
Learning to Generate Semantic Annotation for Domain
Specific Sentences

Jianming Li, Lei Zhang, Yong Yu
Department of Computer Science and Engineering,

Shanghai JiaoTong University,
Shanghai, 200030, P.R.China

Jianming119@sina.com, tozhanglei@hotmail.com, yyu@mail.sjtu.edu.cn

ABSTRACT
Seas of web pages in the Internet contain free texts in
natural language that are only read by human beings. To
be understandable for machines, these pages should be
annotated with semantic markups. Manually annotating
large amounts of pages is an arduous work. This has made
automatic semantic annotation an urgent challenge. In this
paper, we propose a machine-learning based automatic
annotation approach. This approach can be trained for
different domains and requires nearly no manual rules.
The annotation is on the sentence level and is in RDF
format. We adopt a dependency grammar – Link Grammar
[2] – for this purpose. ALPHA system, a prototype of this
approach has been developed with IBM China Research
Lab. We expect many improvements are possible for this
approach and our work may be selectively adopted or
enhanced.

1 Introduction
There are seas of web pages in the Internet and nearly all
of them contain free texts in natural language that are only
read by human beings. Annotating these pages with
semantic markups is one promising way to make them
understandable for machines. Unfortunately, automatic
semantic annotation for the natural language sentences in
these pages is a daunting task and we are often forced to
do it manually or semi-automatically using handwritten
rules. In this paper, we propose a machine-learning (ML)
based automatic semantic annotation approach that can
be trained for different domains and require almost no
manual rules. The annotation resulted form this approach
lies in the sentence level, i.e., we will annotate each
sentence or prime sentences in a web page. This approach
stems from our previous research on semantic analysis on
natural language sentences using Conceptual Graphs
(CG).

Free texts in the Internet contain various information in
diverse domains. The method we proposed in this paper is
for domain specific sentences that are sentences occur in
a specific application domain. Though the sentences are
limited in one domain, our method itself is domain
independent and the system can be trained for various
domains.
Domain specific sentences are usually very stylish in the
words, phrases, grammar and semantics they employ,
which lead to a strong patterned text for which machine

learning based approach is effective. Our approach is
independent on any ML algorithm. In the prototype
ALPHA system, we employed instance-based learning.
Link Grammar is first used to get the syntactic structures
of sentences. The learning process then learns to map the
syntactic structures to semantic structures – RDF graphs.
WordNet [7] and the domain relation hierarchy are used as
the domain ontology in the whole semantic analysis and
representation process. Preliminary results gained from
the ALPHA system demonstrated the feasibility of the
approach.

The paper is organized as follows. Section 1.1 explains the
concept of “Domain Specific Sentences” used in this
paper. Section 1.2 briefly shows what the result RDF looks
like. Section 1.3 explains the reason to adopt Link
Grammar. Section 2 outlines the whole approach by giving
an overview. Section 3 presents the detailed process that
generates RDF graph from domain specific sentences.
Section 4 discusses the result of ALPHA system. Section
5 concludes our work by comparing related work.

1.1 Domain Specific Sentences
Domain specific sentences point to those sentences that
are frequently occurring in one certain application domain
text but scarcely in others. They are assumed to own the
following characteristics:

I. vocabulary set is limited
II. word usage has patterns
III.semantic ambiguities are rare
IV.terms and jargon of the domain appear frequently
The notion of sublanguage [3,4] has been well discussed
last decade. Domain specific sentences actually can be
seen as sentences in a domain sublanguage. As previous
study has shown, a common vocabulary set and some
specific patterns of word usage can be identified in a
domain sublanguage. These results provide ground for us
to assume the above characteristics about domain specific
sentences. In the rest of this paper, we will show how
characteristics I to III are employed in our work. Terms
and jargon will be dealt with in the following section by
adding them to the Link Grammar dictionary.

1.2 RDF Graph
After the annotation, sentences from web pages will be
marked up with RDF statements. We illustrate the
representation by using an example sentence “I go to

Shanghai”. The corresponding RDF statement will be like
the following:

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns="http://cs.sjtu.edu.cn/apex/alpha-schema#"
>
<Concept rdf:ID="1">
<rdfs:label>I</rdfs:label>

<WordNetSenseIndex>WN16-2-012345
</WordNetSenseIndex>

</Concept>
<Concept rdf:ID="2">
<rdfs:label>go</rdfs:label>

<WordNetSenseIndex>WN16-2-012345
</WordNetSenseIndex>

</Concept>
<Concept rdf:ID="3">

<rdfs:label>shanghai</rdfs:label>
</Concept>
<rdf:Description about="#1">
<AGNT rdf:resource="#2"/>
</rdf:Description>
<rdf:Description about="#2">
<DEST rdf:resource="#3"/>
</rdf:Description>
</rdf:RDF>

Class “Concept” represents concept in sentence. In the
current implementation, we are using WordNet [7] as
experimental concept ontology. Property
“WordNetSenseIndex” uniquely identifies a word sense
(concept) in WordNet database. Properties such as
“AGNT” (agent), “DEST” (destination) are sub-properties
derived from a general property “Relation”. All the sub-
properties of “Relation” are organized as a hierarchy and
thus form the relation ontology. [18]

The RDF statement can also be diagramed as a directed
labeled graph with nodes and arcs as depicted in figure 1.
Since the diagram is simpler and easier to understand, we
will use the diagram, which we call RDF graph, to
represent RDF statements instead of writing long RDF
statements in the rest of the paper.

1.3 Link Grammar
Link Grammar is a dependency grammar system we employ
in our work. For the same sentence “I go to Shanghai”, the
Link Grammar parse result is shown in the top of Fig.2.
The labeled arcs between words are called links. The
labels are the types of the links. For example, the “Sp*I”
between “I” and “go” represents the type of links
between “I” and a plural verb form. “MVp” connects verb
to its modifying prepositional phrases. “Js” connects
prepositions to their objects. In Link Grammar, there is a
finite set of such link types.

Each word in Link Grammar has a linking requirement
stating what types of links it can attach and how they are
attached. The link requirements are stored in a Link
Grammar dictionary. The parse result is called a linkage or
a link structure. The Link Grammar parser is called a link
parser. Currently, the link parser from CMU [5] has a
dictionary of about 60000 words together with their linking
requirements. Although the CMU link parser still has
difficulties in parsing complex syntactic structures in real
commercial environment, it is now ready for use in
relatively large prototypes. Applying Link Grammar to
languages other than English (e.g. Chinese [19]) is also
possible.

The most important reason that makes us adopt Link
Grammar in our work is the structure similarity between
Link Grammar parse result and RDF graph. Fig.2 shows
this similarity by comparing the Link Grammar parse result,
the typical parse tree of a constituent grammar and the

RDF graph for the same example sentence. In fact, this
similarity comes from the common foundation of both RDF
graph and Link Grammar. RDF graph consists of concepts
and relations. The relations denote the semantic
associations between concepts. Similarly, link structure
consists of words and links. The links directly connect
syntactically and semantically related words [2]. Open
words [17] (such as noun, adjective and verb) access
concepts from the catalog of conceptual types, while
closed words [17] (such as prepositions) and links help
clarify the semantic relationships between the concepts.

DEST AGNT
I Go Shanghai

Fig. 1. RDF graph for the example sentence “I go to Shanghai”

I go to Shanghai

Sp*I MVp Js

The link structure:

The grammar tree:

PRO

S

NP VP

V PP

PREP N I go

to Shanghai
The RDF graph:

Fig. 2. Link structure is more like a RDF graph

DEST AGNT
I Go Shanghai

Based on this similarity and restricted to a specific
domain, we propose to automatically generate annotation
by learning the mapping from link structure to RDF graph.

Another important feature of Link Grammar is that the
grammar is distributed among words [2]. There can be a
separate grammar definition (linking requirement) for each
word. Thus, expressing the grammar of new words or
words that have irregular usage is relatively easy. We can
just define the grammar for these words and add them to
the dictionary. This is how we deal with terms and jargon
of a domain in our approach. Because the vocabulary set
for a domain is limited (see section 1.1), we can add all
unknown words (including terms and jargon) to the
current dictionary of Link Grammar with affordable amount
of work.

2 Overview of the approach
Our approach of automatic page annotation is a process
consisting of two phases: the training phase and the
generating phase, as shown in Fig.3.

The first step of both phases is to invoke Link Grammar,
and parse the sentence into its link structure, which will be
mapped to RDF through different means in the two
phases.

In the training phase, some domain experts will go through
a three-operation process to transfer the link structure into
RDF graph manually based on their domain knowledge.
Each operation maps a certain part of the syntactic
structure to its corresponding semantic representation
according to the syntactic and semantic context.

Concepts, schemata 1 and relations contained in the
semantic representation are selected from the domain

1 Schemata, is a set of RDF graphs describing background

information in a domain.

ontology. Since semantic ambiguities are rare in domain
specific sentences (see section 1.1), it is relatively easy to
perform these mapping operations (the process of
semantic analysis).

What training phase does is a preparation. Before the
system can learn to do the mapping in the generating
phase, we convert the mapping into machine learning area.
Most of studied tasks in machine learning area are to infer
a function that classifies a feature vector into one of a
finite set of categories [6]. We thus translate the mapping
operation into classification operation by encoding the
operation as category and encoding the context in which
the operation is performed as feature vector. We call the
feature vector context vector since it encodes the context
information of an operation. The vector generator in the
left down corner of Fig.3 is the component that executes
this task.

After sufficient training vectors and categories are
obtained in the training phase, the system can enter into
the generating phase. RDF generator, the main part of the
generating phase will implement the following algorithm

under the help of ML engine and Link Grammar after it is
given a sentence from object domain.

1 get the link structure for the sentence from link parser.

2 generate an empty RDF graph.

3 for (i = 1 to 3) { //perform the three kinds of operations

4 generate all possible context vectors from link
 structure for the i-th kind of operation.

5 for (every context vector) {

6 if (an operation is needed for this vector) {

7 classify the vector using ML engine.

8 decode the classified category as an operation.

9 perform the operation on the link structure and

Training
Corpora

Training
Interface

Mapping
Operations

Domain
Knowledge

Expert

Vector
Generator

Training
Vectors

Domain
Ontology

Link
Parser

RDF
Generator

Machine
Learning
Engine

Domain
Specific

Sentence RDF

Training Phase Generating Phase

Fig. 3. Overview of the approach

context
vector classification

link
structure

link
structure

10 modify the RDF graph according to the operation

11 result (using concepts, schemata and relations
12 from the domain ontology).

13 }

14 }

15 }

16 do integration on the RDF graph.

17 output the final RDF annotation for the sentence.

Our approach is independent of specific ML algorithm
used. In ALPHA system, we adopt IBL (Instance Based
Learning) for the ML engine because IBL makes it easy to
determine whether an operation is needed for an arbitrary
vector in the above algorithm (line 6). IBL can return a
distance value along with the classification result. If the
distance value is too large, it can be determined that no
operation is needed for the vector because it is far from

being similar to existing training vectors and may be
deemed as noise. For other learning methods, this
determination may not be easily achieved.

In the following section, we will explain Algorithm.1 and
the three operations by taking an example sentence “The
polo with an edge is refined enough for work”, which is
excerpted from a corpora of clothes descriptions collected
from many clothes shops on the Web. In the sentence,
“Polo” is a brand and represents a certain kind of shirts
and “edge” actually means collar. The link structure for
this sentence is shown in Fig.4.

3 Learning to generate RDF
In this section we will introduce the three operations that
map a link structure to RDF: word-conceptualization, link-
folding and relationalization. These three kinds of
operations must be performed exactly in the right order in
both the training phase and the generating phase because
a later operation may use information generated in the
previous operations. In section 3.4, the integration on
RDF graph (line 16 of Algorithm.1) is explained.

3.1 Word-Conceptualization
I. Function

Word-conceptualization is the first operation to be
performed. Its function is to annotate open words as
concepts in the sentence to form the skeleton of the initial
empty RDF graph and mark close words for further
operation. This operation can be seen as a word sense
disambiguation operation.

II. Training

In the training phase, domain experts select all the open
words in the link structure one by one. Once an open
word is selected, the training interface can provide the
expert a list of possible concepts or schemata retrieved
from the domain ontology. The expert then chooses the
appropriate one from the list.

This operation is then encoded by the vector generator
into a context vector and its category. For example, the
context vector for the open word “polo” in the example
sentence may be <polo, NN, Dmu, Mp>2 in which “NN” is
the POS (part-of-speech) tag3 and “Dmu” and “Mp” are
the innermost left and right link types of “polo” (see
Fig.4). All the context information is obtained from the link
structure.

The category for the context vector is encoded as the
result of the operation – the ID of the selected concept or
schemata in the domain ontology. The encoding is
something like “WN16-2-330153” which can be used later
as a key to retrieve concept (in WordNet terminology,

word sense) from the WordNet database.

Since WordNet is not specific for any domain, some
words in a certain domain may not exactly match any
sense in the list. For those words the experts are asked to
choose the most similar sense instead of adding a new
sense to WordNet so as to preserve the hierarchy in
WordNet for further research.

III. Generating

Generating all possible context vectors (line 4 of
Algorithm 1.) is actually to generate one context vector for
each open word in the link structure of the sentence. The
generated context vector is then sent to the ML engine as
to do a classification. The returned category is an
encoding of concept or schema ID. In line 9 of Algorithm
1, the RDF generator retrieves the concept or schema from
the domain ontology according to the decoded ID and
creates a concept node in the RDF graph.

Because word usage has patterns in domain specific
sentences, we expect that similar context vectors appear

2 The vector is just an example. For brevity, we are not

trying to make the vector encoding perfect in this paper.
Actually, what context information is encoded into the
vector is a separate problem. This problem is isolated
into the vector generator component. In the current
implementation, we defined a configuration file for the
vector generator to address the issue.

3 We can augment the link parser with a POS tagger so
that the accurate POS tag information can be added to
the link structure and be obtained from it later.

Algorithm 1. The algorithm of the RDF Generator

Fig. 4. The link structure for the example sentence

The polo with an edge is refined enough for work

Dmu Mp Ds Pv MVa Jp

Js

MVp

Ss

for a given open word on a specific word sense. Based on
these similar context vectors, we expect the ML engine
can return correct classification with a high possibility
since the semantic ambiguity is also rare in domain
specific sentences.

After this step, all concept nodes of the RDF graph
should be created. The RDF graph for the example
sentence is shown in Fig.5. For convenience, we use
simple concept names in Fig.5. The “S-WORK” is the
“SUITABLE-FOR-WORK” schema in domain ontology.

3.2 Link-Folding
I. Function

The following two operations focus on creating the
semantic relations between the concepts. Closed words
(especially prepositions) with their links imply
relationships between the concepts of the words they
connect. In the example sentence, “… polo --- with ---
edge …” fragment implies a PART relation between
[POLO:#] and [EDGE]. We then “fold” the 'with' and its
left and right links and replace them with a PART relation.
This is just what the link-folding operation does.

Closed words with their links representing semantic
relations can be seen as word usage patterns. In domain
specific sentences, such patterns are expected to occur
frequently. This actually enables the machine to learn the
patterns from training corpora. In addition, since semantic
ambiguities are rare in domain specific sentences, it can be
expected that the result of the learning converge on the
correct relation. Similar analysis also applies to the next
operation – relationalization in section 3.3.

II. Training

In the training phase, the domain expert can select any
closed word that connects two concepts and implies a
semantic relation and map it to the responding semantic
relation from the relation ontology4.

The context vector for this operation may encode context
information such as the POS tag of the closed word, the
left and right link types and the two concepts. The
category is an encoding of the relation ID in the domain
ontology. For the “… polo --- with --- edge … ” case, the
context vector may be <with, IN, Mp, Js, POLO, EDGE>5.

4 For brevity, we omitted the direction of a relation here.
5 The POLO and EDGE in the vector are actually the

concept IDs in the domain ontology. We will use the
same convention in the following vector examples.

And the category is the encoding of the ID of the PART
relation in the domain ontology.

III. Generating

In the generating phase, generating all possible context
vectors for this operation (line 4 of Algorithm 1.) is
actually generating one context vector for every possible
case in which a closed word connects two concepts. This
needs consult the concept information generated in the
word-conceptualization operations. If an operation is
needed for the vector, it is sent to the ML engine to do a
classification. The returned category is an encoding of the
relation ID in domain ontology. In line 9 of Algorithm.1,
the RDF generator retrieves the relation from domain
ontology according to the ID and creates the relation
between the two concepts.

For the example sentence, there are three closed words
that need link-folding operation: ‘with’, ‘is’ and ‘for’, as
shown in Fig.4. Among them, the word ‘is’ is an auxiliary
verb and ‘with’ and ‘for’ are prepositions.

The relation implied by the auxiliary verb ‘is’ is THEME
and the ‘for’ between ‘refined’ and ‘work’ implies a
RESULT relation. The RDF graph after this step has
relations added between concepts. As to our example
sentence, the RDF graph has grown to Fig.6.

3.3 Relationalization
I. Function

Semantic relation can also be implied by a link that directly
connects two concepts in the link structure. For example,
the ‘MVa’ link between ‘refined’ and ‘enough’ in the link
structure of example sentence implies a MANNER relation.
The relationalization operation translates this kind of links
into corresponding semantic relations.

II. Training

In the training phase, domain knowledge expert can select
any link that implies a semantic relation between concepts
it connects. The expert then selects the semantic relation
from the domain ontology for the connected two
concepts.

The context vector for this operation can include
information such as the link type and the concepts. For
the “… refined –MVa – enough … ”, the context vector
may be <MVa, REFINE, ENOUGH>. The category for the
context vector can be encoded as the relation ID in the
domain ontology. For the above vector, it is the ID of the
MANNER relation.

III. Generating

POLO:# EDGE

REFINE

ENOUGH

S-WORK: *x

THME

PART

RSLT

Fig. 6. RDF graph after link-folding

Fig. 5. RDF graph after word-conceptualization

POLO EDGE REFINE

ENOUGH S-WORK: *x

In the generating phase, generating all possible context
vectors for this operation (line 4 of Algorithm 1.) is
actually generating one context vector for every link that
connects two concepts. If an operation is needed for the
vector, it is sent to the ML engine to do a classification.
The returned category is an encoding of the relation ID in
domain ontology. In line 9 of Algorithm.1, the RDF
generator retrieves the relation from domain ontology
according to the ID and creates the relation between the
two concepts.

After this step, more relations may be created in the RDF
graph. As to the example sentence, the MANNER relation
will be created to connect the [REFINE] concept and the
[ENOUGH] concept and the whole graph grows to Fig.7.

3.4 Integration
Integration is the last step (line 16) in Algorithm.1. This
step is not a part of the training phase. It only appears in
the generating phase and it is the only step that uses
manually constructed heuristics. What it does includes
simple co-reference detection and nested graph creation.

In the discussion of the previous three operations, we
don’t involve lambda expressions for brevity. In fact, they
may appear when words for concepts are missed in the
sentence. They may als o be introduced when schema is
selected in word-conceptualization phase. In order to
complete the RDF graph, we need to draw co-reference
lines between the variables in these lambda expressions.

Although there is machine-learning based approach for
co-reference detection [9], in our work we mainly focus on
the generation of RDF graph for a single sentence.
Discourse analysis and co-reference detection is left for a
separate research work. For different domains, we may
construct different heuristics for them. In our current wok
we simply make all undetermined references to point to the
topic currently under discussion.

Nested graph (context) may be introduced by expanding
schema definition or removing modal/tense modifiers of a
concept. Although RDF specification lacks a clear
semantics about RDF reification, we are now using RDF
reification mechanism to represent nested graph (context).
In our example, we have mentioned in section 3.1 that the
concept type S-WORK is actually a “SUITALBE-FOR-
WORK” schema from the domain ontology. We can do an
expansion on it. Fig.8 is the definition for the “SUITALBE-
FOR-WORK” schema. SUTB represents the relation
SUITABLE.

After the expansion, we can do a simple co-reference
detection that draws a co-reference line between the

undetermined variable x and the current topic [POLO:#].
After this step, the final graph is generated. Fig.9 is the
result for our example sentence “The polo with an edge is
refined enough for work”.

3.5 Summary
Through the sections from 3.1 to 3.4, we have explained
how we map link structure to RDF graph and convert the

mapping to machine learning area. Word-
conceptualization builds concepts in the RDF graph. Link-
folding and relationalization connect concepts with
semantic relations. In the last step, we use manually
constructed heuristics to do simple co-reference detection
and nested graph creation.

4 Results
We have developed a prototype called ALPHA system
written in C. ALPHA system is now running on Solaris. It
can be trained for different domains. Currently in our work,
clothes domain is chosen as the sample domain. Nearly
300 clothes descriptions, 500 sentences have been
collected from clothes shops on the Web6 and are trained
in ALPHA system. Among them, 34 descriptions and 93
sentences are reserved for testing. The test result is
shown in Fig.10. Using different IBL algorithms, the
accuracy7 of concepts varies from 60% ~ 80%, and that of
relation varies from 45% ~ 60%.

The result demonstrated the feasibility of our approach.

6 Those online shops include www.brooksbrothers.com

and www.gap.com, etc.
7 Here the accuracy of concepts = concepts annotated

correctly / total concepts, and the accuracy of relations =
links annotated correctly / links that should be
annotated.

POLO:# EDGE

REFINE

ENOUGH

S-WORK: *x
THME

PART

RSLT

Fig.7.RDF graph after relationalization

MANR

type SUITABLE-FOR-WORK(x) is

Fig. 8. The definition for SUITABLE-FOR-WORK

CLOTHES: x WORK-SITUATION
SUTB

Fig. 9. The final RDF graph of the example sentence

POLO:# EDGE

REFINE ENOUGH

THME

PART

RSLT

MANR

SUTB
CLOTHES: x WORK-SITUATION

Link Grammar has a strong impact on the accuracy of
ALPHA system. Although its characteristics make it
relatively easily to add domain grammar, it has some
trouble in disambiguating the syntactic structure of over-
abridged sentences in clothes domain, such as “Back
vent.”, which causes a serious failure in ALPHA system.
Though we are aware of the problem, we will let it be at

present because we want to pay more attention to
semantic disambiguation.

 To improve the accuracy of ALPHA system, we are
considering developing new algorithms that can compute
the distances of vectors more accurately. We are also
considering making changes in the architecture so as to
support the analysis of clauses and idioms. Further more,
other application domains will be selected to test our
approach.

5 Related works
Ontology-based annotation is most studied such as [15],
[16]. [15] extends HTML with semantic extensions and
builds an interactive and graphic tool to help annotate
web pages manually. What it does is to associate an
object in HTML with a concept from their ontology. After
gaining experiences from manually annotation, they also
conceive an information extraction-based approach for
semi-automatic annotation of natural language texts by
mapping terms to ontological concepts. Different from it,
our approach is fully automatic after the training phase.
Our approach also generates the semantic markup in
standard RDF format.

In natural language annotation, grammar-based approach
is often used. They can roughly be divided into slot-filling
and structure-mapping categories according to their
generating techniques.

Slot-filling techniques such as [12] fill template semantic
graphs with thematic roles identified in the parse tree.
Often the graph of one tree node in the syntactic parsing
tree is constructed using the graph of its child nodes

according to construction rules on how to fill the slots.
Although this approach has been successfully applied in
many applications, it heavily depends on manually created
construction rules on the parse tree.

Another kind of technique advanced in previous work is
to directly map between syntactic structure and semantic

structure such as [13]. We call them structure-mapping. In
this respect, they are more similar to our work. To map to
more flat structures of conceptual graphs, [13] uses
syntactic predicates to represent the grammatical relations
in the parse tree. Instead, in our work, Link Grammar is
employed to directly obtain a more flat structure. Different
from [13]’s approach, our work doesn’t use manual rules.
Moreover, we separate the semantic mapping into several
steps that greatly reduce the total number of possibilities.
In another work in [14], parse tree is first mapped to a
“syntactic conceptual graph”. The “syntactic conceptual
graph ” is then mapped to a real conceptual graph. This
approach again heavily uses manually constructed
mapping rules.

Up to now most methods for annotation are by hand or
heavily depend on rules created manually. These methods
will have difficulty in applying to the Web because of the
tremendously large amounts of pages. Our approach
provides an automatic way to annotate them in a faster
and robust way. Research on machine learning in natural
language processing using corpora data [6] has increased
significantly and there are growing numbers of successful
applications of symbolic machine learning
techniques[10,11]. Our work presents a preliminary
inquest into the use of traditional machine learning
techniques to automatically generate semantic markups
for domain specific sentences. We expect that many
improvements are possible and our work may be
selectively adopted or enhanced.

Fig. 10. The accuracy of concepts and relations about different algorithm

References
1 Walter Daelemans, Jakub Zavrel, Kovan der Sloot, and

Antal van den Bosch, TiMBL: Tilburg Memory Based
Learner version 3.0 Reference Guide, March 8, 2000

2. Daniel D.Sleator and Davy Temperley, Parsing English with
a Link Grammar, in the Third International Workshop on
Parsing Technologies, August 1993.

3. Sager Naomi, "Sublanguage: Linguistic Phenomenon,
Computational Tool," In R. Grishman and R. Kittredge
(eds.), Analyzing Language in Restricted Domains:
Sublanguage Description and Processing, Lawrence
Erlbaum, Hillsdale, NJ, 1986

4. R. Kittredge and J.Lehrberger, “Sublanguage: Study of
language in restricted semantic domain”, Walter de Gruyter,
Berlin and New York, 1982.

5. The information about the link parser from Carnegie Mellon
University is available at:
http://link.cs.cmu.edu/link/index.html

6. Raymond J.Mooney and Claire Cardie, Symbolic Machine
Learning for Natural Language Processing, in the tutorial of
ACL'99, 1999. Available at http://www.cs.cornell.edu/Info/
People/cardie/tutorial/tutorial.html

7. George A.Miller, WordNet: An On-line Lexical Database, in
the International Journal of Lexicography, Vol.3, No.4,
1990.

8. Mitchell P.Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz, Building a large annotated corpus of
English: the Penn Treebank, Computational Linguistics,
19:313-330, 1993.

9. McCarthy,J., and Lehnert,W., Using Decision Trees for
Coreference Resolution. In Mellish, C. (Ed.), Proceedings of
the Fourteenth International Conference on Artificial
Intelligence, pp. 1050-1055. 1995.

10. Claire Cardie and Raymond J.Mooney, Machine learning
and natural language (introduction to special issue on natural
language learning). Machine Learning, 34, 5-9, 1999.

11. Brill, E. and Mooney, R.J. An overview of empirical natural
language processing, AI Magazine, 18(4), 13-24, 1997.

12. Cyre,W.R., Armstrong J.R., and Honcharik,A.J., Generating
Simulation Models from Natural Language Specifications, in
Simulation 65:239-251, 1995.

13 Paola Velardi, et.,all, Conceptual Graphs for the analysis
and generation of sentences, in IBM Journal of Research and
Development, 32(2), pp.251-267, 1988.

14 Caroline Barrière, From a Children’s First Dictionary to a
Lexical Knowledge Base of Conceptual Graphs, Ph.D
thesis, School of Computing Science, Simon Fraser
University, 1997. Available at
ftp://www.cs.sfu.ca/pub/cs/nl/BarrierePhD.ps.gz

15 M.Erdmann, A.Maedche, H.-P.Schnurr, and Steffen Staab.
From manual to semi-automatic semantic annotaiton: about
ontology -based text annotation tool, In P. Buitelaar & K.
Hasida (eds). Proceedings of the COLING 2000 Workshop
on Semantic Annotation and Intelligent Content, August
2000

16 Michael Schenk. Ontology-based semantical annotation of
XML. Master's thesis, Univeritat (TH) Karlshruhe, 1999

17. James Allen, “Natural Language Understanding”, 2nd
edition, pp.24-25, the Benjamin/Cummings Publishing,
1995.

18 John F. Sowa, Knowledge Representation: Logical,
Philosophical, and Computational Foundations, Brooks
Cole Publishing Co., Pacific Grove, CA, 2000.

19 Carol Liu, Towards A Link Grammar for Chinese,
Submitted for publication in Computer Processing of
Chinese and Oriental Languages - the Journal of the
Chinese Language Computer Society.

