default search action
UNSURE@MICCAI 2023: Vancouver, BC, Canada
- Carole H. Sudre, Christian F. Baumgartner, Adrian V. Dalca, Raghav Mehta, Chen Qin, William M. Wells:
Uncertainty for Safe Utilization of Machine Learning in Medical Imaging - 5th International Workshop, UNSURE 2023, Held in Conjunction with MICCAI 2023, Vancouver, BC, Canada, October 12, 2023, Proceedings. Lecture Notes in Computer Science 14291, Springer 2023, ISBN 978-3-031-44335-0 - Leonhard F. Feiner, Martin J. Menten, Kerstin Hammernik, Paul Hager, Wenqi Huang, Daniel Rueckert, Rickmer F. Braren, Georgios Kaissis:
Propagation and Attribution of Uncertainty in Medical Imaging Pipelines. 1-11 - Yizhe Zhang, Shuo Wang, Yejia Zhang, Danny Z. Chen:
RR-CP: Reliable-Region-Based Conformal Prediction for Trustworthy Medical Image Classification. 12-21 - Lawrence Schobs, Thomas M. McDonald, Haiping Lu:
Bayesian Uncertainty Estimation in Landmark Localization Using Convolutional Gaussian Processes. 22-31 - Benjamin Lambert, Florence Forbes, Senan Doyle, Michel Dojat:
TriadNet: Sampling-Free Predictive Intervals for Lesional Volume in 3D Brain MR Images. 32-41 - Jacob J. Peoples, Mohammad Hamghalam, Imani James, Maida Wasim, Natalie Gangai, HyunSeon Christine Kang, Xiujiang John Rong, Yun Shin Chun, Richard K. G. Do, Amber L. Simpson:
Examining the Effects of Slice Thickness on the Reproducibility of CT Radiomics for Patients with Colorectal Liver Metastases. 42-52 - Jadie Adams, Shireen Y. Elhabian:
Benchmarking Scalable Epistemic Uncertainty Quantification in Organ Segmentation. 53-63 - Inés Gonzalez Pepe, Vinuyan Sivakolunthu, Hae Lang Park, Yohan Chatelain, Tristan Glatard:
Numerical Uncertainty of Convolutional Neural Networks Inference for Structural Brain MRI Analysis. 64-73 - Parinaz Roshanzamir, Hassan Rivaz, Joshua Ahn, Hamza Mirza, Neda Naghdi, Meagan Anstruther, Michele C. Battié, Maryse Fortin, Yiming Xiao:
How Inter-rater Variability Relates to Aleatoric and Epistemic Uncertainty: A Case Study with Deep Learning-Based Paraspinal Muscle Segmentation. 74-83 - Paul Fischer, Thomas Küstner, Christian F. Baumgartner:
Uncertainty Estimation and Propagation in Accelerated MRI Reconstruction. 84-94 - Elina Thibeau-Sutre, Dieuwertje Alblas, Sophie Buurman, Christoph Brune, Jelmer M. Wolterink:
Uncertainty-Based Quality Assurance of Carotid Artery Wall Segmentation in Black-Blood MRI. 95-103 - Benjamin Lambert, Florence Forbes, Senan Doyle, Michel Dojat:
Multi-layer Aggregation as a Key to Feature-Based OOD Detection. 104-114 - Daria Frolova, Aleksandr Katrutsa, Ivan V. Oseledets:
Feature-Based Pipeline for Improving Unsupervised Anomaly Segmentation on Medical Images. 115-125 - Anton Vasiliuk, Daria Frolova, Mikhail Belyaev, Boris Shirokikh:
Redesigning Out-of-Distribution Detection on 3D Medical Images. 126-135 - Harry Anthony, Konstantinos Kamnitsas:
On the Use of Mahalanobis Distance for Out-of-distribution Detection with Neural Networks for Medical Imaging. 136-146 - McKell Woodland, Nihil Patel, Mais Al Taie, Joshua P. Yung, Tucker J. Netherton, Ankit B. Patel, Kristy K. Brock:
Dimensionality Reduction for Improving Out-of-Distribution Detection in Medical Image Segmentation. 147-156 - Bogdan Bercean, Alexandru Buburuzan, Andreea Birhala, Cristian Avramescu, Andrei Tenescu, Marius Marcu:
Breaking Down Covariate Shift on Pneumothorax Chest X-Ray Classification. 157-166 - Mobarakol Islam, Zeju Li, Ben Glocker:
Robustness Stress Testing in Medical Image Classification. 167-176 - Johanna P. Müller, Matthew Baugh, Jeremy Tan, Mischa Dombrowski, Bernhard Kainz:
Confidence-Aware and Self-supervised Image Anomaly Localisation. 177-187 - Shishuai Wang, Johan Nuyts, Marina Filipovic:
Uncertainty Estimation in Liver Tumor Segmentation Using the Posterior Bootstrap. 188-197 - Hendrik Alexander Mehrtens, Tabea-Clara Bucher, Titus J. Brinker:
Pitfalls of Conformal Predictions for Medical Image Classification. 198-207 - Ben Philps, Maria del C. Valdés Hernández, Miguel Bernabeu Llinares:
Proper Scoring Loss Functions Are Simple and Effective for Uncertainty Quantification of White Matter Hyperintensities. 208-218
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.