

How to Exploit Abstract User Interfaces in MARIA

Fabio Paternò, Carmen Santoro, Lucio Davide Spano
CNR-ISTI, HIIS Laboratory

Via Moruzzi 1, 56124 Pisa, Italy
{fabio.paterno, carmen.santoro, lucio.davide.spano}@isti.cnr.it

ABSTRACT
In model-based approaches, Abstract User Interfaces enable
the specification of interactive applications in a modality-
independent manner, which is then often used for authoring
multi-device interactive applications. In this paper we
discuss two solutions for exploiting abstract UIs. We
consider the MARIA language for such comparison. The
overall aim is to improve the efficiency of the model-based
process, thus making it easier to adopt and apply.

Author Keywords
Task models, abstract user interfaces, multi-device user
interfaces

ACM Classification Keywords
H.5.m. Information interfaces and presentation (e.g., HCI).

General Terms
Human Factors; Design.

INTRODUCTION
Model-based approaches for interactive applications have
long been considered but their adoption so far has been
limited. One of the most promising application areas is that
of multi-device interactive applications in which they can
hide the complexity derived from directly handling the
various possible implementation languages. However,
creating model-based descriptions of the interactive
application for each target platform can still be tedious and
requires time. It is thus important to be able to have one
single model in the design process and then leave the
refinements to the concrete descriptions for each target
platform in the final part.

The CAMELEON Reference Framework [1] provides an
indication of the various possible abstraction levels in
model-based descriptions of interactive applications: Task
Model, Abstract User Interface (AUI), Concrete User
Interface (CUI), and Final Implementation.

In [2] the basic idea was to start from a single task model

of a nomadic application and then derive the
implementation of the user interfaces for the various target
platforms through transformations into abstract and
concrete user interfaces. We will call this as the “multi-
AUIs approach” since it implies the development of a
specific AUI for each target platform: all the AUIs so
developed will be written using the same language/,
although each of them provides a description of a different
user interface that takes into account the features of each
platform. This approach has then been adopted by other
modeling languages, such as MARIA [3]. The authoring
environment associated with MARIA (freely available at
http://giove.isti.cnr.it/tools/MARIAE/home) supports the
various abstraction levels considered by the CAMELEON
Reference Framework through the ConcurTaskTrees (CTT)
notation and MARIA itself.

Other works have included the consideration of Abstract
User Interfaces in their approaches. In [4] the authors
present a model-based approach able to generate device-
specific WIMP UIs. Thus, they consider only graphical user
interfaces, which need to adapt to various screen sizes.
More specifically, this solution is based on a strong
separation of concerns between UI structure and UI
behavior. The starting point for the automatic generation
process is the Communication Model, (which can be
located at the Task abstraction level) which consists of
Communicative Acts that can be assigned to either the user
or the system. From a high-level Communication Model, a
device-dependent UI model of the structure of a GUI
(called “Structural UI Model”) is directly generated. This is
done to facilitate the optimisation process for a specific
device (rather than building an AUI first and then refining it
later for a specific device). Regarding the generation of the
GUI behaviour, a device- and modality- independent UI
Behaviour Model is also generated from the
Communication Model. The UI Behaviour Model specifies
the UI flow of interaction in a device-independent manner,
namely in terms of the communicative acts that are
received/sent at the same time, then forming a so-called
"Presentation Unit". Then, the UI Behaviour Model is
represented as a state machine having Presentation Units as
its states, while the transitions between the Presentation
Units are triggered by the Communicative Acts that are sent
by the user. The generation of the Device-Specific
Structural UI Model is done by using a declarative, rule-
based, model transformation process. A Structural UI

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

Model basically consists of "Panels" connected each other
through some relationships (e.g. choice, etc.).

Thus, since the resulting UI Behaviour Model and
Structural UI Model are at two different levels of
abstractions, they need to be "weaved" together in order to
create a consistent, complete device-dependent UI model:
the Screen Model, which consists of a (device-specific)
Structural Screen Model and of a (device-specific)
Behavioral Screen Model.

The Screen Model consists of a Structural Screen Model
and of a Behavioral Screen Model, both at the concrete
level. The Structural Screen Model specifies the concrete
screens of the WIMP UI. The Behavioral Screen Model
specifies the behaviour, i.e. the possible sequence of
screens. Thus, the Screen Model provides a consistent
specification of the WIMP UI at the concrete level. Each
state in the Behaviour Screen Model corresponds to exactly
one screen in the Structural Screen model and viceversa.
The relations between the Structural Screen Model and the
Behaviour Screen Model are represented by trigger events.

With respect to MARIA, the above approach presents the
following differences. First that approach does not specify
the structure of the UI at the abstract level. Among the
reasons leading to this decision is the fact that knowing the
structure of the UI at the abstract level is not that relevant
because it is not possible to estimate the space needs of a
screen at the AUI level (i.e. not knowing the widgets that
will be finally used), then it skips this abstract level for the
structural model. Instead, in MARIA, we still specify the
AUI structure, which will be later refined into a device-
dependent specification. In addition, in MARIA every
model-transformation at one level produces models that are
all consistently at the same level and therefore, there is no
need to weave models together (in the previous approach,
from a model at the task level they derive one model at the
abstract level and another one at the concrete level).

A process for generating AUIs specified in USIXML
starting from task and domain models has been recently
described [5]. This process consists of a number of steps: i)
first, the developer will link leaf tasks in the task model to
the components appearing in the domain model; ii)then,
information about the platform on which the generated UIs
will run is specified (e.g. different platforms are assigned
different weights by the UI designer); iii)then, tasks in the
task model are assigned different weights based on task
types (e.g. application, interaction,..); iv)tasks will be
grouped together to create all the possible task
combinations, and then some group of tasks which are
judged unsuitable will be discarded; v)once the tasks have
been grouped together and the platform has been specified,
the system automatically generates the configurations
suitable for this platform by selecting task groups
previously created according to a number of criteria that
can task-dependent or context-dependent (e.g. the task
weight, the weight of task group, the device weight, the

maximum weight of tasks for each platform); vi) finally, for
each group, different AUIs are automatically generated (and
stored in terms of USIXML specification), based on the
configurations suitable for the specified platform and the
mapping rules (the mapping rules identify abstract
interactors by considering information in the task -and
domain- models). Also the work by Tran et al. emphasizes
the fact that on the one hand the AUI definition should
remain independent of any platform/modality, while on the
other hand the definition of suitable AUIs is generally done
having already in mind the constraints imposed by the
target platform. So, if the target platform is already decided,
going through the AUI step could be no longer required and
theoretically the step of defining an AUI could be skipped.
However, for those authors it may still be interesting to
identify all potential AUIs that could result from a task
model and then decide by progressive refinement which
ones could be the most suitable for a certain context of use.

With respect to the MARIA approach, one of the main
differences is the fact that in [5] the designer cannot directly
modify the automatically generated AUIs. This is done in
order to preserve the consistency with the rules that have
been applied to obtain these results. If the designer wants to
change the AUIs s/he has to carry out the modifications at
the task level. In the MARIA environment, the AUI can be
directly modified by the designer and the modifications are
taken into account in the following refinements (e.g. at the
concrete level). Another difference of this work with our
approach is the fact that in the transformation from
ConcurTaskTrees (the notation used for task models) and
MARIA we do not generate first all the possible AUIs as
potential candidates and then refine the set. Rather, we try
to converge to just one AUI through a transformation more
complex than just mappings in which it is also possible to
apply some heuristics in order to improve its results.

COMPARING TWO APPROACHES
In the following we discuss more in depth two solutions for
exploiting AUIs within MARIA with the aim to identify the
one that provides a more efficient support in developing
multi-device user interfaces.

The Multi-AUIs Approach
In the original MARIA approach there are multiple versions
of AUIs, one AUI for each specific platform considered.
They can be obtained through direct editing, or by
transforming the task model. Thus, designers have to use
the same platform-independent concepts belonging to the
same language to describe different user interfaces to take
into account that some interactions and/or UI structuring are
not suitable for some platforms. In the original MARIA a
AUI was structured into several abstract UI presentations.
Such presentations were aimed to group together the UI
elements that are perceivable in the same time frame or that
define a logical user interface unit. A number of

communication-oriented composition operators (grouping,
relation, hierarchy, repetition) were also identified to
specify from a structural point of view the relationships
occurring between the abstract interactors within each
Abstract Presentation. Moreover, it was also possible to
navigate among the different presentations: this navigation
was included as part of the dynamic behaviour associated to
each single presentation and it was expressed through a
number of connections between presentations.

In particular, the previous task model-to-AUI
transformation considered the temporal operators in the
CTT notation and calculated the so-called “Enabled Task
Sets”, groups of tasks that are enabled at the same time, and
then it associated presentations to each of them. In order to
avoid obtaining fragmented user interface descriptions
various heuristics were defined for merging such Enabled
Task Sets. For example, such heuristics indicate that if two
sets share most elements then they can be merged, or if one
set is composed of only one element then it can be merged
with others, or if two sets differ for only one element and
the different elements are connected through an enabling
operator then they can be joined together. When targeting
large screen interfaces the idea was to apply even more
such merging of potential presentations in order to have
fewer of them with more user interface elements in each
presentation.

However, the multiple AUI specifications turned out as a
burden for the designers that had to manage all of them.
Therefore, another approach (the “Single-AUI approach”,
see next section) has been considered.

The Single-AUI Approach
It order to find a more effective way to specify AUIs a
possibility is to remove the structuring at the presentation
level (while still having composition elements and
operators). The consequence is to have just one
specification in which we dynamically describe, the
elements that are perceivable at the same time (as before,
this information can be derived from the task model). To
some extent, removing the presentation concept can be seen
as reflecting the evolution of various recent technologies.
For example, Web applications are no longer structured into
static pages but are more and more dynamic aggregations of
contents derived from various sources.

Figure 1: Comparison of the two methods.

Thus, in the new MARIA version we plan to derive a single
AUI which can be derived from a task model specification
or directly edited by the designer (see Figure 1).

However, removing the presentation concept has
implications in the model transformations, in particular in
the transformation from task models to AUIs. Now, to
carry out the latter transformation we have to associate the
Enabled Task Sets to interactor composition instead of
presentations, and we need to derive some properties of
such interactor composition by analysing the
corresponding, underneath, group of tasks they support.

In addition, since the presentation concept as well as the
associated navigation among presentations have
disappeared, in the new approach we need other
mechanism to dynamically specify the dynamic behaviour
of the UI.

Therefore, in the Single-AUI approach, in order to fully
specify a UI at an abstract level, we decided to associate
various attributes to the various parts of an abstract UI
specifying their relevant characteristics from both a
structural and dynamic point of view.

Attributes concerning the structural organisation are those
allowing –as before- to specify in which way the elements
are statically organised in the groupings: e.g. whether there
is an order among elements, whether there is a repetition,
etc.

The properties relevant from a dynamic point of view will
allow the specification of the dynamic behaviour of the UI
by exploiting event handler specifications. The latter
information should help in specifying the flow of
interaction occurring in the UI, in a way independent from
any device and modality. Then, each UI part can either have
only structural attributes, or both structural and dynamic
attributes.

An example of dynamic attribute is perceivability. It
indicates whether or not the corresponding element (or
composition of elements) is perceivable (or not) to the end
user. The event handlers associated to interactors should
indicate in their action part when to change the value of
such attribute for any element. The resulting dynamic
behaviour will then be appropriately rendered at the
concrete (and also at the final) UI level through appropriate,
platform- and modality-dependent techniques. This
information could be included in a dialogue specification
part in order to make it easier to access and interpret.

Another aspect that should be taken into account in the new
proposal is the fact that in the single-AUI approach the
single abstract UI specification will then be the common
starting point for deriving the different concrete
specifications for the various platforms. Therefore, the new
AUI specification, yet unique, should be expressive enough
to be used for deriving a refined, concrete UI for all the
platforms considered. Therefore, in this single AUI

specification, we should still be able to identify the UI
parts that are suitable for, or targeted to only some specific
platform(s). In the previous approach the information about
the platform was implicit, as we derived one AUI for each
platform.

In the Single-AUI approach, each AUI elementary
interactor or composition of interactors is annotated with
information allowing to identify the suitable platform(s)
associated to it (in case it is not suitable for all). This
information can be derived from the nomadic task model in
case it was first developed.

Another related issue is to identify the single AUI from
which derive the various CUIs. In the case of
transformation from task model, it can be automatically
obtained from it, and having the perceivability attributes
defined consistently with the dynamic behaviour defined by
the temporal operators included in the task model. Indeed,
the issue of avoiding fragmented user interface can still be
addressed in a way similar to the other solution: heuristics
similar to those used currently in MARIA could be applied.

In this case the merging would consider the composition
interactor sets, the set of interactors associated with each
composition operator.

This can be applied in the Task-to-Aui transformation but
also in the Aui-to-Cui transformation. In the latter case the
merging should take into account the features of the target
platform and this does not necessarily mean that they
become member of the same group but that they are
perceivable at the same time.

Possible driving criteria in this process can be the number
of interactors that would be perceivable at the same time or
an estimation of the expected cost in terms of presentation
resources (e.g. screen size). Thus, depending on the target
platform we can set limits for these criteria to the number of
interactors that can be perceivable at the same time and then
merging process can be applied until such limit is reached.

ADVANTAGES AND DISADVANTAGES OF THE SINGLE-
AUI APPROACH
If we analyse the two processes (represented in Figure 1)
we can identify some advantages of the new approach.

Advantages of the Single-AUI approach
 Only one, self-contained Abstract UI specification is

held, instead of multiple AUI specifications;

 Only one transformation is needed to move from the
task model level to abstract UI level; this results in a
gain in efficiency in the transformation process

 No more replication of UI elements within the UI
specification appears (there is no more need to
replicate UI elements in different UI presentations),
thus making the specification more compact.

Disadvantages of the Single-AUI approach
 Less intuitive specification and visualisation of AUIs

(and CUIs) since it is less intuitive to identify the
elements that are perceivable at the same time with one
less element of structuring;

 Both the transformations from AUI to CUI and from
CUI to FUI should be adapted to suit such changes

AN EXAMPLE APPLICATION
In order to clarify the discussion we can consider the
example in [6] in which two different AUIs are obtained for
desktop and mobile platform. They are structured into three
(mobile platform) and one (desktop platform) presentations.

Figure 2: An example of Multi-AUIs approach.

In the case of the Single-AUI approach we would have a
single AUI corresponding to the main grouping of the
single presentation. In this case through the perceivability
attribute it would be possible to differentiate the dynamic
behaviour of the two user interfaces in the corresponding
concrete user interfaces. For example, both could share that
when the search is activated then the group associated with
the search results should become perceivable. However, in
the case of the mobile interface when the search is activated
then the group of input parameters should set its

perceivability to false in order to gain further screen space
for showing the results.

In the end the two approaches can generate similar results
in terms of user interfaces. The potential interesting
difference is in the efficiency of the process, since the
Single-AUI approach requires creating explicitly only one
single abstraction model either directly or through the task
model. However, in order to be effective this approach
needs more intelligent and difficult to implement abstract-
to-concrete transformations able to change the
perceivability of the various compositions, also taking into
account the features of the target platform. Indeed, in the
Multi-AUIs approach such transformation is rather simple
to obtain since it mainly consists in adding concrete
attributes to the various abstract specifications.

CONCLUSION
In this paper we present our first thoughts on how to more
effectively exploit Abstract User Interfaces in the
development of multi-device interactive application. The
idea is moving from a multiple-AUI approach to a single-
AUI approach which should also better reflects the most
recent technological trends. Some advantages and
disadvantages have been also discussed in the paper.

REFERENCES
1. Calvary, G., et al., 2003. The CAMELEON reference

framework. Deliverable 1.1, CAMELEON project.
Available from:

http://giove.isti.cnr.it/projects/cameleon/deliverable1_1.
html

2. Paternò, F., Santoro, C., Spano, L.D.: MARIA: A
universal, declarative, multiple abstraction-level
language for service-oriented applications in ubiquitous
environments. ACM Trans. Comput.-Hum. Interact.
16(4): (2009)

3. F.Paternò, C.Santoro, One Model, Many Interfaces,
Proceedings Fourth International Conference on
Computer-Aided Design of User Interfaces, pp. 143-
154, Kluwer Academics Publishers, Valenciennes, May
2002.

4. Raneburger, D., Popp, R., Kaindl, H., Falb, H., and Ertl,
D., Automated generation of device-specific WIMP UIs:
weaving of structural and behavioral models. In
Proceedings of the 3rd ACM SIGCHI symposium on
Engineering interactive computing systems (EICS '11).
ACM, New York, NY, USA, 41-46.

5. Tran, V., Vanderdonckt, J., Tesoriero, R., and Beuvens,
F.. 2012. Systematic generation of abstract user
interfaces. In Proceedings of the 4th ACM SIGCHI
symposium on Engineering interactive computing
systems (EICS '12). ACM, New York, NY, USA, 101-
110.

6. Paternò F. Santoro C. Spano L.D., Engineering the
authoring of usable service front ends. The Journal of
Systems and Software. Elsevier, Volume 84, Issue 10,
October 2011, pp. 1806-1822

