EDIminer: A Toolset for Process Mining from
EDI Messages

Robert Engel', R. P. Jagadeesh Chandra Bose?, Christian Pichler!, Marco
Zapletal', and Hannes Werthner!

! Vienna University of Technology, Vienna, Austria
Institute of Software Technology and Interactive Systems
2 Eindhoven University of Technology, Eindhoven, The Netherlands
Department of Mathematics and Computer Science

Abstract. Organizations exchange data electronically to perform busi-
ness transactions using Electronic Data Interchange (EDI). In order to
gain insights on such transactions, approaches for inter-organizational
business process mining based on the observation of exchanged EDI
messages have been recently proposed. In recent approaches, however,
only meta-information about the exchanged messages, such as message
type, interchange time and sender/receiver information, has been used
as data base for generating event logs. This neglects the opportunity
of using business information from observed EDI messages to arrive at
more detailed event logs, which in turn enable mining of detailed pro-
cess models and fine-grained process performance analyses. In addressing
this shortcoming, we present EDIminer, a toolset that allows for (i) en-
hanced visualization of contents of EDI messages, (ii) automatic and/or
user-driven definition of mappings of EDI artifacts to events, (iii) gen-
eration of events from such mappings, (iv) semi-automatic correlation
of events to process instances and (v) generation of industry-standard
XES event logs for subsequent application of conventional process min-
ing techniques. We demonstrate the utility of EDIminer by means of an
exemplary EDI-based purchase order process based on real-world data.

Keywords: EDI, process mining, EDIminer, event logs

1 DMotivation

Companies and organizations exchange data electronically to perform business
transactions (e.g., requests for quotes, purchase orders, etc.). If the interchange
of data is carried out in an automated and standardized manner, such processes
may be referred to as Electronic Data Interchange (EDI) [1]. In order to un-
derstand choreographies, detect bottlenecks or identify scope for improvements,
companies are interested in analyzing such transactions. Recently, methods for
process mining of inter-organizational business processes from observed EDI mes-
sage exchanges have been proposed [3]. Such methods deal with the generation of
event logs from collections of EDI messages for enabling the subsequent applica-
tion of conventional process mining techniques. Thereby, it is necessary to decide

2 R. Engel et al.

what EDI artifacts constitute events and how to populate the events’ attributes.
In particular, the activity, timestamp and resource attributes are of importance
for the subsequent application of process mining techniques. Moreover, events
need to be correlated to process instances (cases) [4, p.113], which in the case of
EDI may pose a significant challenge [3]. With regard to event generation from
EDI messages, one can distinguish between message flow mining (MFM) and
physical activity mining (PAM), as described in the following.

Message Flow Mining (MFM). In the approach presented in [3], each
sent or received EDI message is considered to represent one event®. The event’s
timestamp, resource and activity properties are populated according to a mes-
sage’s interchange timestamp, the name of the interchange-initiating party and
the message type, respectively. For example, an order message is interpreted
as an activity “Send order” in the corresponding inter-organizational business
process. The business data inside the EDI messages is generally ignored for the
purpose of generating sets of events. Only for subsequent correlation of events
to process instances, business data from the messages is processed. In MFM, the
generation of events from EDI messages can generally be performed in a fully
automated fashion because the mapping of EDI messages to events and their
attributes follows the simple rules described above.

Physical Activity Mining (PAM). Business information conveyed in EDI
messages may be used to infer additional events. For example, an invoice message
may, in addition to general invoicing information, contain information about a
shipping date of invoiced line items. Consequently, from such a particular ship-
ping date one may infer that an activity “Ship goods” has occurred on that date.
Events resulting from such information generally reflect activities that represent
physical product flows, cash flows or other activities as opposed to message flows.
Hence, we refer to such approaches as physical activity mining (PAM). Thereby,
a major challenge is to identify and define appropriate mappings of business
information in EDI messages to events and their attributes in event sequences
(“EDI/event mappings”). Such mappings need to specify rules that define (i)
what EDI artifacts constitute events and (ii) which EDI artifacts shall be used
to populate event attributes. In this paper we illustrate PAM by means of man-
ual mapping definitions. As in MFM, correlation of so-created events to process
instances can pose a challenge in PAM as well.

We propose that MFM and PAM may be combined for process mining from
EDI messages in order to arrive at detailed event logs. Such event logs may
allow for the mining of detailed process models, performance analyses, data-
aware conformance checking, and identification of bottlenecks. For example, a
process model mined from fine-grained shipping dates documented in an invoice
message may lead to insights about specific products that cause regular delays
in the invoicing process. In this paper, we present a toolset named EDIminer
that enables both MFM and PAM from EDI messages.

3 More precisely, each sent or received EDI message is considered to represent at most
one event per process instance, but can potentially map to multiple process instances.

EDIminer 3

— EDIminer — — Conventional process
- - - mining techniques
EDI Events XES

messages (uncorrelated) event log Fr
e | 7\ 7y -
QO mOfYmO [OHUmO I

& - ’ models

| :
L’ Diagnostic :
Parsing/ Mapping Event Event Event log

: Process ‘ information :
i preprocessing definition generation correlation generation mining H

Performance !
analyses

Fig. 1. Processing flow in EDIminer

2 EDIminer

EDIminer® is a toolset implemented as a stand-alone Java Swing application
that allows a user to perform the following tasks (cf. Fig. 1; cf. Sections 2.1-2.5):

1. Parse, preprocess and visualize a set of EDI messages using an enhanced
visualization method based on semantic technologies (automatic, Mark @)

2. Automatically (for MFM) or manually (for PAM) define EDI/event map-
pings (Mark @)

3. Execute the defined mappings on the parsed EDI messages to generate events
(automatic, Mark ©)

4. Correlate generated events to process instances (semi-automatic, Mark @)

5. Export correlated events to an XES [5] event log (automatic, Mark @)

After event log generation, conventional process mining techniques may be ap-
plied using existing tools such as ProM (http://www.processmining.org).

Running Example. In the remainder of this paper, we provide a proof
of concept as well as illustrate the use of EDIminer by means of a running
example that is based on real-world EDI data of an Austrian company from the
consumer goods sector. For the sake of confidentiality, we will further on refer to
this company as SupplierCo. The mentioned EDI data set is a snapshot of 466
inbound EDIFACT ORDERS (order) messages and 427 outbound EDIFACT
INVOIC (invoice) messages collected between May 2012 and March 2013. Tt
is related to a purchase order process which, according to the explanation of a
company representative, consists of the following sequential activities (cf. Fig. 2):

1. The process is initiated when a customer sends an order message to SupplierCo,
who receives and processes the order.

2. SupplierCo ships the ordered goods. If this can’t be done all at once, the
shipments are partitioned.

3. For each shipment, SupplierCo sends a corresponding invoice message to
the customer. Usually, no invoices are sent before all ordered goods have
been shipped. In addition to general invoicing data, the message contains
information about the shipping date of the corresponding goods.

4 As of May 2013, EDIminer is publicly available and can be downloaded from
http://edimine.ec.tuwien.ac.at.

4 R. Engel et al.

]
Send invoice
message

Ship goods

Receive order
message

Fig. 2. BPMN model of the purchase order process from the viewpoint of SupplierCo

2.1 EDI Message Parsing, Semantic Preprocessing and Visualization

In order to enable user-driven mapping of EDI artifacts to events and process
instances, the contents of EDI messages first have to be visualized to the user.
A central question in this regard is what kind of visualization can be consid-
ered useful for this purpose. We argue that naive approaches of visualizing and
mapping (only) plain data elements from traditional EDI standards will likely
not lead to viable results for the purpose of creating event logs. The reason for
this is that semantically accurate interpretation and visualization of EDI mes-
sages based on standards such as EDIFACT or X12 are non-trivial due to the
existence of so-called qualified and non-qualified data elements in these stan-
dards. For example, in various EDIFACT standards, such as release D.01B, data
element 3039 (Party identifier), found in NAD (Name and address) segment®
instances, may have a plethora of different concrete semantics (e.g., buyer’s party
identifier, seller’s party identifier, etc.) depending on the value of a corresponding
qualifying code in data element 3035 (Party function code qualifier)®. We refer
to the different concrete semantics of a data element as data element variants
(DEVs). For example, an instance of data element 3039 qualified by the code
“BY” (Buyer) in an instance of data element 3035 represents one DEV of data
element 3039 - this DEV could be labeled, for instance, “Buyer_Partyldentifier’.

In EDIminer, we tackled the problem of handling qualification relationships
by implementing the approach described in [2] for representing EDI standards,
qualification relationships and concrete messages in ontologies and knowledge
bases. EDIminer ships with predefined ontologies for various EDI standards’.
When EDIminer is launched, the user is asked to point to a folder that contains
a set of EDI messages. These messages are subsequently parsed into message
knowledge bases. Thereby, DEVs are automatically identified through reasoning
over qualification relationships as described in [2].

The employed ontological approach allows for the visualization of the con-
tents of EDI messages in a tree structure of “plain” data elements and DEVs, as
illustrated on the left hand side of Fig. 3. The tree entries in red italics represent
DEVs. The hierarchichal structure of the tree entries resembles the correspond-
ing message type specifications according to the underlying EDI standards. We
consider this kind of visualization an extension to the state-of-the-art in EDI
mapping tools, which are generally not capable of visualizing variants of data
elements, except at most for limited subsets of specific EDI standards [2].

® http://www.unece.org/trade/untdid/d01b/trsd/trsdnad.htm

S http://www.unece.org/trade/untdid/d01b/tred/tred3035.htm

" These ontologies have been created based upon the official UN /EDIFACT directories
using additional heuristics for the identification of qualification relationships.

EDIminer 5

T rercramge Tecer mappings feature
D Interchange Timestamp
¢ [EDImessages_POsample_D01B.owl (427

|4/ EDIminer Mapper Autogenerate MFM ' - -

1
DAII MFM mappings “ Add event attribute “ Delete mapping ‘

Event trigger Timestamp | Activity label | Resource |invoiceNumber| orderNumber

¢ CJINVOIC (427) 7 Document_me:
ORDERS

Eeginning_of_me|
I]ocumen%iﬂe ordernumberpy

ment|

Message instance |Interchange |"ORDERS" |Interchange

Message instance .
D o ‘ORDERS timestamp (fixed) sender

¢ [Beginning_of_message

- [C] DOCUMENT_MESSAGE_NAME Message instance |Interchange |"INVOIC" |Interchange
¢ [DOCUMENT_MESSAGE_IDENTIFICATION INVOIC timestamp (fixed) sender

D Document_identifier - -
deliver ydatetim
D Message_function_code INvVOIC INVOIC
¢ [Date_time_period Dste_time_period-DAT Date_time_period|
¢~ [CJ] DATE_TIME_PERIOD
D Date_or_time_or_period_function_code_gual| e
D documentmessagedaletime_Date_or_time
[deliverydatetimeactual_Date_or._time_or_pen Manually defined Auto-generated
[Date_or_time_or_period_value PAM mapping MFM mappings
[} detiverydatetimeactuai_Date_or_time_or_per|
D documentmessagedatetime_Date_or_time_
D Date_or_time_or_period_format_code
o= [Free_text) .
¢ [Seament_group_1 Visualization of data I

INVOIC
Beginning_df r

"Ship goods” |Interchange

INVOIC
(fixed) @ sender

Beginning_di r

| & =7 Date_time_period element variants (DEVSs) in
¢ [CJ Reference parsed EDI messages
¢ [CJ REFERENCE
D Reference_code_gqualifier
D deliverynotenumber_Reference_identifier|
[originatorsreference_Reference_identifier
o DO'de""u"ﬁSefpu’C/'vaSe_QefeVG/’»Ce_\dG"»ﬁ
D contractnumber_Refe 2 _identifier @
D ordernumbervendor_Reference_identifier|
D Reference_identifier
o[- Segment_group_2
o [Segment_group_6 Drag&Drop Drag&Drop
¢~ [Segment_group_7 Drag area | Drop area I
o~] Segment_group_18 e e
o [Segment_group_26
o [Segment_group_50 [
¢] EDImessages_POsample_D36A owl (466) Generation of
+ CI/ORDERS (466)] events
D Message instance
¢ [Beginning_of_message
¢] DOCUMENT_MESSAGE_NAME
D Document_message_number
il Il] [»

[«

l Help H‘Generaleeven(s H EXIT ‘

Fig. 3. Screenshot of EDIminer’s mapping GUI

SupplierCo Example. As shown in the tree on the left hand side of Fig. 3,
the contained data elements/DEVs of the parsed ORDERS and INVOIC mes-
sages are displayed to the user. Thereby, DEVs such as order number reference
identifiers (Mark @) and actual delivery dates (Mark @) are visualized in ad-
dition to corresponding “plain” data elements, such as reference identifier and
date or time or period value, respectively.

2.2 Definition of EDI/Event Mappings

Having this visualization of the parsed EDI messages at hand, the next step is to
define EDI/event mappings specifying (i) what EDI artifacts constitute events
and (ii) which EDI artifacts shall be used to populate event attributes. In the
table shown on the right hand side of Fig. 3 (Mark ©), each row represents a
mapping rule. The first column (“Event trigger”) specifies which values of data
elements/DEVs in messages shall trigger the creation of events. The remaining
columns specify the values of data elements/DEVs that shall be used to populate

6 R. Engel et al.

the attributes of these events, such as timestamp, activity and organizational
resource. Additional event attributes may be added by a user through adding
columns to the table using the “Add event attribute” button. In addition to data
elements/DEVs, also user-defined fixed strings and some special variables (e.g.,
interchange meta-data) may be used in mappings.

To automatically define mapping rules for the purpose of MFM, users can
click the “Autogenerate MFM mappings” button. This leads to the creation of
one mapping rule per parsed message type where the event trigger is set to
the special variable message instance (i.e., every parsed EDI message triggers
an event), the timestamp attribute is set to the timestamp of the message in-
terchange, the activity attribute is set to the name of the message type (e.g.,
“INVOIC”) and the resource attribute is set to the name of the party who initi-
ated the message interchange. Such auto-generated mappings resemble the MFM
approach described in [3]. To manually define individual mapping rules for the
purpose of PAM, users can drag and drop data elements/DEVs or special vari-
ables from the tree on the left hand side to cells of the mapping table, or enter
user-defined fixed strings directly into a cell.

SupplierCo Example. For SupplierCo’s purchase order process we define
combined mappings for MFM and PAM. By using the “Autogenerate MFM
mappings” feature, two mappings (for ORDERS and for INVOIC messages) are
created automatically (first two mappings in Fig. 3). A third PAM mapping is
defined manually such that the creation of events is triggered by occurrences
of actual delivery dates in INVOIC messages (third mapping in Fig. 3). These
events’ timestamps are set to these same delivery dates and their activity labels
are set to the user-defined fixed string “Ship goods”.

With a view to facilitating subsequent event correlation, we manually add an
additional event attribute invoiceNumber that is applicable for the two INVOIC-
based mappings and populate it with values of document identifiers. Addition-
ally, we add an attribute orderNumber to all three mappings. In the ORDERS-
based mapping, this attribute is populated by values of document/message num-
ber. For the other two mappings, it is populated by values of order number
reference identifier.

2.3 Generation of Events

Once the user has completed the definition of EDI/event mappings, EDIminer
can be instructed to automatically generate a set of events from the parsed EDI
messages. However, since a single EDI message may contain multiple instantia-
tions of identical data elements/DEVs at different positions, the question arises
of how to decide which specific event-triggering values of data elements/DEVs
are to be related to which specific attribute-populating values. In EDIminer, a
heuristic method is used to arrive at reasonable matchings; due to space limita-
tions, however, we refrain from describing this method in detail. Generally speak-
ing, the closer an attribute-populating value is located to an event-triggering
value in the hierarchical structure of segment group instances in a message, the
more likely it is used for populating the corresponding event’s attributes.

EDIminer

r 3
| &) EDIminer Correlator | v/isyalization options =
(e.g., fitering, grid size) £, EEEEEEEEECEEEEEEEEEEEEEEEEEE
Display only traces Showing | S8 —| | B = |8 & S| | = S| S|~ B 6 S & —| &~ &
with atleast R 15[| e2zoutot1z6s BT E BT EEEIEIIEIEIRITEEEI ST
¥ Ok serts EEEEEEEEEEECEEECEEECQEEECEEE
3 (x| Ship good 1B 2s20uters21 (2122 2(2(2|2 22222 2|2 22/22 2|2k 22 22222
s iy 5|3 555 5|5 5|5 855505505 e s k05505 o
4 b =——=3 gg‘g"g‘g‘g_‘zggggg EEEEEE EEEEEEEE
Correlators (avg. trace length, coverage) + ‘ + gr?DERSn20210211211 = List oflprocfess instances || |~
ip goods resulting from current =
orderNumber (2.3, 95.9%) || [nvoic 20121122 | a,a,ﬁete,izamn
] invoiceNumber (2.1, 63.2%) ORDERS 2012.10.... | | P
[] conceptname (422.7, 100.0%) - - | |
] org:resource (181.1, 100.0%) List of correlators with average trace |
] time:timestamp (6.9, 100.0%) @—— length and coverage statistics =
Configuration of key/value-correlation -.
parameters u
Synonymous correlators Show BharE .
e : ORDERS 2013.01
2 a2 s Ship goods 2013.0
HEEE INVOIC 2013.01.18]
: S 5l=|5 8 ORDERS 20@@-66— List of events
timetimestamp | 1| 21| “|Ship goods 2012.0..
ordeNumber|LI[L] = [mvoic 2012.0830
= = - ——RDERS 2012.12...
invoiceNumber Ll Configuration of synonymous fip goods 2012 1
correlators and concatenation JVOIC 2012.12.20..
Concatenation of traces DERS 2012 09
T of traces parameters
FE goods 2012.0
z|8=Tg'e INVOIC 2012.10.01
s|2[E|2 2 [ORDERS 2013.02 Visualization of traces
o | [Ship goods 2013.0... :
imetimestamp] = mvoic 2013.02.21 EesUiingromic rrent
orderNumber =] [=][m] —|| ‘|oRDERS 2012.12.... parameterization
invoiceNumber LJ (][] - hi - . ||
Update visualizati | Create XESlog @—7 = Exeqtiog =
I pdate visualization real og @— 7] generation i)

Fig. 4. Screenshot of EDIminer Correlator

2.4 Event Correlation

Correlation of events originating from EDI messages to process instances may
pose a significant challenge [3]. EDIminer implements the event correlation al-
gorithm described in [3] and allows a user to define the parameterization for
the algorithm in a GUI as shown in Fig. 4. While the user is parameterizing
the algorithm with correlation rules, he/she is provided with instantly updated
visualizations of the resulting process instances. The user can iteratively refine
the parameterization until he/she is satisfied with the results. Furthermore, the
GUI shows various statistics for individual correlators, including average trace
length, correlator coverage as percentage of events, and value overlap with other
correlators. Based upon these statistics, EDIminer makes suggestions to aid the
user in defining suitable correlation rules. For instance, data attributes with high
average trace lengths and high coverages are suggested for key/value-correlation;
pairs of correlators with a high value overlap are suggested as being synonymous.

SupplierCo Example. For the set of events generated from the SupplierCo
example, events can be correlated by key/value-correlation using the previously
defined orderNumber event attribute. A visualization of the resulting traces (fil-
tered by a minimum trace length of three events) is shown in Fig. 4.

2.5 Generation of XES Event Logs

Once the events are correlated to process instances, EDIminer can be instructed
to export them to an XES event log [5]. In doing so, EDIminer uses a version of
the OpenXES libraries (http://www.xes-standard.org/openxes). Such event logs
may in turn be fed into existing process mining tools for subsequent analyses.

8 R. Engel et al.

o RDERS+compIete INVOIC+complete

Fig. 5. Process model mined from SupplierCo’s EDI data using MFM and PAM

SupplierCo Example. For the event log generated from the SupplierCo
example, ProM’s Heuristic Miner (default configuration) outputs the process
model shown in Fig. 5. The original purchase order process is clearly visible in
the mined process model. Note the “Ship goods” activity that was discovered
using the manually defined PAM mapping rule. The exact reasons for the loop
on the ORDERS activity and the optional omission of the “Ship goods” activity
in the mined process model are yet unknown; however, a thorough analysis of
this particular case is beyond the scope of this paper.

3 Conclusion

In this paper we presented EDIminer, a software toolset that enables process
mining from EDI messages supporting two different methodologies: (i) message
flow mining (MFM) and (ii) physical activity mining (PAM). EDIminer em-
ploys semantic technologies to provide an enhanced visualization of contents of
EDI messages and allows users to automatically or manually define EDI/event
mappings. These mappings are used to automatically generate events, which are
subsequently correlated to process instances (cases) using a semi-automatic ap-
proach. The correlated events can be exported to XES event logs and used with
existing process mining tools.

Our future research plans focus on conducting an extended evaluation of
EDIminer by means of case studies using real-world EDI data from different
industries. Furthermore, we intend to evaluate and enhance the MFM and PAM
methodologies using larger data sets than the one used in this paper.

Acknowledgment. This research has been conducted in the context of the
EDImine project and has been funded by the Vienna Science and Technology
Fund (WWTF) through project ICT10-010.

References

1. M. A. Emmelhainz. EDI: A Total Management Guide. John Wiley & Sons, 1992.
2. R. Engel, C. Pichler, M. Zapletal, W. Krathu, and H. Werthner. From Encoded
EDIFACT Messages to Business Concepts Using Semantic Annotations. In 14th
IEEE Int.Conf. on Commerce and Enterprise Comp. 2012, pp.17-25. IEEE, 2012.
3. R. Engel, W. van der Aalst, M. Zapletal, C. Pichler, and H. Werthner. Mining
Inter-organizational Business Process Models from EDI Messages: A Case Study
from the Automotive Sector. In CAiSE’12, LNCS 7328, pp.222-237. Springer, 2012.
4. W. van der Aalst. Process Mining: Discovery, Conformance and Enhancement of

Business Processes. Springer, 2011.
5. XES. XES Extensible Event Stream. http://www.xes-standard.org/.

