Integrating Web Services in Petri Net-based
Agent Applications

Tobias Betz, Lawrence Cabac, Michael Duvigneau, Thomas Wagner,
Matthias Wester-Ebbinghaus

University of Hamburg
Faculty of Mathematics, Informatics and Natural Sciences
Department of Informatics
{betz,cabac,duvigne,wagner,wester } @informatik.uni-hamburg.de
http://www.informatik.uni-hamburg.de/TGI

Abstract. The context of this paper is given through a software en-
gineering approach that uses Petri nets as executable code. We apply
the particular understanding that Petri nets are not only used to model
systems for design purposes but also to implement system components.
Following this approach, we develop complex Petri net-based software
applications according to the multi-agent paradigm. Agent-internal as
well as agent-spanning processes are implemented directly as (high-level)
Petri nets. These nets are essential parts of the resulting software appli-
cation — alongside other parts (operational and declarative ones), which
are implemented using traditional ways of programming.

One of our goals is to open our Petri net-based agent framework MULAN/
CAPA so that multi-agent applications can communicate and interoper-
ate with other systems — especially with Web-based applications. For
this cause, we present a gateway solution to enable Petri net-based ap-
plications to access Web services as well as to offer Web services to other
applications: the WebGateway. Besides describing the WebGateway ex-
tension itself, we use its presentation to demonstrate the practicability of
the Petri net-based software engineering approach in general. We empha-
size two benefits: (1) Petri net models serve as conceptual models that
progressively refine the constructed system from simple models to well-
defined specifications of the systems. This improves the understanding
of the systems. (2) Having essential parts of the software system being
implemented with Petri nets allows to carry out (partial) verification of
our application code by means of standard formal methods from the field
of Petri net theory.

Keywords: Web Services, High-Level Petri Nets, Multi-Agent Systems,
MuLAN, RENEW, P'AOSE

1 Introduction

One of the most frequent requirements for modern software applications is to
open the access of the offered functionality to other entities in the World Wide

98 PNSE’13 — Petri Nets and Software Engineering

Web. In this paper we address the topic of meeting this requirement for Petri-
net based software applications. We present a gateway solution for allowing Petri
net-based applications to access Web services as well as offering Web services
themselves.

The usefulness of Petri nets for software engineering has been recognized in
the context of many paradigms like object-orientation [1], components / plu-
gins [7,16,22] or agent-orientation [17,20]. However, in this paper we assume
a particular understanding of Petri net-based software. In addition to using
Petri nets for design-level artifacts and for verification of certain system prop-
erties, we utilize Petri nets as our implementation language. More concretely,
we rely on the high-level Petri net formalism of Java reference nets [7,18] that
allows to combine multi-level Petri net modeling (according to the nets-within-
nets concept [25]) with Java programming. The formalism is supported by the
RENEW! tool (http://www.renew.de). We have developed the multi-agent sys-
tem (MAS) framework MULAN® based on Java reference nets. It provides a
powerful middleware for running distributed multi-agent applications on mul-
tiple instances of RENEW. In addition, we have developed a Petri net-based
agent-oriented software engineering approach (PA0SE!) for the construction of
such multi-agent applications.

With the WebGateway extension, we introduce the latest addition to our
Petri net-based software engineering framework MULAN/CAPA. While the Mu-
LAN model is often referred to as the reference architecture, CAPA (Concurrent
Agent Platform Architecture) is an extension and implementation of MULAN.
CAPA [11] provides convenient ontology-based message processing and an infras-
tructure for FIPA-compliant agent management and IP-based transport services.
CAPA is, thus, one implementation of the reference architecture MULAN. It al-
lows to integrate MULAN applications into Web-based environments via Web
services. This opens MULAN applications in the sense that MULAN agents can
now access resources external to the agent world in a uniform way via Web Ser-
vices instead of having to be equipped with proprietary connectors. In the other
direction, MULAN agents publish and offer their own services also as Web ser-
vices and thus can equally be accessed uniformly from anywhere across the Web.
Again, we stress our specific understanding of Petri net-based software, which
carries over to the integration with Web services. Usually, work on Petri nets
and Web services deals with providing semantics to modeling notations that are
used within the Web context, like BPEL [13] and some translations [15]. Our
approach is to provide a way to offer Web services that are actually realized by
the execution of Petri net models. The other way round, the ezecution of Petri
net-based applications can include the access of arbitrary Web services.

The concrete aim of this paper is twofold. Firstly, we introduce the Web-
Gateway itself as a solution for bringing Petri net-based applications and Web
services together. Secondly, we use the WebGateway extension as an example

! For more detailed information about RENEW, MULAN and P*AOSE see [5] and http:
//www.paose.net.

L. Cabac et al.: Integrating Web Services in PN-based Agent Applications 99

for the general benefits that underlie our approach of Petri net-based software
engineering. We claim that these benefits are basically:

1. We follow an engineering approach, in which we move from conceptual mod-
els as design artifacts to refined, technical models as software artifacts. In
our opinion, this approach of implementation through specification allows to
iteratively build models/code in a documented and comprehensible way. In
addition, core features of a system can be determined early on and main-
tained in further refinements.

2. By using Petri nets as code we can verify our application code. Of course,
this can only happen within certain limits. Both the nets-within-nets na-
ture of our models and the use of Java inscriptions prohibit a comprehensive
verification. Nevertheless, we can define abstractions (e.g. P/T net abstrac-
tions) of our program code and verify specific properties (e.g. properties of
sound workflows) with respect to them. This allows at least partial verifi-
cation of our application code (which could possibly be supplemented with
unit testing mechanisms for reference nets, cf. Section 8 and [8]).

The outline of the paper is as follows. In Section 2, we present the concep-
tual model of our WebGateway extension for bringing Petri net-based (agent-
oriented) applications and Web services together. Based on this, we present
details of the WebGateway implementation in Section 3. In combination, these
two sections demonstrate the benefits and practicability of our implementation
through specification approach. In Section 4, we demonstrate how the WebGate-
way and one particular Petri net-based Web service are deployed in the context of
our integrated project management environment (IPME) on a day-to-day basis.
Section 5 presents a further insight to the implementation in order to demon-
strate the refinement process of the model. We discuss the results of the paper
in Section 6, position them in the context of related work in Section 7 before we
conclude the paper in Section 8.

2 Conceptual Gateway Architecture

The WebGateway extension to our multi-agent framework MULAN/CAPA is re-
alized by a WebGateway agent. This agent is coupled to a (jetty) Web Server and
thus brings the two worlds of the (Web service-based) Internet and multi-agent
systems together. In Section 3, we address technical details of the WebGate-
way realization. In this section, we focus on the conceptual architecture. Along
the way, we demonstrate the usefulness of applying a Petri net-based modeling
approach. We progressively refine a simple architectural model to a meaningful
and well-defined specification. This specification then represents the basis on
which to actually implement the WebGateway agent’s behavior. Due to space
limitations, we cannot address the whole functionality of the WebGateway. In-
stead we concentrate on handling Web requests and responses. Further topics
and challenges will be addressed in the following section.

100 PNSE’13 — Petri Nets and Software Engineering

Figure 1 illustrates our starting point. In order to provide communication in
such a heterogeneous setup consisting of Web and multi-agent system parts, the
communication has to be facilitated. The WebGateway provides the translation
as an adapter between the two worlds of communication. For this it provides
two interfaces: one for Web-based communication and one for FIPA2-compliant
communication. The interfaces are depicted in Figure 1 as white rectangles. The
Internet is shown as a cloud and the MULAN reference model (cf. [17]) stands as
an exemplary multi-agent system.

Internet <——=> WebGateway <——> Multi-Agent System

infrastructure ,ZBO*M\ agent platfort
i
Web FIPA-compliant
HTTP Agent
Interface Interface

Figure 1. WebGateway context.

In the following we will consecutively refine the WebGateway as a Petri net
model. Figure 2 shows the first step of this refinement. The WebGateway’s main
functionality of translating messages from one domain to the other is represented
as two transitions that are included in the transformation component. The two
interfaces are now depicted as transitions.?> Messages may enter through the
interface transitions with outgoing arcs, are received on the buffer places and
ready for transformation processing.

Web T - FIPA-compliant
HTTP rans- Agent
formation
Interface Interface

Figure 2. Simple WebGateway architecture model

2 Foundation for Intelligent Physical Agents: http://www.fipa.org.

3 The notion of transitions being interfaces fits nicely with an object-oriented
paradigm, if one presumes that these (on one side open) transitions are one port
of synchronous channels.

L. Cabac et al.: Integrating Web Services in PN-based Agent Applications 101

Translation is an important and already technically challenging part (cf. the
following section) but by far not the only task of the WebGateway. In addition, it
has to make sure that responses are matched to requests across the heterogeneous
setup. In our approach the WebGateway keeps a copy of a request message in
order to be able to provide this matching. Thus responses can be routed to
the right recipient. In Figure 3 an exemplary conversation direction is modeled:
a request from the Web to an agent-implemented service. The original request
(e.g. from a Web browser) is a JSON message (JavaScript Object Notation). The
WebGateway translates this message to FIPA-SL (Semantic Language), which
can be understood by agents in the multi-agent system. A copy of the message is
kept within the gateway, which allows the gateway to route the response message
to the requester after the answer has been translated back from FIPA-SL to
JSON. Please note that JSON stands for just one possibility of a Web message’s
content. Content types like XML or HTML form data can be translated in a
similar fashion.

json—req-’O——json—req son ->s sI—req——’O—sI—req

Web Transformation/5|_req FIPA-compliant
HTTP Routing Agent
Interface sl-req Interface

json—respO‘——json—resp son <- s sI—resp——O‘-sI—resp

guard sl-resp.matches(sl-req)

Figure 3. WebGateway architecture model for handling Web-client requests

While Figure 3 covers one exemplary interaction type, namely a request sent
by a Web-based client to an agent-based service, the WebGateway also provides
the possibility that a Web service request is initiated from the agent’s side. In
this case an SL encoded request will be translated to (for instance) JSON, a
copy of this message will be kept for later routing and the answer from a Web
application will be translated from JSON to SL in order to deliver it to the
requesting agent. Both initiating directions are supported by the WebGateway
and use the same interface as depicted in Figure 4.

In addition to the request interactions covered so far, the WebGateway also
supports a uni-directional communication (inform interaction), which is not dis-
cussed here.

While this conceptual Petri net model of the WebGateway architecture shows
the basic (internal) behavior of the WebGateway, it neither specifies the interac-
tions between WebGateway and Web applications or agents nor does it present a
realistic level of detail for the implementation of the WebGateway agent. These
details are covered in the following section.

102

PNSE’13 — Petri Nets and Software Engineering

'—json

json-resp

Web
HTTP

Interface |,
json-resp

guard json-reg.isRequest()
“json-req json -> sl sl-reqs

sl-req
Web Request
Transformation/
Routing
sl-req

json <- sl
guard sl-resp.matches(sl-req)

guard json-resp.matches(json-req)
json -> sl

.

sl-resp

sl-resp

FIPA-

compliant

Agent
Interface

json-req Agent Request
Transformation

json-req Routing

json <- sl
guard sl-req.isRequest()

json-req sl-req

e &

Figure 4. WebGateway architecture for two-way service request handling

3 WebGateway: Integration and Details

In order to achieve a concrete implementation of the abstract architecture de-
scribed in the previous section we need to combine multiple technologies, which
are well established in the world of multi-agent systems and Web services. In this
section, we describe how those technologies are combined for the implementation
of the WebGateway in order to obtain the desired integration of both application
domains. For this we present two parts of the adapter functionality of the Web-
Gateway. The first is concerned with the message routing and translation as well
as service registration. It focuses on the Web interface side, which is — from the
perspective of the muulti-agent system — the external interface. The realization
of this interface, which requires the integration of the required technologies, is
presented in Section 3.1. The second part focuses on the WebGateway as a part
of the agent system and its communication with other agents. Hence, Section 3.2
introduces the communication protocols providegd with the WebGateway.

3.1 Integration of the Required Technologies

An initial requirement is that the WebGateway must be able to interact with
communication partners of both worlds. For that reason the WebGateway pro-
vides two communication interfaces as shown in Figure 5 where we have included
the conceptual architecture model from the previous section in order to illustrate
its relation to the actual WebGateway implementation.

As the WebGateway is realized as an agent itself, the agent interface for
communication with other agents is inherently part of the underlying multi-
agent system framework (MULAN/CAPA in our case). Consequently, the ordinary
FIPA-compliant agent communication infrastructure of our framework enables

L. Cabac et al.: Integrating Web Services in PN-based Agent Applications 103

—————— N
Web (Agent Platform
AT ()
Socket {WebSocket Tr‘;v::fgrer::teiztn/ 5
Client Jetty Routing
- 1}
Web ebGateway
MTS DF
Server Agent
(T Agent Request
Web |, < HTTP Q% Transformation/|
Browser Routing
b
jS—
L Web Interface Agent Interface)

Figure 5. Integration of the WebGateway in the multi-agent system

communication with other agents both on the same platform and on remote
platforms. This part can be considered as the WebGateway’s internal commu-
nication interface.

In addition, the WebGateway agent needs a Web interface that serves the
communication with Web services and Web clients. It is realized using a Web
server (Jetty, http://www.eclipse.org/jetty). This is where we have extended
our framework. For each MULAN/CAPA host, one Web server is launched. A Mu-
LAN/CAPA host may include multiple agent platforms, but typically we have a
one-to-one correspondence between a host and a platform. For each platform,
a WebGateway agent is launched and connects automatically to the platform’s
(/host’s) Web server. This part can be considered as the WebGateway’s external
communication interface. The Web server enables communication between the
WebGateway agent and Web services/clients using the well established HTTP
protocol (Hypertext Transfer Protocol, http://www.w3.org/Protocols) as well
as the HTML5 WebSocket protocol (http://dev.w3.org/html5/websockets/).
In contrast to HT'TP, a WebSocket connection allows to exchange messages asyn-
chronously between client and server. This allows more flexibility for browser-
based Web applications and fits quite well with the agent paradigm as it tradi-
tionally relies on asynchronous interactions.

Besides mediating communication technically, there remain further challenges
in order for the WebGateway to really provide a transparent and bidirectional
communication between the agent and the Web service world. We identify the
following required key features.

1. Routing and management of messages between the different interfaces.

2. Registration and management of agent services that are published as Web
services and vice versa.

3. A two-way translation of the supported message encodings.

The first mentioned feature is specifically addressed by the conceptual archi-
tecture for the WebGateway from the previous section. More (technical) details

104 PNSE’13 — Petri Nets and Software Engineering

of our solution concerning the cross-technological tracking and routing of mes-
sages can be found in [4].

For the second mentioned feature, our approach supports — and actually
is limited to — RESTful Web services. The REpresentational State Transfer
(REST) architecture [12] gained increased attention because of its simplicity
of publishing and consuming services over the Web. The architecture is based
on resources that identify the participants of service interactions and that are
addressed with globally unique URIs*. Such a resource can be manipulated over
a uniform interface with a fixed set of operations (GET, POST, PUT, DELETE,
etc.) that are traditionally part of the underlying HTTP networking protocol.
Resources are also decoupled from their representations so that their content
can be accessed in a variety of formats e.g. HTML, JSON®, XML or even JPEG
images. For our purposes, we treat artifacts from the multi-agent world (hosts,
platforms, agents, agent services) as REST resources in the Web world. The
technical counterparts for these agent-based REST resources on the Web server
side are implemented as Java Servlets®. These are responsible for providing the
resource representations and also act as connection endpoints for HT'TP and
WebSocket connections, forwarding all incoming messages to the responsible
WebGateway agent. In [4], we provide more details on addressing agent-based
REST resources and on how to provide suitable presentations.

The last mentioned feature was also briefly addressed in the previous section
(translation between FIPA-SL and JSON/XML/HTML form data). We will not
cover this topic here, but again refer to [4].

3.2 The WebGateway as a Mulan/Capa Agent

So far we have mainly focused on Web technologies that are necessary for re-
alizing the WebGateway according to the conceptual architecture presented in
the previous section. However, we have already stressed the fact that the Web-
Gateway is actually realized as an agent in our MULAN/CAPA framework. We
have presented the development approach (P*AOSE) for MULAN/CAPA multi-
agent systems together with corresponding tools on other occasions (cf. [5,6]).
Basically, a MULAN/CAPA agent is designed in terms of three aspects: agent
knowledge, agent-internal processes, agent-spanning processes. These aspects
eventually manifest in three types of software artifacts for agent implementa-
tion: a knowledge base, decision components (DCs) for managing agent-internal
processes and protocols for managing interactions with other agents. In this pa-
per, we will not comprehensively cover all details of developing the WebGateway
agent but provide an overview of the necessary parts.

Basically, the conceptual architecture described in Section 2 provides the
groundwork, on which the agent’s decision components are designed. In the
previous subsection, we have covered the technologies that are needed to flesh
out the conceptual architecture in order to arrive at an actual implementation.

4 Uniform Resource Identifier
5 Javascript Object Notation (JSON)
5 http://www.oracle.com/technetwork/java/index-jsp-135475.html

L. Cabac et al.: Integrating Web Services in PN-based Agent Applications 105

One central aspect of agent design is its interactions with other system parts.
Interactions between the WebGateway and Web applications take place via
HTTP/WebSockets. For interactions between the WebGateway and other agents
we have to provide equally well-defined protocols. Basically, the WebGateway
agent offers five protocols for this purpose:

— WebGateway_ registerAgent for registering agent services as Web services.

— WebGateway_sendrequest for forwarding request from Web applications to
application agents

— WebGateway_ receiverequest for forwarding request from application agents
to Web applications

— WebGateway_sendinform and WebGateway_ receiveinform for sending inform
messages in both directions

Web Multi-Agent System
IWeb Client WebGateway_sendrequest‘ ’ IExport_export
\initiatcejexgolt request] __msg_ _ action acl = Sl0Creator.

createActionRequest(msg.getReceiver(),
msg.getContent())

T 1
ExportHelper.DC_ACTION_CONVERT
T

ctio

action p2 = SI0Creator.
createReplyResultinform(p,result);

Failure-g- Success

Translation i =

:
Routing = Export Request
DonemmmmmResult | AUML Diagram

@date 09-01-2012
J -] @author betz,cabac,wester
——

@version 1.0

[Response | o ated by a web clent
Evaluation y
——
[1
R lsimple WebGatewayHelper.DC_ACTION_ACL_INFORM!
[evaluate export response] stop
(]]

Figure 6. A model of the export request interaction initiated by a web client.

We cannot cover all of these interactions but will turn to one example. Fig-
ure 6 shows an AUML diagram for the case of a WebGateway_sendrequest. The
AUML (Agent UML, see [9,6]) Interaction Protocol diagrams are derived from
Sequence Diagrams. They allow to fold several sequences into one scenario by
providing modeling elements for alternatives or concurrency — similar to UML2
Interaction Diagrams. Here, we regard the sample case where a Web application

106 PNSE’13 — Petri Nets and Software Engineering

requests the export functionality of an application agent and the WebGateway
agent acts as the mediator. We address the export application scenario more
deeply in the next section.

In the P*AOSE approach, we use these AUML diagrams to (semi-)automatically
generate the interaction parts for each party as Petri nets (cf. [9]). These result-
ing protocol nets are then directly used for the implementation of agent interac-
tions. It is important to note that the WebGateway_ sendrequest protocol net is
generic. Here, it is shown in the context of the export example. But is designed
to be applicable for arbitrary requests sent from a Web application to an ap-
plication agent. For instance, we have developed a web component-based GUI
framework for browser applications that relies on exchanging web component
events between browsers and agents (so called Agentlets).

For each new way of making use of the WebRequest_ sendrequest protocol net,
the two interaction sides have to fit together. This means that the composition
of the WebRequest_sendrequest protocol net and its counterpart protocol net has
(at least) to result in a sound protocol.”

4 Application of the WebGateway / Export Example

As a real world example we present an application that utilizes the WebGate-
way’s functionality to provide a Web service. The Export Service takes a repre-
sentation of a Petri net in the form of a serialized Renew drawing or as PNML
and returns an image representation of the model.® The Diff Service service
takes two representations of models and returns a graphical diff [10] of the two
models.

People can access these Web services directly through a Web page interface.
But the main application for the Web services is currently a different one. In the
context of software engineering, in which we use our models, a tight integration of
available tools ensures the efficiency and therefore the acceptance of the available
tools among developers. Thus we have integrated the two Web services in our
preferred integrated project management environment (IPME, see [3]).

Figure 7 shows a schematic model of the setup of our IPME. The IPME —
in this case: Redmine (http://www.redmine.org/) — runs on a standard Web
server shown in the center of the model. It includes several plugins for the ac-
cess of the source code management system (SCM, possibly located on another
server) and the Export/Diff Web services (again located on another server). De-
velopers can interact with the source code repositories to introduce new versions

7 Although the soundness property is not well-defined for protocol nets, we conceive
this property in analogy to soundness of workflow nets.

8 In fact the service takes any file type that can be read by Renew, e.g. Renew
nets (.rnw), JHotDraw drawings (.draw), PNML, several diagram types used within
PAOSE (.aip,.arm) and also Lola net files (.net). The RENEW import/export system
is also extensible, so any envisioned file type in the context of Petri nets and UML
modeling can easily be implemented.

L. Cabac et al.: Integrating Web Services in PN-based Agent Applications 107

Workstation PC

Browser,
Developer

Ul Designer
Sourcq Code IMPE access \ / IMPE access Manager
File Server / Web Server / IPME WebFIPA-compliant Export Server
Repository HTTP Agent

Integrated
Project

vianagement
Environment

nterface Interface
Export ! Image Net Export
Renew Drawin Service
Plugin WGW
Diff << PNG Image
i Image Net Diff
Service

Figure 7. A schematic architecture for the export Web Service / Redmine plugin.

Source Code>
Source l

Code

Management

of artifacts, to examine the commit history or to examine differences of the se-
lected versions and so on. Managers as well as developers can in addition use the
IPME — besides of using the planning and documentation features — to investi-
gate the source repository comfortably in a Web browser. One main part of the
functionality provided by the IPME is that developers and project managers can
browse quickly through the source code and choose to display a diff of versions
of the source code in a Web browser. However, the default browsing and diffing
functionality of IPMEs works on text-based source code only while a large part
of our code base is Petri net-based. A textual representation of diagrams — for
example in PNML - is not very significant for human readers. Moreover, a text
based diff of versions of the diagram’s text representations is completely useless.
Thus, the Export and Diff plugins take the text representations for diagrams
from the SCM, hand them to the Export and Diff Web services and integrate
the returned images smoothly into the Web page-based display for the developer.
Figure 8 shows a screenshot of the integration of the Diff Service in the IPME
Redmine. The screenshot shows The Redmine user interface in a Web browser.
The diff of revisions 9044 and 9545 of the Receiver chat protocol net is dis-
played. The differences are highlighted in red (removals) and green (additions).’
All other graphical elements are faded to a foggy gray leaving a shadow of the
original net.

Consequently, within our development environment the Web services are used
by the IPMEs'? and are thus provided to the developers in an automated way.
A server instance of RENEW is running and provides the Web services using the
MuLAN/CAPA framework with its WebGateway extension. A publicly accessible
Export/Diff Web page and a demonstration page of the Redmine integration
can be accessed from the P'AOSE Web Site (http://www.paose.net/).

Figure 9 shows a screenshot of the presented multi-agent application showing
an export interaction. The MulanViewer on the left shows the multi-agent sys-
tem’s status in terms of all started agents, their decision components, knowledge

9 In black & white printing the location of the manipulated parts are still recognizable,
although it becomes impossible to distinguish removals from additions.
10 We provide plugins for Redmine and Trac (http://trac.edgewall.org/).

108 PNSE’13 — Petri Nets and Software Engineering

e s

€530

b 8 38 hitps://paose.informatik.uni-hamburg.de /redmine/projects/demo/ | & & Q~ Google

{2y Home &f Projects i Export / Diff

Overview | Activity | Wiki

Revision 9044:9545 src/de/renew/agent/webchat/interactions/chat/Receiver_chat.mw

T
src/de/| /agent/ / /chat/ ~_chat.rnw (9545)
action message
ReceiveT : o gpthitgk :
P2pe —p—_JPerf2
mes ;a:’g_@ message
intpl
| - .
A ‘ € /r. 4
N
: | 2 i fel ROCESE E
H PE me3tggelvertelBer. PROCESS MESSAGE
pl 1 ¥ —
l 2 . —a{ ™ —ef >— » e
L1 ; 2, & |
"
[reactive nrotocol dcExchangels, message 3
A —) <1>

Figure 8. Screenshot of a diff image integrated in Redmine (Demo).

bases and currently executed protocol nets. In the back, parts of the involved
nets are shown: these are — from top to bottom — the transformation decision
component of the WebGateway and the export protocol net of the Export agent.
The sendrequest protocol net of the WebGateway is not shown but listed in the
MulanViewer’s tree view. During this interaction the WebGateway sends the
request to the Export agent after the request has been received from the Web
client. On the right hand side of the screenshot are two frames showing a deep
inspection of tokens, which are located as indicated on the highlighted places.
The first one shows the request message in FIPA-SL, waiting to be matched
with the response for routing purposes (cf. Section 2). The second is the re-
sponse message, which is just about to be sent from the Export agent to the
WebGateway. !

11 Although the messages could also be inspected in String representation, the UML
representation is much clearer and more concise.

L. Cabac et al.: Integrating Web Services in PN-based Agent Applications

109

[Mulan Viewer [=)[E]x]
8% CentralDF Help... ¥
¢ df@CentralDF i
L E KnowledgeBase: knowledgebase[391]
df DC_checkLivenessTimeout[221] Key / Value
+ Expg en 0 inform :content "({web-me... WebGateway receiveinform
] Expu;tiexpurtll';'éil] request ;content “((act!un . WebGatewa regl_stterAgent
g — request :content "((action ...WebGateway receiveraquest
§Webnc[472] ame (agent-identifier :resolvers...
[Roles [WebGateway] -~
Export DC rt[467. :
v WébG::ecwiayiclof;VCeelgtra]IDF ‘| webGateway Name (agent-identifier) |E] WebGateway_DC_tra[-][0][x]
1¢3 webGateway ;endrequest[uu] ebGatews declslu_ncumpm de.renew.agent. w: El:WebMessage |2
I 7 [knowledgebase[391 ebGateway proaktiy generalAgentSetufllconrent 2 ExportPngAction...
i onrs0a] ebGateway registeredAg... [(set..) Type="request”
! ebGat SR e den ‘|WebGateway _registeredSer.. |(set..) | sender—53: AgentSerdlel
ce ateway:DC raristormatiant *||protocols [(request :content | —
¥ m?,'@ B #||lserviceDesc [(service-descriptiof | "¢ SVEr = o
¥ wissepsbasis[150] | wbName nowledaeb dstContentType="fipa-sl0" =
¢-kentralDFl2aCentralDF : d="2"
1% kncuﬁedgebase[sol replyld=null
FQ mrs 1 srcContentType="text/html"
1 webProtocol="http"
1 f size=8 | §
I keySet-—HashSEt...
1 1 E ‘ Add KB entry... H Remove selected 4] web-message”
1 1 E -’
1 1 E Open net instance Openset patterf||knownKeys HashSet...
} P realHashCode=828099155 o
O
ndate View -, Al
‘act\vatqautomat\c update []log AclMessages Update View P 4 \\H\ »
actiordjson = WebGatewayParser. 0bj2JSON(msg); & ——
etion rgc = (IWebSocketSender) msg.getReceiver(); o< IE! Export_export[1741].P9 [=)[=)[x]
act‘cm rec.sendWebSocketMessage(json): . Ell:AcIMessagg (=]
\ : ’ language="FIPA-SLO"
\ [send inform] -, encoding=null
\ N -, 2 protocel=null
\ P s 2:SIContent
3 @ expression
—f e AITING REQUESTS size=1
ed e g content=|empty=False
guard req.aetMessage\d(}.equalsimsg‘getRep\yld()); toArray=e(,..» R
action jsord = WebGatewayParser, obj2JSON(msg): iterator=e(:Object...>
action rec =y{IWebSocketSender) req.getSender(); listiterator=a(:Object..)

artinn rar'\l:anHthanllnrMnl:l::nnhl:nn\‘

deepClone=fi3:AclMessage. ..

7
\ il performative="inform"
\ £
jetActionFromActioRMessage(p):
[fromAgent] [toAgent]
'Og - N 9 aidToRyplyT
mD;a[;K) dn aidvTSetToReplyTo=[6]
- [|replyTo=null
:infp) [bc EXChange] :out(p2) .- ontelegy=null
- .- conversationid=null
) _ = replyWith=null
atn — inReplyTo="WebGateway#1@CentralDF#4"
. {X i ﬁfu‘twu‘t :stop() replyBy=null
xport_action_convel allkeys=a..>
sToP size=6
:dETewExchange(:deExchangel keySet=f7:Hashset...]
wort request]s, atn, id) s, result, id) frame="fipa-acl-message"
action p2=Sl0Creator.createReplyResultinform(p,res knownKeys

[sending export response]

realHashCode=-1800884576

O
«[ii] [»]

Figure 9. A screenshot of the agent application while running the export interaction.

The availability and the robustness of the Export and Diff Web services
provided through a running instance of a Petri net application shows that our
framework is already beyond a pure proof of concept.

5 Implementation

Although executable models tend to grow to a size that cannot be presented in

all details, we present the implementation of

the transformation component in

110 PNSE’13 — Petri Nets and Software Engineering

order to discuss the specification refinement that leads to the executable model.
Often the process that leads incrementally to the executable model has been
presented as implementation through specification. In this executable model we
do not discuss the inscriptions and certain technical details such as the prepara-
tion and selection of the messages. Figure 10 shows an executable version of the
WebGateway Transformation Component as an overview.'? The details of the
main parts are presented again in Figure 11. Compared to the abstract model
shown in Figure 4 this model shows several refinements. First of all the interfaces
— indicated by the dashed boxes — of the component have been duplicated. This
results from the fact that our implementation allows for additional communica-
tion protocols and two connection types.

(@date 01-04-2013 @author bz, cabac @version 03

WebGa(eway_DC_TransformalionJ E“i“a“sam“ ?

e
s

I
I [synchron | (O wama requests) (- ERROR
| message] |
! id.
comenst [T (@) MessacecowTeRr
et

{(send request]

O

I [INFORM]

.
.

.

.

O =

> sy o .
.

.

.

.

.

.

v
J{send inform]|
-1

I

[FROM WEBSERVER]

|
i
message] |

o m i

%
| outbound

[match message *
response]

imsqia)

[RESPONSE]

[TO PLATFORM]
[TO WEBSERVER]

.details in
next figure

[match message
response]

. [FROM PLATFORM]

" linform |
Nqessagel |
msasen > P—t{w i

I
| [send inform],

| !
I[send request]
|

i)

s
‘*lmw-‘ﬂfo’i [http service]

Figure 10. Implementation of the WebGateway Transformation Component.

In the abstract model we described the possibility to serve a typical request
protocol. Thus, one party can send a request message and receive an answer
to this in the form of an inform message. This protocol may be triggered from
either side the web server interface or the agent system interface. Additionally,
the implementation also allows for a simple inform message that has not been
triggered and does not expect any follow-ups. Consequently, we have three out-

12 The Petri nets is presented as a whole, in order to show the final result of the refine-
ment process. Most of the details, such as declarations are only of minor importance.
The main details are presented in a magnified version in Figure 11 for convenient
inspection.

L. Cabac et al.: Integrating Web Services in PN-based Agent Applications 111

going transitions for these three different communication possibilities (request,
inform as answer, simple inform) on each outgoing interface side. Additionally,
we included the possibility to connect as a Web service in two possible ways. The
first is the well-known http connection, the second, which is a websocket connec-
tion, allows for asynchronous communication through a bidirectional permanent
connection link.

[] of msg]
| msg guard msg.getMessageType().equals("request"); |
msg [REQUEST] .
u msg u
ms9 [INFORM] .
[]
. fa. = O
guard msg.getReplyld() == null;
Wyuard (msg.getMessageType(.equas(‘inform") | L}
msg.getMessageType().equals(*failure"); WAITING REQUESTS
[] [INFORM] L
L} guard req.getMessageld). -0 u
equals(msg.getReplyld();
u msg n
msg—@‘*msg
n | |
guard msg.getReplyld() = null;
L [match message RESPONSE [msg,id] f
" response] [] []
] [l
[msg,
n real [RESPONSE] [match message L
] guard msg.getReplyld) != null; response] M
- {msg,id--#_—{msg,id} msg n
action id = Integer guard req.getMessageld(). 2
.parselnt(msg.getReplyld(); equals(msg.getReplyld();
x [get id] n
[} | |
n [INFORM] n
guard (msg.getMessageTyp
x msg.getMessageType(y
) I e msg
" |
guard msg.getReplyld(== null; msg gua
| msg '
[INFORM]
]
. [QU EST] msg | |
" msg []
) WEBSERVER]

p WAITING REQUESTS guard msg.getMessageType(.equals(‘request’);
" momom " m M B B N N E E N E NS S S N N NN N EEN

Figure 11. Fragment of the WebGateway Transformation Component.

In the center of the net — displayed in more detail in Figure 11 — one can
prominently conceive the buffer places that hold the messages for matching an-
swers to request and thus to determine the receiver. The buffer places are filled
during the processing of the requests — constituting the first branch leading to
the first of an outgoing interface. The answer collects the waiting message during
processing — indicated by an arc — leading to the second interface transition. The
last interface transition serves for the simple inform message. We have hidden

112 PNSE’13 — Petri Nets and Software Engineering

several parts of the original net — indicated by large dotted transitions. These
transitions hide message processing and routing as well as the processing of the
http answers.

6 Discussion

The presented example and the publicly available Web services and Web site
demonstrate that the presented application is more than just a proof of con-
cept. Especially the availability of the Export and Diff services as Web ser-
vices has proven their usefulness in the straight-forward and seamless inclusion
within several used instances of IPMEs (internal as well as public). We have
also briefly mentioned the realization of Web-based GUIs where Web events re-
lated to the GUI components are transmitted between a browser and application
agents (Agentlets). While this application of the WebGateway is still under de-
velopment and still in an experimental stage, we have successfully made use of
it in academic projects where students develop browser-based applications for
collaboration support.

The choice of RESTful Web services in combination with WebSockets brings
more flexibility to our gateway than strict WSU stack-based gateways can pro-
vide. Currently, we use rather simple service descriptions, which might hinder the
automation of service workflows. A possible improvement in this area could be
the integration of WADL!3, which plays a similar role for RESTful Web service
as WSDL for SOAP Web services.

7 Related Work

Service oriented architectures especially in combination with Web applications
is currently a popular field in the research community. Hence, the integration
of Web services into multi-agent systems is a well researched topic with many
interesting solutions. Such an approach that impacts on our introduced archi-
tectural design is presented by Greenwood et al. [14]. They introduce a Web
Service Integration Gateway Service (WSGIS), which acts as a broker between
the service participants and provides translation and routing mechanisms. Shafiq
et al. [24] offers a slightly different solution that addresses the interconnection
of FIPA-compliant multi-agent systems and Web services. Their approach rely
on a middleware software that handles the communication of the service par-
ticipants without any modification on the respective communication systems.
In contrast to theses approaches, which are based on Web services that use the
standard WSU* stack, the approach of Soto [19] makes use of the advantages
of Web services that comply with the RESTful architecture [23]. He provides a
Web Service Message Transport Service (WSMTS) for JADE platforms that is
capable of handling FIPA-SL messages in XML representation. These messages

3 Web Application Description Language (WADL): http://java.net/projects/wadl
4 WSDL, SOAP, UDDI (WSU)

L. Cabac et al.: Integrating Web Services in PN-based Agent Applications 113

are extended with additional information that ensure an end-to-end communi-
cation with only one single message encoding. In this case, agents are able to
register themselves with a specific address to publish their services as a REST
service.

A still problematic issue, concerning the use and composition of RESTful
services, is the change of state of a resource and the corresponding update of
clients. Especially Web clients have to constantly send GET requests to check if
the state has changed, which will result in heavy traffic and unnecessarily high
load of Javascript. For a bidirectional communication, as used for instance in a
User Interface Framework, Aghaee et al. [2, Section 5.2] recommend the use of
W3C WebSockets [26]. The WebSocket API provides a mechanism to sent data
in various representations (JSON, XML, etc.) to clients when the resource has
changed.

An approach concerning the modeling of Web services using high-level Petri
nets was given by Moldt et al. [21]. The authors introduce a four layer architec-
ture that focuses on modeling the internal behavior of a Web service and provide
a proposal for lifecycle management and interconnection of Web services.

With the approach presented in this paper we provide a prerequisite that
enables us to verify the soundness of internal Web service processes by examina-
tion of agent interactions. In order to examine the composition of Web services
we have to extend our approach to the external Web service interactions and
their interfaces. A related approach is presented by Wolf [27] and his team at
the University of Rostock. They provide formal models based on Petri nets to
describe service interfaces and tools'® that support the discovery and synthesis
of matching service partners.

8 Conclusion and Future Works

In this paper, we present a gateway architecture that makes it possible to inter-
connect FIPA-compliant multi-agent systems and RESTful Web services. More
specifically, it creates a bridge between Petri net-based (MULAN) agents and
arbitrary Web service providers or clients. Its suitability for daily use has been
proven by coupling image conversion and comparison services (provided by Mu-
lan agents) with an integrated project management environment (running as
a classic web server, using these services). Besides its useful functionality, the
gateway as an artifact exemplifies the benefits of engineering Petri net-based
software. The gateway architecture, its message routing core and its multi-agent
interface are modeled and implemented in Java reference nets. We present the
design of the core gateway functionality as coarse Petri net models, the inte-
gration of concrete functionality into these Petri nets — thus turning them into
application code —, and the validation of certain application properties by using
well-known Petri net analysis techniques.

On the practical side, the gateway broadens the range of applications for
FIPA-compliant agents (and especially MULAN agents). Their functionality be-

15 Service-Technology: http://service-technology.org/tools/

114 PNSE’13 — Petri Nets and Software Engineering

comes available for any Web service client, and they can refer to functionality
provided by any other web service. The interaction with web services is restricted
to the request-response pattern or just unidirectional information distribution,
and thus not as feature-rich as the speech act-based communication in the multi-
agent world. Nevertheless, these simple interaction patterns form the basis of any
complex interaction and can thus be considered as sufficient for everyday use.
On the Petri net-based software engineering side, the tools and methods of
the P'AOSE approach are evolving while we use them for the design and imple-
mentation of applications like the WebGateway. A major focus is currently put
on validation and testing of the application’s Petri net-based code artifacts.
The further use of our approach in future student projects and the continuous
advancement of our agent-based collaboration platform will help to improve the
gateway functionality and software engineering techniques step by step.

References

1. Gul Agha, Fiorella De Cindio, and Grzegorz Rozenberg, editors. Advances in Petri
Nets: Concurrent Object-Oriented Programming and Petri Nets, volume 2001 of
Lecture Notes in Computer Science. Springer-Verlag, 2001.

2. Saeed Aghaee and Cesare Pautasso. Mashup development with HTML5. In Pro-
ceedings of the 3rd and 4th International Workshop on Web APIs and Services
Mashups, Mashups ’09/°10, pages 10:1-10:8, New York, NY, USA, 2010. ACM.

3. Tobias Betz, Lawrence Cabac, and Matthias Gilittler. Improving the development
tool chain in the context of Petri net-based software development. In Michael
Duvigneau, Daniel Moldt, and Kunihiko Hiraishi, editors, Petri Nets and Software
Engineering. International Workshop PNSE’11, Newcastle upon Tyne, UK, June
2011. Proceedings, volume 723 of CEUR Workshop Proceedings, pages 167-178.
CEUR-WS.org, June 2011.

4. Tobias Betz, Lawrence Cabac, and Matthias Wester-Ebbinghaus. Gateway archi-
tecture for Web-based agent services. In Franziska Kliigl and Sascha Ossowski,
editors, Multiagent System Technologies, volume 6973 of Lecture Notes in Com-
puter Science, pages 165-172. Springer Berlin / Heidelberg, 2011.

5. Lawrence Cabac. Modeling Petri Net-Based Multi-Agent Applications, volume 5 of
Agent Technology — Theory and Applications. Logos Verlag, Berlin, 2010.

6. Lawrence Cabac, Till Dorges, Michael Duvigneau, Daniel Moldt, Christine Reese,
and Matthias Wester-Ebbinghaus. Agent models for concurrent software systems.
In Ralph Bergmann and Gabriela Lindemann, editors, Proceedings of the Sizth
German Conference on Multiagent System Technologies, MATES’08, volume 5244
of Lecture Notes in Artificial Intelligence, pages 37—48, Berlin Heidelberg New
York, 2008. Springer-Verlag.

7. Lawrence Cabac, Michael Duvigneau, Daniel Moldt, and Heiko Rolke. Modeling
dynamic architectures using nets-within-nets. In Gianfranco Ciardo and Philippe
Darondeau, editors, Applications and Theory of Petri Nets 2005. 26th International
Conference, ICATPN 2005, Miami, USA, June 2005. Proceedings, volume 3536 of
Lecture Notes in Computer Science, pages 148-167, 2005.

8. Lawrence Cabac, Michael Duvigneau, Daniel Moldt, and Matthias Wester-
Ebbinghaus. Towards unit testing for Java reference nets. In Robin Bergenthum
and Jorg Desel, editors, Algorithmen und Werkzeuge fiir Petrinetze. 18. Workshop
AWPN 2011, Hagen, September 2011. Tagungsband, pages 1-6, 2011.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

L. Cabac et al.: Integrating Web Services in PN-based Agent Applications 115

. Lawrence Cabac, Daniel Moldt, and Heiko Rélke. A proposal for structuring Petri

net-based agent interaction protocols. In Wil van der Aalst and Eike Best, editors,
24th International Conference on Application and Theory of Petri Nets, Eindhoven,
Netherlands, June 2003, volume 2679 of Lecture Notes in Computer Science, pages
102-120. Springer-Verlag, June 2003.

Lawrence Cabac and Jan Schliiter. ImageNetDiff: A visual aid to support the
discovery of differences in Petri nets. In 15. Workshop Algorithmen und Werkzeuge
fur Petrinetze, AWPN’08, volume 380 of CEUR Workshop Proceedings, pages 93—
98. Universitdt Rostock, September 2008.

Michael Duvigneau, Daniel Moldt, and Heiko Rélke. Concurrent architecture
for a multi-agent platform. In Fausto Giunchiglia, James Odell, and Gerhard
Wei}, editors, Agent-Oriented Software Engineering. 3rd International Workshop,
AOSE 2002, Bologna. Proceedings, pages 147-159. ACM Press, July 2002.

Roy T. Fielding and Richard N. Taylor. Principled design of the modern Web
architecture. ACM Trans. Internet Technol., 2:115-150, May 2002.

OASIS (Organization for the Advancement of Structured Information Stan-
dards). BPEL: Web services business process execution language. Avail-
able at: http://bpel.xml.org/, 2012. Release 2.0: http://docs.oasis-
open.org/wsbpel/2.0/0S/wsbpel-v2.0-OS.html.

D. Greenwood and M. Calisti. Engineering Web service - agent integration. In
Systems, Man and Cybernetics, 2004 IEEE International Conference on, volume 2,
pages 1918 — 1925 vol.2, october 2004.

Sebastian Hinz, Karsten Schmidt, and Christian Stahl. Transforming BPEL to
Petri nets. Lecture Notes in Computer Science, 3649:220-235, 2005.

Ekkart Kindler, Vladimir Rubin, and Robert Wagner. Component tools: Integrat-
ing Petri nets with other formal methods. Lecture Notes in Computer Science :
Petri Nets and Other Models of Concurrency - ICATPN 2006, Volume 4024, 2006,
pages 37-56, 2006.

Michael Kohler, Daniel Moldt, and Heiko Roélke. Modelling the structure and
behaviour of Petri net agents. In J.M. Colom and M. Koutny, editors, Proceedings
of the 22nd Conference on Application and Theory of Petri Nets 2001, volume 2075
of Lecture Notes in Computer Science, pages 224-241. Springer-Verlag, 2001.
Olaf Kummer, Frank Wienberg, Michael Duvigneau, Jorn Schumacher, Michael
Kohler, Daniel Moldt, Heiko Rolke, and Riidiger Valk. An extensible editor and
simulation engine for Petri nets: Renew. In Jordi Cortadella and Wolfgang Reisig,
editors, Applications and Theory of Petri Nets 2004. 25th International Confer-
ence, ICATPN 2004, Bologna, Italy, June 2004. Proceedings, volume 3099 of Lec-
ture Notes in Computer Science, pages 484—493, Berlin Heidelberg New York, June
2004. Springer.

Esteban Leén Soto. Agent communication using Web services, a new fipa mes-
sage transport service for jade. In Paolo Petta, Jorg Miiller, Matthias Klusch, and
Michael Georgeff, editors, Multiagent System Technologies, volume 4687 of Lec-
ture Notes in Computer Science, pages 73-84. Springer Berlin / Heidelberg, 2007.
10.1007/978-3-540-74949-3 7.

T. Miyamoto and S. Kumagai. An agent net approach to autonomous distributed
systems. In Proc. of 1996 IEEE Systems, Man, and Cybernetics, 14-17 October
1996, Beijing, China, pages 3204-3209, October 1996.

Daniel Moldt, Sven Offermann, and Jan Ortmann. A Petri net-based architecture
for web services. In Lawrence Cavedon, Ryszard Kowalczyk, Zakaria Maamar,
David Martin, and Ingo Miller, editors, Workshop on Service-Oriented Computing

116

22.

23.

24.

25.

26.

27.

PNSE’13 — Petri Nets and Software Engineering

and Agent-Based Engineering, SOCABE 2005, Utrecht, Netherland, July 26, 2005.
Proceedings, pages 33—40, 2005.

Julia Padberg and Hartmut Ehrig. Petri net modules in the transformation-based
component framework. Journal of Logic and Algebraic Programming, Vol 97 (1-2),
pages 198-225, 2006.

Cesare Pautasso, Olaf Zimmermann, and Frank Leymann. Restful web services
vs. “big” web services: making the right architectural decision. In Proceeding of
the 17th international conference on World Wide Web, WWW °08, pages 805-814,
New York, NY, USA, 2008. ACM.

M. Omair Shafiq, Ying Ding, and Dieter Fensel. Bridging multi agent systems and
Web services: towards interoperability between software agents and semantic Web
services. In Enterprise Distributed Object Computing Conference, 2006. EDOC
06. 10th IEEFE International, pages 85 —96, october 2006.

Riidiger Valk. Object Petri Nets — Using the Nets-within-Nets Paradigm. In
Jorg Desel, Wolfgang Reisig, and Grzegorz Rozenberg, editors, Advances in Petri
Nets: Lectures on Concurrency and Petri Nets, volume 3098 of Lecture Notes in
Computer Science, pages 819-848. Springer-Verlag, Berlin Heidelberg New York,
2004.

World Wide Web Consortium (W3C). The websocket api editor’s draft 6. Website,
June 2011. http://dev.w3.org/html5/websockets.

Karsten Wolf. Does my service have partners? LNCS ToPNoC, 5460(11):152-171,
March 2009. Special Issue on Concurrency in Process-Aware Information Systems.

