default search action
Michael D. Shields
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j21]Lukás Novák, Himanshu Sharma, Michael D. Shields:
Physics-informed polynomial chaos expansions. J. Comput. Phys. 506: 112926 (2024) - [j20]Dimitris G. Giovanis, Dimitrios Loukrezis, Ioannis G. Kevrekidis, Michael D. Shields:
Polynomial chaos expansions on principal geodesic Grassmannian submanifolds for surrogate modeling and uncertainty quantification. J. Comput. Phys. 519: 113443 (2024) - [j19]Mohit Chauhan, Mariel Ojeda-Tuz, Ryan Catarelli, Kurtis R. Gurley, Dimitrios Tsapetis, Michael D. Shields:
On active learning for Gaussian process-based global sensitivity analysis. Reliab. Eng. Syst. Saf. 245: 109945 (2024) - [j18]Lohit Vandanapu, Michael D. Shields:
Simulation of non-Gaussian wind field as a 3rd-order stochastic wave. Reliab. Eng. Syst. Saf. 245: 109960 (2024) - [i21]Denny Thaler, Somayajulu L. N. Dhulipala, Franz Bamer, Bernd Markert, Michael D. Shields:
Reliability Analysis of Complex Systems using Subset Simulations with Hamiltonian Neural Networks. CoRR abs/2401.05244 (2024) - [i20]Dimitris G. Giovanis, Dimitrios Loukrezis, Ioannis G. Kevrekidis, Michael D. Shields:
Polynomial Chaos Expansions on Principal Geodesic Grassmannian Submanifolds for Surrogate Modeling and Uncertainty Quantification. CoRR abs/2401.16683 (2024) - [i19]Himanshu Sharma, Lukás Novák, Michael D. Shields:
Physics-constrained polynomial chaos expansion for scientific machine learning and uncertainty quantification. CoRR abs/2402.15115 (2024) - [i18]George D. Pasparakis, Lori Graham-Brady, Michael D. Shields:
Bayesian neural networks for predicting uncertainty in full-field material response. CoRR abs/2406.14838 (2024) - [i17]Bahador Bahmani, Somdatta Goswami, Ioannis G. Kevrekidis, Michael D. Shields:
A Resolution Independent Neural Operator. CoRR abs/2407.13010 (2024) - [i16]Varun Kumar, Somdatta Goswami, Katiana Kontolati, Michael D. Shields, George Em Karniadakis:
Synergistic Learning with Multi-Task DeepONet for Efficient PDE Problem Solving. CoRR abs/2408.02198 (2024) - 2023
- [j17]Katiana Kontolati, Somdatta Goswami, Michael D. Shields, George Em Karniadakis:
On the influence of over-parameterization in manifold based surrogates and deep neural operators. J. Comput. Phys. 479: 112008 (2023) - [j16]Somayajulu L. N. Dhulipala, Yifeng Che, Michael D. Shields:
Efficient Bayesian inference with latent Hamiltonian neural networks in No-U-Turn Sampling. J. Comput. Phys. 492: 112425 (2023) - [j15]Dimitrios Tsapetis, Michael D. Shields, Dimitris G. Giovanis, Audrey Olivier, Lukás Novák, Promit Chakroborty, Himanshu Sharma, Mohit Chauhan, Katiana Kontolati, Lohit Vandanapu, Dimitrios Loukrezis, Michael Gardner:
UQpy v4.1: Uncertainty quantification with Python. SoftwareX 24: 101561 (2023) - [i15]Lukás Novák, Michael D. Shields, Václav Sadílek, Miroslav Vorechovský:
Active Learning-based Domain Adaptive Localized Polynomial Chaos Expansion. CoRR abs/2301.13635 (2023) - [i14]Katiana Kontolati, Somdatta Goswami, George Em Karniadakis, Michael D. Shields:
Learning in latent spaces improves the predictive accuracy of deep neural operators. CoRR abs/2304.07599 (2023) - [i13]Dimitrios Tsapetis, Michael D. Shields, Dimitris G. Giovanis, Audrey Olivier, Lukás Novák, Promit Chakroborty, Himanshu Sharma, Mohit Chauhan, Katiana Kontolati, Lohit Vandanapu, Dimitrios Loukrezis, Michael Gardner:
UQpy v4.1: Uncertainty Quantification with Python. CoRR abs/2305.09572 (2023) - [i12]Mohit Chauhan, Mariel Ojeda-Tuz, Ryan Catarelli, Kurtis R. Gurley, Dimitrios Tsapetis, Michael D. Shields:
On Active Learning for Gaussian Process-based Global Sensitivity Analysis. CoRR abs/2308.14220 (2023) - [i11]Lukás Novák, Himanshu Sharma, Michael D. Shields:
Physics-Informed Polynomial Chaos Expansions. CoRR abs/2309.01697 (2023) - 2022
- [j14]Katiana Kontolati, Dimitrios Loukrezis, Dimitrios G. Giovanis, Lohit Vandanapu, Michael D. Shields:
A survey of unsupervised learning methods for high-dimensional uncertainty quantification in black-box-type problems. J. Comput. Phys. 464: 111313 (2022) - [j13]Somayajulu L. N. Dhulipala, Michael D. Shields, Benjamin W. Spencer, Chandrakanth Bolisetti, Andrew E. Slaughter, Vincent M. Laboure, Promit Chakroborty:
Active learning with multifidelity modeling for efficient rare event simulation. J. Comput. Phys. 468: 111506 (2022) - [j12]Somdatta Goswami, Katiana Kontolati, Michael D. Shields, George Em Karniadakis:
Deep transfer operator learning for partial differential equations under conditional shift. Nat. Mac. Intell. 4(12): 1155-1164 (2022) - [j11]Somayajulu L. N. Dhulipala, Michael D. Shields, Promit Chakroborty, Wen Jiang, Benjamin W. Spencer, Jason D. Hales, Vincent M. Laboure, Zachary M. Prince, Chandrakanth Bolisetti, Yifeng Che:
Reliability estimation of an advanced nuclear fuel using coupled active learning, multifidelity modeling, and subset simulation. Reliab. Eng. Syst. Saf. 226: 108693 (2022) - [j10]Ketson R. M. dos Santos, Dimitrios G. Giovanis, Michael D. Shields:
Grassmannian Diffusion Maps-Based Dimension Reduction and Classification for High-Dimensional Data. SIAM J. Sci. Comput. 44(2): 250- (2022) - [i10]Katiana Kontolati, Dimitrios Loukrezis, Dimitrios G. Giovanis, Lohit Vandanapu, Michael D. Shields:
A survey of unsupervised learning methods for high-dimensional uncertainty quantification in black-box-type problems. CoRR abs/2202.04648 (2022) - [i9]Katiana Kontolati, Somdatta Goswami, Michael D. Shields, George Em Karniadakis:
On the influence of over-parameterization in manifold based surrogates and deep neural operators. CoRR abs/2203.05071 (2022) - [i8]Somdatta Goswami, Katiana Kontolati, Michael D. Shields, George Em Karniadakis:
Deep transfer learning for partial differential equations under conditional shift with DeepONet. CoRR abs/2204.09810 (2022) - [i7]Somayajulu L. N. Dhulipala, Yifeng Che, Michael D. Shields:
Bayesian Inference with Latent Hamiltonian Neural Networks. CoRR abs/2208.06120 (2022) - [i6]Somayajulu L. N. Dhulipala, Yifeng Che, Michael D. Shields:
Physics-Informed Machine Learning of Dynamical Systems for Efficient Bayesian Inference. CoRR abs/2209.09349 (2022) - [i5]Promit Chakroborty, Somayajulu L. N. Dhulipala, Yifeng Che, Wen Jiang, Benjamin W. Spencer, Jason D. Hales, Michael D. Shields:
General multi-fidelity surrogate models: Framework and active learning strategies for efficient rare event simulation. CoRR abs/2212.03375 (2022) - 2021
- [i4]Somayajulu L. N. Dhulipala, Michael D. Shields, Benjamin W. Spencer, Chandrakanth Bolisetti, Andrew E. Slaughter, Vincent M. Laboure, Promit Chakroborty:
Active Learning with Multifidelity Modeling for Efficient Rare Event Simulation. CoRR abs/2106.13790 (2021) - [i3]Katiana Kontolati, Dimitrios Loukrezis, Ketson R. M. dos Santos, Dimitrios G. Giovanis, Michael D. Shields:
Manifold learning-based polynomial chaos expansions for high-dimensional surrogate models. CoRR abs/2107.09814 (2021) - 2020
- [j9]Jiaxin Zhang, Michael D. Shields:
On the quantification and efficient propagation of imprecise probabilities with copula dependence. Int. J. Approx. Reason. 122: 24-46 (2020) - [j8]Audrey Olivier, Dimitris G. Giovanis, B. S. Aakash, Mohit Chauhan, Lohit Vandanapu, Michael D. Shields:
UQpy: A general purpose Python package and development environment for uncertainty quantification. J. Comput. Sci. 47: 101204 (2020) - [i2]Dimitris G. Giovanis, Michael D. Shields:
Data-driven surrogates for high dimensional models using Gaussian process regression on the Grassmann manifold. CoRR abs/2003.11910 (2020) - [i1]K. R. M. dos Santos, Dimitris G. Giovanis, Michael D. Shields:
Grassmannian diffusion maps based dimension reduction and classification for high-dimensional data. CoRR abs/2009.07547 (2020)
2010 – 2019
- 2019
- [j7]Susanna Gallani, Ranjani Krishnan, Eric J. Marinich, Michael D. Shields:
Budgeting, Psychological Contracts, and Budgetary Misreporting. Manag. Sci. 65(6): 2924-2945 (2019) - [c1]B. S. Aakash, D. Perez-Roldan, A. Ibrahim, Michael D. Shields:
Uncertainty quantification (UQ) as an archetype for research: Integrating UQ into undergraduate research education. FIE 2019: 1-5 - 2018
- [j6]Dimitris G. Giovanis, Michael D. Shields:
Uncertainty quantification for complex systems with very high dimensional response using Grassmann manifold variations. J. Comput. Phys. 364: 393-415 (2018) - [j5]Anindya Bhaduri, Yanyan He, Michael D. Shields, Lori Graham-Brady, Robert M. Kirby:
Stochastic collocation approach with adaptive mesh refinement for parametric uncertainty analysis. J. Comput. Phys. 371: 732-750 (2018) - [j4]Michael D. Shields:
Adaptive Monte Carlo analysis for strongly nonlinear stochastic systems. Reliab. Eng. Syst. Saf. 175: 207-224 (2018) - 2016
- [j3]Michael D. Shields, Jiaxin Zhang:
The generalization of Latin hypercube sampling. Reliab. Eng. Syst. Saf. 148: 96-108 (2016) - 2015
- [j2]Michael D. Shields, Kirubel Teferra, Adam Hapij, Raymond P. Daddazio:
Refined Stratified Sampling for efficient Monte Carlo based uncertainty quantification. Reliab. Eng. Syst. Saf. 142: 310-325 (2015) - 2014
- [j1]Kirubel Teferra, Michael D. Shields, Adam Hapij, Raymond P. Daddazio:
Mapping model validation metrics to subject matter expert scores for model adequacy assessment. Reliab. Eng. Syst. Saf. 132: 9-19 (2014)
Coauthor Index
aka: Dimitrios G. Giovanis
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-16 20:33 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint