default search action
23rd KDD 2017: Halifax, NS, Canada
- Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, August 13 - 17, 2017. ACM 2017, ISBN 978-1-4503-4887-4
KDD 2017 Keynote Talks
- Cynthia Dwork:
What's Fair? 1 - Renée J. Miller:
The Future of Data Integration. 3 - Bin Yu:
Three Principles of Data Science: Predictability, Stability and Computability. 5
KDD 2017 Applied Invited Talks
- Usama M. Fayyad, Evangelos Simoudis, Ashok Srivastava:
Foreword to the Applied Data Science: Invited Talks Track at KDD-2017. 7-8 - Eduardo Ariño de la Rubia:
More than the Sum of its Parts: Building Domino Data Lab. 9 - Andy Berglund:
Mining Big Data in NeuroGenetics to Understand Muscular Dystrophy. 11 - Josh Bloom:
Industrial Machine Learning. 13 - Longbing Cao:
Behavior Informatics to Discover Behavior Insight for Active and Tailored Client Management. 15-16 - Paritosh Desai:
It Takes More than Math and Engineering to Hit the Bullseye with Data. 17 - Jonathan P. How:
Planning and Learning under Uncertainty: Theory and Practice. 19 - Anuj Karpatne, Vipin Kumar:
Big Data in Climate: Opportunities and Challenges for Machine Learning. 21-22 - Mainak Mazumdar:
Addressing Challenges with Big Data for Media Measurement. 23 - Szilárd Pafka:
Machine Learning Software in Practice: Quo Vadis? 25 - Rajesh Parekh:
Designing AI at Scale to Power Everyday Life. 27 - David Potere:
Spaceborne Data Enters the Mainstream. 29
KDD 2017 Panels
- Usama M. Fayyad, Arno Candel, Eduardo Ariño de la Rubia, Szilárd Pafka, Anthony Chong, Jeong-Yoon Lee:
Benchmarks and Process Management in Data Science: Will We Ever Get Over the Mess? 31-32 - Muthu Muthukrishnan, Andrew Tomkins, Larry P. Heck, Alborz Geramifard, Deepak Agarwal:
The Future of Artificially Intelligent Assistants. 33-34
KDD 2017 Research Papers (Oral Papers)
- Elaine Angelino, Nicholas Larus-Stone, Daniel Alabi, Margo I. Seltzer, Cynthia Rudin:
Learning Certifiably Optimal Rule Lists. 35-44 - Chen Avin, Zvi Lotker, Yinon Nahum, David Peleg:
Improved Degree Bounds and Full Spectrum Power Laws in Preferential Attachment Networks. 45-53 - Zilong Bai, Peter B. Walker, Anna E. Tschiffely, Fei Wang, Ian Davidson:
Unsupervised Network Discovery for Brain Imaging Data. 55-64 - Inci M. Baytas, Cao Xiao, Xi Zhang, Fei Wang, Anil K. Jain, Jiayu Zhou:
Patient Subtyping via Time-Aware LSTM Networks. 65-74 - Xiaojun Chang, Yaoliang Yu, Yi Yang:
Robust Top-k Multiclass SVM for Visual Category Recognition. 75-83 - Yu Chen, Mohammed J. Zaki:
KATE: K-Competitive Autoencoder for Text. 85-94 - Reuven Cohen, Liran Katzir, Aviv Yehezkel:
A Minimal Variance Estimator for the Cardinality of Big Data Set Intersection. 95-103 - Edith Cohen:
HyperLogLog Hyperextended: Sketches for Concave Sublinear Frequency Statistics. 105-114 - Alessio Conte, Donatella Firmani, Caterina Mordente, Maurizio Patrignani, Riccardo Torlone:
Fast Enumeration of Large k-Plexes. 115-124 - Hoang Anh Dau, Eamonn J. Keogh:
Matrix Profile V: A Generic Technique to Incorporate Domain Knowledge into Motif Discovery. 125-134 - Yuxiao Dong, Nitesh V. Chawla, Ananthram Swami:
metapath2vec: Scalable Representation Learning for Heterogeneous Networks. 135-144 - Alessandro Epasto, Silvio Lattanzi, Renato Paes Leme:
Ego-Splitting Framework: from Non-Overlapping to Overlapping Clusters. 145-154 - Ian Fox, Lynn Ang, Mamta Jaiswal, Rodica Pop-Busui, Jenna Wiens:
Contextual Motifs: Increasing the Utility of Motifs using Contextual Data. 155-164 - Yanjie Fu, Guannan Liu, Mingfei Teng, Charu C. Aggarwal:
Unsupervised P2P Rental Recommendations via Integer Programming. 165-173 - Yupeng Gu, Yizhou Sun, Jianxi Gao:
The Co-Evolution Model for Social Network Evolving and Opinion Migration. 175-184 - Bin Gu, Guodong Liu, Heng Huang:
Groups-Keeping Solution Path Algorithm for Sparse Regression with Automatic Feature Grouping. 185-193 - Riccardo Guidotti, Anna Monreale, Mirco Nanni, Fosca Giannotti, Dino Pedreschi:
Clustering Individual Transactional Data for Masses of Users. 195-204 - David Hallac, Youngsuk Park, Stephen P. Boyd, Jure Leskovec:
Network Inference via the Time-Varying Graphical Lasso. 205-213 - David Hallac, Sagar Vare, Stephen P. Boyd, Jure Leskovec:
Toeplitz Inverse Covariance-Based Clustering of Multivariate Time Series Data. 215-223 - Junxian He, Zhiting Hu, Taylor Berg-Kirkpatrick, Ying Huang, Eric P. Xing:
Efficient Correlated Topic Modeling with Topic Embedding. 225-233 - Tom Hope, Joel Chan, Aniket Kittur, Dafna Shahaf:
Accelerating Innovation Through Analogy Mining. 235-243 - Cho-Jui Hsieh, Si Si, Inderjit S. Dhillon:
Communication-Efficient Distributed Block Minimization for Nonlinear Kernel Machines. 245-254 - Ari Kobren, Nicholas Monath, Akshay Krishnamurthy, Andrew McCallum:
A Hierarchical Algorithm for Extreme Clustering. 255-264 - Kun Kuang, Peng Cui, Bo Li, Meng Jiang, Shiqiang Yang:
Estimating Treatment Effect in the Wild via Differentiated Confounder Balancing. 265-274 - Himabindu Lakkaraju, Jon M. Kleinberg, Jure Leskovec, Jens Ludwig, Sendhil Mullainathan:
The Selective Labels Problem: Evaluating Algorithmic Predictions in the Presence of Unobservables. 275-284 - Xiaoli Li, Jun Huan:
Constructivism Learning: A Learning Paradigm for Transparent Predictive Analytics. 285-294 - Liangyue Li, Hanghang Tong, Yong Wang, Conglei Shi, Nan Cao, Norbou Buchler:
Is the Whole Greater Than the Sum of Its Parts? 295-304 - Xiaopeng Li, James She:
Collaborative Variational Autoencoder for Recommender Systems. 305-314 - Ping Li:
Linearized GMM Kernels and Normalized Random Fourier Features. 315-324 - Defu Lian, Rui Liu, Yong Ge, Kai Zheng, Xing Xie, Longbing Cao:
Discrete Content-aware Matrix Factorization. 325-334 - Junming Liu, Yanjie Fu, Jingci Ming, Yong Ren, Leilei Sun, Hui Xiong:
Effective and Real-time In-App Activity Analysis in Encrypted Internet Traffic Streams. 335-344 - Tingjin Luo, Weizhong Zhang, Shang Qiu, Yang Yang, Dongyun Yi, Guangtao Wang, Jieping Ye, Jie Wang:
Functional Annotation of Human Protein Coding Isoforms via Non-convex Multi-Instance Learning. 345-354 - Panagiotis Mandros, Mario Boley, Jilles Vreeken:
Discovering Reliable Approximate Functional Dependencies. 355-363 - Dominik Mautz, Wei Ye, Claudia Plant, Christian Böhm:
Towards an Optimal Subspace for K-Means. 365-373 - Ioakeim Perros, Evangelos E. Papalexakis, Fei Wang, Richard W. Vuduc, Elizabeth Searles, Michael Thompson, Jimeng Sun:
SPARTan: Scalable PARAFAC2 for Large & Sparse Data. 375-384 - Leonardo Filipe Rodrigues Ribeiro, Pedro H. P. Saverese, Daniel R. Figueiredo:
struc2vec: Learning Node Representations from Structural Identity. 385-394 - Saket Sathe, Charu C. Aggarwal:
Similarity Forests. 395-403 - Parikshit Shah, Akshay Soni, Troy Chevalier:
Online Ranking with Constraints: A Primal-Dual Algorithm and Applications to Web Traffic-Shaping. 405-414 - Chih-Ya Shen, Liang-Hao Huang, De-Nian Yang, Hong-Han Shuai, Wang-Chien Lee, Ming-Syan Chen:
On Finding Socially Tenuous Groups for Online Social Networks. 415-424 - Yu Shi, Po-Wei Chan, Honglei Zhuang, Huan Gui, Jiawei Han:
PReP: Path-Based Relevance from a Probabilistic Perspective in Heterogeneous Information Networks. 425-434 - Qingquan Song, Xiao Huang, Hancheng Ge, James Caverlee, Xia Hu:
Multi-Aspect Streaming Tensor Completion. 435-443 - Ryan Spring, Anshumali Shrivastava:
Scalable and Sustainable Deep Learning via Randomized Hashing. 445-454 - Yukihiro Tagami:
AnnexML: Approximate Nearest Neighbor Search for Extreme Multi-label Classification. 455-464 - Gabriele Tolomei, Fabrizio Silvestri, Andrew Haines, Mounia Lalmas:
Interpretable Predictions of Tree-based Ensembles via Actionable Feature Tweaking. 465-474 - Shen Wang, Lifang He, Bokai Cao, Chun-Ta Lu, Philip S. Yu, Ann B. Ragin:
Structural Deep Brain Network Mining. 475-484 - Suhang Wang, Charu C. Aggarwal, Huan Liu:
Randomized Feature Engineering as a Fast and Accurate Alternative to Kernel Methods. 485-494 - Pengfei Wang, Yanjie Fu, Guannan Liu, Wenqing Hu, Charu C. Aggarwal:
Human Mobility Synchronization and Trip Purpose Detection with Mixture of Hawkes Processes. 495-503 - Sibo Wang, Renchi Yang, Xiaokui Xiao, Zhewei Wei, Yin Yang:
FORA: Simple and Effective Approximate Single-Source Personalized PageRank. 505-514 - Liwei Wu, Cho-Jui Hsieh, James Sharpnack:
Large-scale Collaborative Ranking in Near-Linear Time. 515-524 - Jingwei Xu, Yuan Yao, Hanghang Tong, Xianping Tao, Jian Lu:
HoORaYs: High-order Optimization of Rating Distance for Recommender Systems. 525-534 - Guangxu Xun, Yaliang Li, Jing Gao, Aidong Zhang:
Collaboratively Improving Topic Discovery and Word Embeddings by Coordinating Global and Local Contexts. 535-543 - Ian En-Hsu Yen, Xiangru Huang, Wei Dai, Pradeep Ravikumar, Inderjit S. Dhillon, Eric P. Xing:
PPDsparse: A Parallel Primal-Dual Sparse Method for Extreme Classification. 545-553 - Hao Yin, Austin R. Benson, Jure Leskovec, David F. Gleich:
Local Higher-Order Graph Clustering. 555-564 - Chengxi Zang, Peng Cui, Christos Faloutsos, Wenwu Zhu:
Long Short Memory Process: Modeling Growth Dynamics of Microscopic Social Connectivity. 565-574 - Muhan Zhang, Yixin Chen:
Weisfeiler-Lehman Neural Machine for Link Prediction. 575-583 - Haoyu Zhang, Qin Zhang:
EmbedJoin: Efficient Edit Similarity Joins via Embeddings. 585-594 - Chao Zhang, Liyuan Liu, Dongming Lei, Quan Yuan, Honglei Zhuang, Tim Hanratty, Jiawei Han:
TrioVecEvent: Embedding-Based Online Local Event Detection in Geo-Tagged Tweet Streams. 595-604 - Chenzi Zhang, Fan Wei, Qin Liu, Zhihao Gavin Tang, Zhenguo Li:
Graph Edge Partitioning via Neighborhood Heuristic. 605-614 - Kai Zhang, Chuanren Liu, Jie Zhang, Hui Xiong, Eric P. Xing, Jieping Ye:
Randomization or Condensation?: Linear-Cost Matrix Sketching Via Cascaded Compression Sampling. 615-623 - Hongke Zhao, Hefu Zhang, Yong Ge, Qi Liu, Enhong Chen, Huayu Li, Le Wu:
Tracking the Dynamics in Crowdfunding. 625-634 - Huan Zhao, Quanming Yao, Jianda Li, Yangqiu Song, Dik Lun Lee:
Meta-Graph Based Recommendation Fusion over Heterogeneous Information Networks. 635-644 - Yan Zheng, Jeff M. Phillips:
Coresets for Kernel Regression. 645-654 - Dawei Zhou, Si Zhang, Mehmet Yigit Yildirim, Scott Alcorn, Hanghang Tong, Hasan Davulcu, Jingrui He:
A Local Algorithm for Structure-Preserving Graph Cut. 655-664 - Chong Zhou, Randy C. Paffenroth:
Anomaly Detection with Robust Deep Autoencoders. 665-674
KDD 2017 Research Papers (Poster Papers)
- Aman Agarwal, Soumya Basu, Tobias Schnabel, Thorsten Joachims:
Effective Evaluation Using Logged Bandit Feedback from Multiple Loggers. 687-696 - Saurabh Agrawal, Gowtham Atluri, Anuj Karpatne, William Haltom, Stefan Liess, Snigdhansu Chatterjee, Vipin Kumar:
Tripoles: A New Class of Relationships in Time Series Data. 697-706 - Arda Antikacioglu, R. Ravi:
Post Processing Recommender Systems for Diversity. 707-716 - Konstantin Bauman, Bing Liu, Alexander Tuzhilin:
Aspect Based Recommendations: Recommending Items with the Most Valuable Aspects Based on User Reviews. 717-725 - Davis W. Blalock, John V. Guttag:
Bolt: Accelerated Data Mining with Fast Vector Compression. 727-735 - Aleksandar Bojchevski, Yves Matkovic, Stephan Günnemann:
Robust Spectral Clustering for Noisy Data: Modeling Sparse Corruptions Improves Latent Embeddings. 737-746 - Bokai Cao, Lei Zheng, Chenwei Zhang, Philip S. Yu, Andrea Piscitello, John Zulueta, Olu Ajilore, Kelly Ryan, Alex D. Leow:
DeepMood: Modeling Mobile Phone Typing Dynamics for Mood Detection. 747-755 - Jinghui Chen, Quanquan Gu:
Fast Newton Hard Thresholding Pursuit for Sparsity Constrained Nonconvex Optimization. 757-766 - Ting Chen, Yizhou Sun, Yue Shi, Liangjie Hong:
On Sampling Strategies for Neural Network-based Collaborative Filtering. 767-776 - Kewei Cheng, Jundong Li, Huan Liu:
Unsupervised Feature Selection in Signed Social Networks. 777-786 - Edward Choi, Mohammad Taha Bahadori, Le Song, Walter F. Stewart, Jimeng Sun:
GRAM: Graph-based Attention Model for Healthcare Representation Learning. 787-795 - Sam Corbett-Davies, Emma Pierson, Avi Feller, Sharad Goel, Aziz Huq:
Algorithmic Decision Making and the Cost of Fairness. 797-806 - Yuxiao Dong, Reid A. Johnson, Jian Xu, Nitesh V. Chawla:
Structural Diversity and Homophily: A Study Across More Than One Hundred Big Networks. 807-816 - Nicole Eikmeier, David F. Gleich:
Revisiting Power-law Distributions in Spectra of Real World Networks. 817-826 - Yanjie Fu, Charu C. Aggarwal, Srinivasan Parthasarathy, Deepak S. Turaga, Hui Xiong:
REMIX: Automated Exploration for Interactive Outlier Detection. 827-835 - Moshe Gabel, Daniel Keren, Assaf Schuster:
Anarchists, Unite: Practical Entropy Approximation for Distributed Streams. 837-846 - Seyyed Abbas Hosseini, Keivan Alizadeh, Ali Khodadadi, Ali Arabzadeh, Mehrdad Farajtabar, Hongyuan Zha, Hamid R. Rabiee:
Recurrent Poisson Factorization for Temporal Recommendation. 847-855 - Qiming Huang, Michael Zhu:
SPOT: Sparse Optimal Transformations for High Dimensional Variable Selection and Exploratory Regression Analysis. 857-865 - Xiaowei Jia, Ankush Khandelwal, Guruprasad Nayak, James Gerber, Kimberly Carlson, Paul C. West, Vipin Kumar:
Incremental Dual-memory LSTM in Land Cover Prediction. 867-876 - Meng Jiang, Jingbo Shang, Taylor Cassidy, Xiang Ren, Lance M. Kaplan, Timothy P. Hanratty, Jiawei Han:
MetaPAD: Meta Pattern Discovery from Massive Text Corpora. 877-886 - Yejin Kim, Jimeng Sun, Hwanjo Yu, Xiaoqian Jiang:
Federated Tensor Factorization for Computational Phenotyping. 887-895 - Junpei Komiyama, Masakazu Ishihata, Hiroki Arimura, Takashi Nishibayashi, Shin-ichi Minato:
Statistical Emerging Pattern Mining with Multiple Testing Correction. 897-906 - Igor Labutov, Yun Huang, Peter Brusilovsky, Daqing He:
Semi-Supervised Techniques for Mining Learning Outcomes and Prerequisites. 907-915 - Huayu Li, Yong Ge, Hengshu Zhu, Hui Xiong, Hongke Zhao:
Prospecting the Career Development of Talents: A Survival Analysis Perspective. 917-925 - Huayu Li, Martin Renqiang Min, Yong Ge, Asim Kadav:
A Context-aware Attention Network for Interactive Question Answering. 927-935 - Sulin Liu, Sinno Jialin Pan, Qirong Ho:
Distributed Multi-Task Relationship Learning. 937-946 - Yanchi Liu, Chuanren Liu, Xinjiang Lu, Mingfei Teng, Hengshu Zhu, Hui Xiong:
Point-of-Interest Demand Modeling with Human Mobility Patterns. 947-955 - Junming Liu, Leilei Sun, Qiao Li, Jingci Ming, Yanchi Liu, Hui Xiong:
Functional Zone Based Hierarchical Demand Prediction For Bike System Expansion. 957-966 - Fenglong Ma, Chuishi Meng, Houping Xiao, Qi Li, Jing Gao, Lu Su, Aidong Zhang:
Unsupervised Discovery of Drug Side-Effects from Heterogeneous Data Sources. 967-976 - Samuel Maurus, Claudia Plant:
Let's See Your Digits: Anomalous-State Detection using Benford's Law. 977-986 - Guo-Jun Qi, Jiliang Tang, Jingdong Wang, Jiebo Luo:
Mixture Factorized Ornstein-Uhlenbeck Processes for Time-Series Forecasting. 987-995 - Meng Qu, Xiang Ren, Jiawei Han:
Automatic Synonym Discovery with Knowledge Bases. 997-1005 - Edward Raff, Charles K. Nicholas:
An Alternative to NCD for Large Sequences, Lempel-Ziv Jaccard Distance. 1007-1015 - Polina Rozenshtein, Nikolaj Tatti, Aristides Gionis:
Inferring the Strength of Social Ties: A Community-Driven Approach. 1017-1025 - Martin Saveski, Jean Pouget-Abadie, Guillaume Saint-Jacques, Weitao Duan, Souvik Ghosh, Ya Xu, Edoardo M. Airoldi:
Detecting Network Effects: Randomizing Over Randomized Experiments. 1027-1035 - Ingo Scholtes:
When is a Network a Network?: Multi-Order Graphical Model Selection in Pathways and Temporal Networks. 1037-1046 - Yelong Shen, Po-Sen Huang, Jianfeng Gao, Weizhu Chen:
ReasoNet: Learning to Stop Reading in Machine Comprehension. 1047-1055 - Kijung Shin, Bryan Hooi, Jisu Kim, Christos Faloutsos:
DenseAlert: Incremental Dense-Subtensor Detection in Tensor Streams. 1057-1066 - Alban Siffer, Pierre-Alain Fouque, Alexandre Termier, Christine Largouët:
Anomaly Detection in Streams with Extreme Value Theory. 1067-1075 - Mayank Singh, Rajdeep Sarkar, Pawan Goyal, Animesh Mukherjee, Soumen Chakrabarti:
Relay-Linking Models for Prominence and Obsolescence in Evolving Networks. 1077-1086 - Hwanjun Song, Jae-Gil Lee, Wook-Shin Han:
PAMAE: Parallel k-Medoids Clustering with High Accuracy and Efficiency. 1087-1096 - Joseph St. Amand, Jun Huan:
Sparse Compositional Local Metric Learning. 1097-1104 - Jian Tang, Yue Wang, Kai Zheng, Qiaozhu Mei:
End-to-end Learning for Short Text Expansion. 1105-1113 - Bálint Tillman, Athina Markopoulou, Carter T. Butts, Minas Gjoka:
Construction of Directed 2K Graphs. 1115-1124 - Berk Ustun, Cynthia Rudin:
Optimized Risk Scores. 1125-1134 - Hao Wang, Yanmei Fu, Qinyong Wang, Hongzhi Yin, Changying Du, Hui Xiong:
A Location-Sentiment-Aware Recommender System for Both Home-Town and Out-of-Town Users. 1135-1143 - Qinglong Wang, Wenbo Guo, Kaixuan Zhang, Alexander G. Ororbia II, Xinyu Xing, Xue Liu, C. Lee Giles:
Adversary Resistant Deep Neural Networks with an Application to Malware Detection. 1145-1153 - Qi Wang, Mengying Sun, Liang Zhan, Paul Thompson, Shuiwang Ji, Jiayu Zhou:
Multi-Modality Disease Modeling via Collective Deep Matrix Factorization. 1155-1164 - Tianyi Wu, Shinya Sugawara, Kenji Yamanishi:
Decomposed Normalized Maximum Likelihood Codelength Criterion for Selecting Hierarchical Latent Variable Models. 1165-1174 - Fei Wu, Pranay Anchuri, Zhenhui Li:
Structural Event Detection from Log Messages. 1175-1184 - Tao Wu, David F. Gleich:
Retrospective Higher-Order Markov Processes for User Trails. 1185-1194 - Liyang Xie, Inci M. Baytas, Kaixiang Lin, Jiayu Zhou:
Privacy-Preserving Distributed Multi-Task Learning with Asynchronous Updates. 1195-1204 - Zhengming Xing, Sunshine Hillygus, Lawrence Carin:
Evaluating U.S. Electoral Representation with a Joint Statistical Model of Congressional Roll-Calls, Legislative Text, and Voter Registration Data. 1205-1214 - Makoto Yamada, Wenzhao Lian, Amit Goyal, Jianhui Chen, Kishan Wimalawarne, Suleiman A. Khan, Samuel Kaski, Hiroshi Mamitsuka, Yi Chang:
Convex Factorization Machine for Toxicogenomics Prediction. 1215-1224 - Yizhou Yan, Lei Cao, Caitlin Kuhlman, Elke A. Rundensteiner:
Distributed Local Outlier Detection in Big Data. 1225-1234 - Yizhou Yan, Lei Cao, Elke A. Rundensteiner:
Scalable Top-n Local Outlier Detection. 1235-1244 - Carl Yang, Lanxiao Bai, Chao Zhang, Quan Yuan, Jiawei Han:
Bridging Collaborative Filtering and Semi-Supervised Learning: A Neural Approach for POI Recommendation. 1245-1254 - Pei Yang, Qi Tan, Jingrui He:
Multi-task Function-on-function Regression with Co-grouping Structured Sparsity. 1255-1264 - Wei Ye, Linfei Zhou, Dominik Mautz, Claudia Plant, Christian Böhm:
Learning from Labeled and Unlabeled Vertices in Networks. 1265-1274 - Peifeng Yin, Ping Luo, Taiga Nakamura:
Small Batch or Large Batch?: Gaussian Walk with Rebound Can Teach. 1275-1284 - Shan You, Chang Xu, Chao Xu, Dacheng Tao:
Learning from Multiple Teacher Networks. 1285-1294 - Linyun Yu, Peng Cui, Chaoming Song, Tianyang Zhang, Shiqiang Yang:
A Temporally Heterogeneous Survival Framework with Application to Social Behavior Dynamics. 1295-1304 - Wang Zhan, Min-Ling Zhang:
Inductive Semi-supervised Multi-Label Learning with Co-Training. 1305-1314 - Yutao Zhang, Robert Chen, Jie Tang, Walter F. Stewart, Jimeng Sun:
LEAP: Learning to Prescribe Effective and Safe Treatment Combinations for Multimorbidity. 1315-1324 - Yang Zhang, Yusu Wang, Srinivasan Parthasarathy:
Visualizing Attributed Graphs via Terrain Metaphor. 1325-1334 - Lu Zhang, Yongkai Wu, Xintao Wu:
Achieving Non-Discrimination in Data Release. 1335-1344
KDD 2017 Applied Data Science Papers (Oral Papers)
- Adrian Albert, Jasleen Kaur, Marta C. González:
Using Convolutional Networks and Satellite Imagery to Identify Patterns in Urban Environments at a Large Scale. 1357-1366 - Raquel Y. S. Aoki, Renato Martins Assunção, Pedro O. S. Vaz de Melo:
Luck is Hard to Beat: The Difficulty of Sports Prediction. 1367-1376 - Jie Bao, Tianfu He, Sijie Ruan, Yanhua Li, Yu Zheng:
Planning Bike Lanes based on Sharing-Bikes' Trajectories. 1377-1386 - Denis Baylor, Eric Breck, Heng-Tze Cheng, Noah Fiedel, Chuan Yu Foo, Zakaria Haque, Salem Haykal, Mustafa Ispir, Vihan Jain, Levent Koc, Chiu Yuen Koo, Lukasz Lew, Clemens Mewald, Akshay Naresh Modi, Neoklis Polyzotis, Sukriti Ramesh, Sudip Roy, Steven Euijong Whang, Martin Wicke, Jarek Wilkiewicz, Xin Zhang, Martin Zinkevich:
TFX: A TensorFlow-Based Production-Scale Machine Learning Platform. 1387-1395 - Fedor Borisyuk, Liang Zhang, Krishnaram Kenthapadi:
LiJAR: A System for Job Application Redistribution towards Efficient Career Marketplace. 1397-1406 - Alex Chojnacki, Chengyu Dai, Arya Farahi, Guangsha Shi, Jared Webb, Daniel T. Zhang, Jacob D. Abernethy, Eric M. Schwartz:
A Data Science Approach to Understanding Residential Water Contamination in Flint. 1407-1416 - Ross E. Curtis, Ahna Reza Girshick:
Estimation of Recent Ancestral Origins of Individuals on a Large Scale. 1417-1425 - Pavel A. Dmitriev, Somit Gupta, Dong Woo Kim, Garnet Jason Vaz:
A Dirty Dozen: Twelve Common Metric Interpretation Pitfalls in Online Controlled Experiments. 1427-1436 - Yuxiao Dong, Hao Ma, Zhihong Shen, Kuansan Wang:
A Century of Science: Globalization of Scientific Collaborations, Citations, and Innovations. 1437-1446 - Boxin Du, Si Zhang, Nan Cao, Hanghang Tong:
FIRST: Fast Interactive Attributed Subgraph Matching. 1447-1456 - Saba Emrani, Anya McGuirk, Wei Xiao:
Prognosis and Diagnosis of Parkinson's Disease Using Multi-Task Learning. 1457-1466 - Guojun Gan, Jimmy Xiangji Huang:
A Data Mining Framework for Valuing Large Portfolios of Variable Annuities. 1467-1475 - Saurav Ghosh, Prithwish Chakraborty, Bryan L. Lewis, Maimuna S. Majumder, Emily Cohn, John S. Brownstein, Madhav V. Marathe, Naren Ramakrishnan:
GELL: Automatic Extraction of Epidemiological Line Lists from Open Sources. 1477-1485 - Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John Karro, D. Sculley:
Google Vizier: A Service for Black-Box Optimization. 1487-1495 - Jen J. Gong, Tristan Naumann, Peter Szolovits, John V. Guttag:
Predicting Clinical Outcomes Across Changing Electronic Health Record Systems. 1497-1505 - Shifu Hou, Yanfang Ye, Yangqiu Song, Melih Abdulhayoglu:
HinDroid: An Intelligent Android Malware Detection System Based on Structured Heterogeneous Information Network. 1507-1515 - Ramesh Johari, Pete Koomen, Leonid Pekelis, David Walsh:
Peeking at A/B Tests: Why it matters, and what to do about it. 1517-1525 - Danai Koutra, Abhilash Dighe, Smriti Bhagat, Udi Weinsberg, Stratis Ioannidis, Christos Faloutsos, Jean Bolot:
PNP: Fast Path Ensemble Method for Movie Design. 1527-1536 - Zhaobin Kuang, Peggy L. Peissig, Vítor Santos Costa, Richard Maclin, David Page:
Pharmacovigilance via Baseline Regularization with Large-Scale Longitudinal Observational Data. 1537-1546 - Tao Li, Yexi Jiang, Chunqiu Zeng, Bin Xia, Zheng Liu, Wubai Zhou, Xiaolong Zhu, Wentao Wang, Liang Zhang, Jun Wu, Li Xue, Dewei Bao:
FLAP: An End-to-End Event Log Analysis Platform for System Management. 1547-1556 - Shichen Liu, Fei Xiao, Wenwu Ou, Luo Si:
Cascade Ranking for Operational E-commerce Search. 1557-1565 - Quinten McNamara, Alejandro de la Vega, Tal Yarkoni:
Developing a Comprehensive Framework for Multimodal Feature Extraction. 1567-1574 - Alejandro Mottini, Rodrigo Acuna-Agost:
Deep Choice Model Using Pointer Networks for Airline Itinerary Prediction. 1575-1583 - Debjyoti Paul, Feifei Li, Murali Krishna Teja, Xin Yu, Richie Frost:
Compass: Spatio Temporal Sentiment Analysis of US Election What Twitter Says! 1585-1594 - Rebecca S. Portnoff, Danny Yuxing Huang, Periwinkle Doerfler, Sadia Afroz, Damon McCoy:
Backpage and Bitcoin: Uncovering Human Traffickers. 1595-1604 - Paul Power, Héctor Ruiz, Xinyu Wei, Patrick Lucey:
Not All Passes Are Created Equal: Objectively Measuring the Risk and Reward of Passes in Soccer from Tracking Data. 1605-1613 - Xiao Qin, Tabassum Kakar, Susmitha Wunnava, Elke A. Rundensteiner, Lei Cao:
MARAS: Signaling Multi-Drug Adverse Reactions. 1615-1623 - Parikshit Shah, Ming Yang, Sachidanand Alle, Adwait Ratnaparkhi, Ben Shahshahani, Rohit Chandra:
A Practical Exploration System for Search Advertising. 1625-1631 - Justin Sybrandt, Michael Shtutman, Ilya Safro:
MOLIERE: Automatic Biomedical Hypothesis Generation System. 1633-1642 - Sandeep Tata, Alexandrin Popescul, Marc Najork, Mike Colagrosso, Julian Gibbons, Alan Green, Alexandre Mah, Michael Smith, Divanshu Garg, Cayden Meyer, Reuben Kan:
Quick Access: Building a Smart Experience for Google Drive. 1643-1651 - Yongxin Tong, Yuqiang Chen, Zimu Zhou, Lei Chen, Jie Wang, Qiang Yang, Jieping Ye, Weifeng Lv:
The Simpler The Better: A Unified Approach to Predicting Original Taxi Demands based on Large-Scale Online Platforms. 1653-1662 - Thomas Vandal, Evan Kodra, Sangram Ganguly, Andrew R. Michaelis, Ramakrishna R. Nemani, Auroop R. Ganguly:
DeepSD: Generating High Resolution Climate Change Projections through Single Image Super-Resolution. 1663-1672 - Jingyuan Wang, Chao Chen, Junjie Wu, Zhang Xiong:
No Longer Sleeping with a Bomb: A Duet System for Protecting Urban Safety from Dangerous Goods. 1673-1681 - Zhe Zhang, Beibei Li:
A Quasi-experimental Estimate of the Impact of P2P Transportation Platforms on Urban Consumer Patterns. 1683-1692 - Jun Zhou, Xiaolong Li, Peilin Zhao, Chaochao Chen, Longfei Li, Xinxing Yang, Qing Cui, Jin Yu, Xu Chen, Yi Ding, Yuan (Alan) Qi:
KunPeng: Parameter Server based Distributed Learning Systems and Its Applications in Alibaba and Ant Financial. 1693-1702 - Jie Zhu, Ying Shan, J. C. Mao, Dong Yu, Holakou Rahmanian, Yi Zhang:
Deep Embedding Forest: Forest-based Serving with Deep Embedding Features. 1703-1711
KDD 2017 Applied Data Science Papers (Poster Papers)
- Amr Ahmed, James Long, Daniel Silva, Yuan Wang:
A Practical Algorithm for Solving the Incoherence Problem of Topic Models In Industrial Applications. 1713-1721 - Blake Anderson, David A. McGrew:
Machine Learning for Encrypted Malware Traffic Classification: Accounting for Noisy Labels and Non-Stationarity. 1723-1732 - Albert Bifet, Jiajin Zhang, Wei Fan, Cheng He, Jianfeng Zhang, Jianfeng Qian, Geoff Holmes, Bernhard Pfahringer:
Extremely Fast Decision Tree Mining for Evolving Data Streams. 1733-1742 - Pedro Chahuara, Nicolas Grislain, Grégoire Jauvion, Jean-Michel Renders:
Real-Time Optimization of Web Publisher RTB Revenues. 1743-1751 - Benjamin Paul Chamberlain, Ângelo Cardoso, C. H. Bryan Liu, Roberto Pagliari, Marc Peter Deisenroth:
Customer Lifetime Value Prediction Using Embeddings. 1753-1762 - Heng-Tze Cheng, Zakaria Haque, Lichan Hong, Mustafa Ispir, Clemens Mewald, Illia Polosukhin, Georgios Roumpos, D. Sculley, Jamie Smith, David Soergel, Yuan Tang, Philipp Tucker, Martin Wicke, Cassandra Xia, Jianwei Xie:
TensorFlow Estimators: Managing Simplicity vs. Flexibility in High-Level Machine Learning Frameworks. 1763-1771 - Hamid Dadkhahi, Benjamin M. Marlin:
Learning Tree-Structured Detection Cascades for Heterogeneous Networks of Embedded Devices. 1773-1781 - Supratim Deb, Zihui Ge, Sastry Isukapalli, Sarat C. Puthenpura, Shobha Venkataraman, He Yan, Jennifer Yates:
AESOP: Automatic Policy Learning for Predicting and Mitigating Network Service Impairments. 1783-1792 - Shalini Ghosh, Ariyam Das, Phillip A. Porras, Vinod Yegneswaran, Ashish Gehani:
Automated Categorization of Onion Sites for Analyzing the Darkweb Ecosystem. 1793-1802 - Naeemul Hassan, Fatma Arslan, Chengkai Li, Mark Tremayne:
Toward Automated Fact-Checking: Detecting Check-worthy Factual Claims by ClaimBuster. 1803-1812 - Daniel N. Hill, Houssam Nassif, Yi Liu, Anand Iyer, S. V. N. Vishwanathan:
An Efficient Bandit Algorithm for Realtime Multivariate Optimization. 1813-1821 - Vasileios Iosifidis, Eirini Ntoutsi:
Large Scale Sentiment Learning with Limited Labels. 1823-1832 - Shinji Ito, Ryohei Fujimaki:
Optimization Beyond Prediction: Prescriptive Price Optimization. 1833-1841 - Vijay Manikandan Janakiraman, Bryan L. Matthews, Nikunj C. Oza:
Finding Precursors to Anomalous Drop in Airspeed During a Flight's Takeoff. 1843-1852 - Brendan Kitts, Michael Krishnan, Ishadutta Yadav, Yongbo Zeng, Garrett Badeau, Andrew Potter, Sergey Tolkachov, Ethan Thornburg, Satyanarayana Reddy Janga:
Ad Serving with Multiple KPIs. 1853-1861 - Xiucheng Li, Yun Cheng, Gao Cong, Lisi Chen:
Discovering Pollution Sources and Propagation Patterns in Urban Area. 1863-1872 - Keqian Li, Yeye He, Kris Ganjam:
Discovering Enterprise Concepts Using Spreadsheet Tables. 1873-1882 - Qiaoling Liu, Faizan Javed, Vachik S. Dave, Ankita Joshi:
Supporting Employer Name Normalization at both Entity and Cluster Level. 1883-1892 - Yin Lou, Mikhail Obukhov:
BDT: Gradient Boosted Decision Tables for High Accuracy and Scoring Efficiency. 1893-1901 - Fenglong Ma, Radha Chitta, Jing Zhou, Quanzeng You, Tong Sun, Jing Gao:
Dipole: Diagnosis Prediction in Healthcare via Attention-based Bidirectional Recurrent Neural Networks. 1903-1911 - Matthew Malloy, Paul Barford, Enis Ceyhun Alp, Jonathan Koller, Adria Jewell:
Internet Device Graphs. 1913-1921 - Emaad A. Manzoor, Leman Akoglu:
RUSH!: Targeted Time-limited Coupons via Purchase Forecasts. 1923-1931 - Shumpei Okura, Yukihiro Tagami, Shingo Ono, Akira Tajima:
Embedding-based News Recommendation for Millions of Users. 1933-1942 - Yaniv Ovadia, Yoni Halpern, Dilip Krishnan, Josh Livni, Daniel E. Newburger, Ryan Poplin, Tiantian Zha, D. Sculley:
Learning to Count Mosquitoes for the Sterile Insect Technique. 1943-1949 - Lujia Pan, Jianfeng Zhang, Patrick P. C. Lee, Hong Cheng, Cheng He, Caifeng He, Keli Zhang:
An Intelligent Customer Care Assistant System for Large-Scale Cellular Network Diagnosis. 1951-1959 - Yanxin Pan, Alexander Burnap, Jeffrey Hartley, Richard Gonzalez, Panos Y. Papalambros:
Deep Design: Product Aesthetics for Heterogeneous Markets. 1961-1970 - Tom Quisel, Luca Foschini, Alessio Signorini, David C. Kale:
Collecting and Analyzing Millions of mHealth Data Streams. 1971-1980 - Kosta Ristovski, Chetan Gupta, Kunihiko Harada, Hsiu-Khuern Tang:
Dispatch with Confidence: Integration of Machine Learning, Optimization and Simulation for Open Pit Mines. 1981-1989 - Héctor Ruiz, Paul Power, Xinyu Wei, Patrick Lucey:
"The Leicester City Fairytale?": Utilizing New Soccer Analytics Tools to Compare Performance in the 15/16 & 16/17 EPL Seasons. 1991-2000 - Hesam Salehian, Patrick D. Howell, Chul Lee:
Matching Restaurant Menus to Crowdsourced Food Data: A Scalable Machine Learning Approach. 2001-2009 - Ashlesh Sharma, Vidyuth Srinivasan, Vishal Kanchan, Lakshminarayanan Subramanian:
The Fake vs Real Goods Problem: Microscopy and Machine Learning to the Rescue. 2011-2019 - Kyle Soska, Christopher S. Gates, Kevin A. Roundy, Nicolas Christin:
Automatic Application Identification from Billions of Files. 2021-2030 - Bin Tong, Martin Klinkigt, Makoto Iwayama, Toshihiko Yanase, Yoshiyuki Kobayashi, Anshuman Sahu, Ravigopal Vennelakanti:
Learning to Generate Rock Descriptions from Multivariate Well Logs with Hierarchical Attention. 2031-2040 - Toshimitsu Uesaka, Kai Morino, Hiroki Sugiura, Taichi Kiwaki, Hiroshi Murata, Ryo Asaoka, Kenji Yamanishi:
Multi-view Learning over Retinal Thickness and Visual Sensitivity on Glaucomatous Eyes. 2041-2050 - Xuejian Wang, Lantao Yu, Kan Ren, Guanyu Tao, Weinan Zhang, Yong Yu, Jun Wang:
Dynamic Attention Deep Model for Article Recommendation by Learning Human Editors' Demonstration. 2051-2059 - Chenglong Wang, Feijun Jiang, Hongxia Yang:
A Hybrid Framework for Text Modeling with Convolutional RNN. 2061-2069 - Bronwyn Woods, David Adamson, Shayne Miel, Elijah Mayfield:
Formative Essay Feedback Using Predictive Scoring Models. 2071-2080 - Houping Xiao, Jing Gao, Long H. Vu, Deepak S. Turaga:
Learning Temporal State of Diabetes Patients via Combining Behavioral and Demographic Data. 2081-2089 - Hongxia Yang, Yada Zhu, Jingrui He:
Local Algorithm for User Action Prediction Towards Display Ads. 2091-2099 - Fan Yang, Ajinkya Kale, Yury Bubnov, Leon Stein, Qiaosong Wang, M. Hadi Kiapour, Robinson Piramuthu:
Visual Search at eBay. 2101-2110 - Sen Yang, Xin Dong, Leilei Sun, Yichen Zhou, Richard A. Farneth, Hui Xiong, Randall S. Burd, Ivan Marsic:
A Data-driven Process Recommender Framework. 2111-2120 - Emre Yilmaz, Sanem Elbasi, Hakan Ferhatosmanoglu:
Predicting Optimal Facility Location without Customer Locations. 2121-2130 - Zi Yin, Keng-hao Chang, Ruofei Zhang:
DeepProbe: Information Directed Sequence Understanding and Chatbot Design via Recurrent Neural Networks. 2131-2139 - Liheng Zhang, Charu C. Aggarwal, Guo-Jun Qi:
Stock Price Prediction via Discovering Multi-Frequency Trading Patterns. 2141-2149 - Lingyu Zhang, Tao Hu, Yue Min, Guobin Wu, Junying Zhang, Pengcheng Feng, Pinghua Gong, Jieping Ye:
A Taxi Order Dispatch Model based On Combinatorial Optimization. 2151-2159 - Guanjie Zheng, Susan L. Brantley, Thomas Lauvaux, Zhenhui Li:
Contextual Spatial Outlier Detection with Metric Learning. 2161-2170 - Kaiping Zheng, Jinyang Gao, Kee Yuan Ngiam, Beng Chin Ooi, James Wei Luen Yip:
Resolving the Bias in Electronic Medical Records. 2171-2180 - Wubai Zhou, Wei Xue, Ramesh Baral, Qing Wang, Chunqiu Zeng, Tao Li, Jian Xu, Zheng Liu, Larisa Shwartz, Genady Ya. Grabarnik:
STAR: A System for Ticket Analysis and Resolution. 2181-2190 - Han Zhu, Junqi Jin, Chang Tan, Fei Pan, Yifan Zeng, Han Li, Kun Gai:
Optimized Cost per Click in Taobao Display Advertising. 2191-2200
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.