2.

P w

For initialization, crossover and mutation operatarach time an
individual is created or modified, every gene (d&ni variable of
V) is randomly instantiated into its current domalio avoid the
generation of unfeasible individuals, the domain e¥ery

remaining gene is updated by constraint filteriag filtering is not
full proof, inconsistent individuals can be genedatin this case a
limited backtrack process is launched to solvepttodlem. For full
details please see [3].

The key idea of the Branch and Bound algorithm igxplore a
search tree but using a cutting procedure thasstgploration of a
branch when a better branch has already been faumefirst tool
is a splitting procedure that corresponds to tHecten of one
variable of the problem and to the instantiatiothid variable with
each possible value. The second tool is a nodeebewaluation
procedure. The filtering process is used to achibigetask with a
partial instantiation and is able to evaluate ife tipartial
instantiation is consistent with the constraintshaf problem, and,
if this is the case, to provide the lower boundeath criterion
cycle time and cost. When the search reaches afaak search
tree, or complete instantiation, the filtering gystgives the exact
evaluation of the solution. Thus, the values of Edutions can be
used to compute the current Pareto front and thewt remaining
unexplored branches that are dominated by any tep#te Pareto
front solution (e.g. the upper bounds of the ledfiton dominate
the minimal bounds of the branch to cut).

3 EXPERIMENTATIONS

The optimization algorithms were implemented in
programming language and interacted with a filgsgstem coded
in Perl language. All tests were done using a [aptomputer
powered by an Intel core i5 CPU (2.27 Ghz, only GJ core is
used) and using 2.8 Go of ram. These tests comphecbehavior
of our constrained EA algorithm with the exact mfaand-bound
algorithm.

31 Firg experimentation:

constraint densities

problem size and

An initial first model, named "full model" is comred. It can be
consulted and interactively used at http://cofiadstimac.fr/cgi-
bin/cofiade.pl select model ‘Aircraft-CSP-EA-10'. dlathers five
product variables with a domain size between 4 &ndsix

production operations with a number of possibleueses between
3 and 25. Without constraints consideration, thetmm space of
the product model is 5,184, and the planning m&@6,000. The
size of the global problem model is 497,664,00&e8ond model,
named “small model”, has been derived from the iptesyone with
the suppression of a high combinatory task anddaatén of one
domain size. This reduces the planning problemtsiZk2,000 and
global model 6,220,800.

In order to evaluate the impact of constraints ignsvo versions
of each model were produced: one with a "weak dgnhsf
constraints (20% of possible combinations are ebaduin each
constraint Cc and Cp) and the other with a "highsidgh of
constraints (50% excluded). These values are fratjuenet in
industrial configuration situations. This providésur models
characteristics in table 1.

C++



Table. 1 Problems characteristics

Solution quantity Without constraints Low density High density
Small model 6 220 800 595 000 153 000
Full model 497 664 000 47 600 000 12 288 000

For the small models, evolutionary settings areduto: population
size: 50; archive size: 40k 0.4; Rross 0.8. The ending criterion
used is a time limit of half an hour. For the falbdels, we adapt
settings for a wider search: population size: Hs6hive size: 100;
Pmut 0.4; Rross 0.8. The ending criterion used is a time requbgd
the BB algorithm. In order to analyze the two optiatian
approaches, we compare the hypervolume evolutionngiu
optimization process. Hypervolum metric has bedindd in [12].
It measures the hypervolume of space dominated tsetaof
solutions and is illustrated in Figure 5.

Max_cost Worst Point W
C;= (Cost-Max_cost)* (time-Max_time)
@ | e e
=]
o L
w I = .
3 HY gq
o 1
G | Pareto
m
Li
Cycle time Max_time

Figure 5 Hypervolume linked to a Pareto front

Small and low constrained model

In our two criteria case, it is the upper rightaaod figure 5. It thus
allows evaluation of both convergence and divergitgperties
because the fittest and most diversified set afitsmis is the one
that maximizes the hypervolume.

Results are presented in figure 6 where EA curvesaaerage
results for 30 executions. Both algorithms starhwitlapse of time
where performance is null. For the BB algorithm, ttosresponds
to the time needed to reach a first leaf on thecbemee, while for
the EA, it corresponds to the time consumed to titome the initial
population.

For the small models (first two curves), the BB aldon reaches
the optimal Pareto front much faster compared WA
performance. On the other hand, the EA is logichétter than the
BB algorithm on the full model. For example, on thawd
constrained model, the BB algorithm took 20 timegy&rto reach
a good set of solutions (less than 0.5% of the nugdti
hypervolume).

The impact of constraints density could also beuwdised. As it can
be seen, the BB algorithm performance is improved nwtiee

density of constraints is high. This is becausefiltering allows

more branches to be cut on the search tree, in waghthat the
algorithm reaches leaf solutions and, consequentigtimal

solutions more quickly. The EA performance moves tie

opposite way. The more the model is constrained, ntiore the
random crossover operation will have to backtracknd feasible
solutions, and thus the time needed by the algurithill be

consequent.

Small and high constrained model
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Figure 6 First experimentation results
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Figure 7 Experimentation results dealing with problem size

3.2  Experimentationson problem size

In order to try to identify the problem size whefé\ is more
suitable than BB, we have modified the low consedimodel as
follows. We consider now a model gathering six picidvariables
and six production operations with three possitdies for each,
and sequentially add either a product variable @anan operation.
The range of study is between 12 and 16 decisioiabhlas with
three possible values for each. Relevant soluticatesp without
constraint vary between 1.6*38nd 43*16.

The results are shown in the left part figure 7e Mertical axis
corresponds with the computation time and the bota one with
the number of decision variables. For BB curveshaves the time
to reach the optimal solution. For the EA curvslibws the time
required for nine EA runs over ten to reach thenogit solution.
Order of magnitude are close for both around 134wariables
corresponding with a solution space around 2*1@o 5*1C°

comparable with our previous small model size.

As we already mention, industrial models are fredydarger than
that. We therefore try our EA approach with a losnstrained
model with 30 variables and a solution space arour@®. The
stopping criterion is "2 hours without improvementhe right part
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of Figure 7 shows that the optimization process stapped after
48 hours. It can be noticed that 90% of the fimalrs was obtained
after 3 hours and 99% in 10 hours. This allows dimdeg the
good performance of our approach when facing lalge
constrained problems. Of course the idea is toBBeif the first
interactive configuration step has led to a raimall problem, less
than 13 or 14 variables in our case, and EA othssrwi

Finally we also try to break optimization in tweps. The idea is:
(i) compute quickly a low quality Pareto, (ii) selehe area that
interest the customer (iii) compute a Pareto onréséricted area.
The restricted area is obtained by constrainingwlecriteria total
cost and cycle time (or interesting area) and rfiitg these
reductions on the whole problem. The search spacgreatly
reduced and the second optimization much fasteas. istshown in
figure 8 where the left part shows the single giggress with 10
and 60 minutes Pareto and the right part showsetteicted area
with the two previous curve and the one correspunaiith a 10
minutes Pareto launched on the restricted areshdtvs that the
sequence of two optimization steps of 10 minutewige a result
equivalent to a 60 minutes optimization process.
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Figure 8 Experimentations with a two steps optimizationgess



4 CONCLUSIONS

The goal of this communication was to proposesi évaluation of
an adapted evolutionary algorithm that deals witmatirrent
product configuration and production planning. Treblem was
recalled and the two optimization approaches (Biaiary
algorithm and branch and bound) where briefly presss Various
experimentations have been presented. A first résahat: (i) the
proposed EA works fine when the size of the probfgmts large
compare to the BB, (ii) when problem tends to be neorestrained
the tendency goes to the opposite. When problemlovg
constrained (90% of excluded solutions) with 13-ddcision
variables with 3 values each, they perform equafhen the
problem gets larger, BB cannot be considered andd®Apcovide
good quality results for the same problem with o 80 variables
(around 1&° solutions - 90% rejected). Finally some ideas alou
two steps optimization process have shown that pgreposed
approach is quite promising for large problems. sehare first
experimentation results and we are now working @mgaring our
proposed EA with some penalty function approaches.
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