default search action
Michael Dinitz
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j15]Michael Dinitz, Jeremy T. Fineman, Seth Gilbert, Calvin Newport:
Smoothed Analysis of Information Spreading in Dynamic Networks. J. ACM 71(3): 17 (2024) - [c64]Michael Dinitz, Guy Kortsarz, Shi Li:
Degrees and Network Design: New Problems and Approximations. APPROX/RANDOM 2024: 3:1-3:17 - [c63]Wenkai Dai, Michael Dinitz, Klaus-Tycho Foerster, Long Luo, Stefan Schmid:
Approximation Algorithms for Minimizing Congestion in Demand-Aware Networks. INFOCOM 2024: 1461-1470 - [c62]Michael Dinitz, Sungjin Im, Thomas Lavastida, Benjamin Moseley, Sergei Vassilvitskii:
Controlling Tail Risk in Online Ski-Rental. SODA 2024: 4247-4263 - [c61]Laxman Dhulipala, Michael Dinitz, Jakub Lacki, Slobodan Mitrovic:
Parallel Set Cover and Hypergraph Matching via Uniform Random Sampling. DISC 2024: 19:1-19:23 - [i46]Wenkai Dai, Michael Dinitz, Klaus-Tycho Foerster, Long Luo, Stefan Schmid:
Approximation Algorithms for Minimizing Congestion in Demand-Aware Networks. CoRR abs/2401.04638 (2024) - [i45]Rishi Chandra, Michael Dinitz, Chenglin Fan, Zongrui Zou:
Differentially Private Multiway and k-Cut. CoRR abs/2407.06911 (2024) - [i44]Laxman Dhulipala, Michael Dinitz, Jakub Lacki, Slobodan Mitrovic:
Parallel Set Cover and Hypergraph Matching via Uniform Random Sampling. CoRR abs/2408.13362 (2024) - [i43]Dmitrii Avdiukhin, Michael Dinitz, Chenglin Fan, Grigory Yaroslavtsev:
Noise is All You Need: Private Second-Order Convergence of Noisy SGD. CoRR abs/2410.06878 (2024) - 2023
- [c60]Greg Bodwin, Michael Dinitz, Yasamin Nazari:
Epic Fail: Emulators Can Tolerate Polynomially Many Edge Faults for Free. ITCS 2023: 20:1-20:22 - [c59]Michael Dinitz, Ama Koranteng, Guy Kortsarz, Zeev Nutov:
Improved Approximations for Relative Survivable Network Design. WAOA 2023: 190-204 - [i42]Michael Dinitz, Guy Kortsarz, Shi Li:
Degrees and Network Design: New Problems and Approximations. CoRR abs/2302.11475 (2023) - [i41]Michael Dinitz, Ama Koranteng, Guy Kortsarz, Zeev Nutov:
Improved Approximations for Relative Survivable Network Design. CoRR abs/2304.06656 (2023) - [i40]Michael Dinitz, Sungjin Im, Thomas Lavastida, Benjamin Moseley, Sergei Vassilvitskii:
Controlling Tail Risk in Online Ski-Rental. CoRR abs/2308.05067 (2023) - [i39]Michael Dinitz, Satyen Kale, Silvio Lattanzi, Sergei Vassilvitskii:
Improved Differentially Private Densest Subgraph: Local and Purely Additive. CoRR abs/2308.10316 (2023) - 2022
- [c58]Michael Dinitz, Aravind Srinivasan, Leonidas Tsepenekas, Anil Vullikanti:
Fair Disaster Containment via Graph-Cut Problems. AISTATS 2022: 6321-6333 - [c57]Amy E. Babay, Michael Dinitz, Aravind Srinivasan, Leonidas Tsepenekas, Anil Vullikanti:
Controlling Epidemic Spread using Probabilistic Diffusion Models on Networks. AISTATS 2022: 11641-11654 - [c56]Michael Dinitz, Ama Koranteng, Guy Kortsarz:
Relative Survivable Network Design. APPROX/RANDOM 2022: 41:1-41:19 - [c55]Greg Bodwin, Michael Dinitz, Yasamin Nazari:
Vertex Fault-Tolerant Emulators. ITCS 2022: 25:1-25:22 - [c54]Michael Dinitz, Sungjin Im, Thomas Lavastida, Benjamin Moseley, Sergei Vassilvitskii:
Algorithms with Prediction Portfolios. NeurIPS 2022 - [c53]Greg Bodwin, Michael Dinitz, Caleb Robelle:
Partially Optimal Edge Fault-Tolerant Spanners. SODA 2022: 3272-3286 - [c52]Michael Dinitz, Jeremy T. Fineman, Seth Gilbert, Calvin Newport:
Smoothed Analysis of Information Spreading in Dynamic Networks. DISC 2022: 18:1-18:22 - [c51]Wenkai Dai, Michael Dinitz, Klaus-Tycho Foerster, Stefan Schmid:
Brief Announcement: Minimizing Congestion in Hybrid Demand-Aware Network Topologies. DISC 2022: 42:1-42:3 - [i38]Amy Babay, Michael Dinitz, Aravind Srinivasan, Leonidas Tsepenekas, Anil Vullikanti:
Controlling Epidemic Spread using Probabilistic Diffusion Models on Networks. CoRR abs/2202.08296 (2022) - [i37]Michael Dinitz, Ama Koranteng, Guy Kortsarz:
Relative Survivable Network Design. CoRR abs/2206.12245 (2022) - [i36]Michael Dinitz, Jeremy T. Fineman, Seth Gilbert, Calvin Newport:
Smoothed Analysis of Information Spreading in Dynamic Networks. CoRR abs/2208.05998 (2022) - [i35]Greg Bodwin, Michael Dinitz, Yasamin Nazari:
Epic Fail: Emulators can tolerate polynomially many edge faults for free. CoRR abs/2209.03675 (2022) - [i34]Michael Dinitz, Sungjin Im, Thomas Lavastida, Benjamin Moseley, Sergei Vassilvitskii:
Algorithms with Prediction Portfolios. CoRR abs/2210.12438 (2022) - 2021
- [c50]Michael Dinitz, Sungjin Im, Thomas Lavastida, Benjamin Moseley, Sergei Vassilvitskii:
Faster Matchings via Learned Duals. NeurIPS 2021: 10393-10406 - [c49]Greg Bodwin, Michael Dinitz, Caleb Robelle:
Optimal Vertex Fault-Tolerant Spanners in Polynomial Time. SODA 2021: 2924-2938 - [i33]Greg Bodwin, Michael Dinitz, Caleb Robelle:
Partially Optimal Edge Fault-Tolerant Spanners. CoRR abs/2102.11360 (2021) - [i32]Amy Babay, Michael Dinitz, Prathyush Sambaturu, Aravind Srinivasan, Leonidas Tsepenekas, Anil Vullikanti:
Fair Disaster Containment via Graph-Cut Problems. CoRR abs/2106.05424 (2021) - [i31]Michael Dinitz, Sungjin Im, Thomas Lavastida, Benjamin Moseley, Sergei Vassilvitskii:
Faster Matchings via Learned Duals. CoRR abs/2107.09770 (2021) - [i30]Greg Bodwin, Michael Dinitz, Yasamin Nazari:
Vertex Fault-Tolerant Emulators. CoRR abs/2109.08042 (2021) - 2020
- [j14]Michael Dinitz, Michael Schapira, Gal Shahaf:
Approximate Moore Graphs are good expanders. J. Comb. Theory B 141: 240-263 (2020) - [j13]Eden Chlamtác, Michael Dinitz, Guy Kortsarz, Bundit Laekhanukit:
Approximating Spanners and Directed Steiner Forest: Upper and Lower Bounds. ACM Trans. Algorithms 16(3): 33:1-33:31 (2020) - [c48]Michael Dinitz, Benjamin Moseley:
Scheduling for Weighted Flow and Completion Times in Reconfigurable Networks. INFOCOM 2020: 1043-1052 - [c47]Michael Dinitz, Caleb Robelle:
Efficient and Simple Algorithms for Fault-Tolerant Spanners. PODC 2020: 493-500 - [c46]Michael Dinitz, Yasamin Nazari, Zeyu Zhang:
Lasserre Integrality Gaps for Graph Spanners and Related Problems. WAOA 2020: 97-112 - [i29]Michael Dinitz, Benjamin Moseley:
Scheduling for Weighted Flow and Completion Times in Reconfigurable Networks. CoRR abs/2001.07784 (2020) - [i28]Michael Dinitz, Caleb Robelle:
Efficient and Simple Algorithms for Fault Tolerant Spanners. CoRR abs/2002.10889 (2020) - [i27]Greg Bodwin, Michael Dinitz, Caleb Robelle:
Optimal Vertex Fault-Tolerant Spanners in Polynomial Time. CoRR abs/2007.08401 (2020)
2010 – 2019
- 2019
- [c45]Michael Dinitz, Naomi Ephraim:
Reception Capacity: Definitions, Game Theory and Hardness. ALGOSENSORS 2019: 96-115 - [c44]Eden Chlamtác, Michael Dinitz, Thomas Robinson:
Approximating the Norms of Graph Spanners. APPROX-RANDOM 2019: 11:1-11:22 - [c43]Eden Chlamtác, Michael Dinitz, Thomas Robinson:
The Norms of Graph Spanners. ICALP 2019: 40:1-40:15 - [c42]Michael Dinitz, Yasamin Nazari:
Massively Parallel Approximate Distance Sketches. OPODIS 2019: 35:1-35:17 - [c41]Michael Dinitz, Magnús M. Halldórsson, Taisuke Izumi, Calvin Newport:
Distributed Minimum Degree Spanning Trees. PODC 2019: 511-520 - [c40]Michael Dinitz, Magnús M. Halldórsson, Calvin Newport, Alex Weaver:
The Capacity of Smartphone Peer-To-Peer Networks. DISC 2019: 14:1-14:17 - [c39]Michael Dinitz, Yasamin Nazari:
Brief Announcement: Massively Parallel Approximate Distance Sketches. DISC 2019: 42:1-42:3 - [i26]Eden Chlamtác, Michael Dinitz, Thomas Robinson:
The Norms of Graph Spanners. CoRR abs/1903.07418 (2019) - [i25]Michael Dinitz, Yasamin Nazari, Zeyu Zhang:
Lasserre Integrality Gaps for Graph Spanners and Related Problems. CoRR abs/1905.07468 (2019) - [i24]Michael Dinitz, Magnús M. Halldórsson, Calvin Newport, Alex Weaver:
The Capacity of Smartphone Peer-to-Peer Networks. CoRR abs/1908.01894 (2019) - 2018
- [j12]Michael Dinitz, Jeremy T. Fineman, Seth Gilbert, Calvin Newport:
Smoothed analysis of dynamic networks. Distributed Comput. 31(4): 273-287 (2018) - [j11]Eden Chlamtác, Michael Dinitz, Christian Konrad, Guy Kortsarz, George Rabanca:
The Densest k-Subhypergraph Problem. SIAM J. Discret. Math. 32(2): 1458-1477 (2018) - [c38]Michael Dinitz, Michael Schapira, Gal Shahaf:
Large Low-Diameter Graphs are Good Expanders. ESA 2018: 71:1-71:15 - [c37]Amy Babay, Michael Dinitz, Zeyu Zhang:
Characterizing Demand Graphs for (Fixed-Parameter) Shallow-Light Steiner Network. FSTTCS 2018: 33:1-33:22 - [c36]Amy Babay, Michael Dinitz, Zeyu Zhang:
Brief Announcement: Characterizing Demand Graphs for (Fixed-Parameter) Shallow-Light Steiner Network. ICALP 2018: 104:1-104:4 - [c35]Raman Arora, Michael Dinitz, Teodor Vanislavov Marinov, Mehryar Mohri:
Policy Regret in Repeated Games. NeurIPS 2018: 6733-6742 - [c34]Greg Bodwin, Michael Dinitz, Merav Parter, Virginia Vassilevska Williams:
Optimal Vertex Fault Tolerant Spanners (for fixed stretch). SODA 2018: 1884-1900 - [i23]Amy Babay, Michael Dinitz, Zeyu Zhang:
Characterizing Demand Graphs for (Fixed-Parameter) Shallow-Light Steiner Network. CoRR abs/1802.10566 (2018) - [i22]Michael Dinitz, Magnús M. Halldórsson, Calvin Newport:
Distributed Algorithms for Minimum Degree Spanning Trees. CoRR abs/1806.03365 (2018) - [i21]Michael Dinitz, Yasamin Nazari:
Distributed Approximate Distance Oracles. CoRR abs/1810.09027 (2018) - [i20]Raman Arora, Michael Dinitz, Teodor V. Marinov, Mehryar Mohri:
Policy Regret in Repeated Games. CoRR abs/1811.04127 (2018) - 2017
- [j10]Michael Dinitz, Michael Schapira, Asaf Valadarsky:
Explicit Expanding Expanders. Algorithmica 78(4): 1225-1245 (2017) - [j9]Michael Dinitz, Guy Kortsarz, Zeev Nutov:
Improved Approximation Algorithm for Steiner k-Forest with Nearly Uniform Weights. ACM Trans. Algorithms 13(3): 40:1-40:16 (2017) - [c33]Amy Babay, Emily Wagner, Michael Dinitz, Yair Amir:
Timely, Reliable, and Cost-Effective Internet Transport Service Using Dissemination Graphs. ICDCS 2017: 1-12 - [c32]Michael Dinitz, Jeremy T. Fineman, Seth Gilbert, Calvin Newport:
Load balancing with bounded convergence in dynamic networks. INFOCOM 2017: 1-9 - [c31]Michael Dinitz, Zeyu Zhang:
Approximating Approximate Distance Oracles. ITCS 2017: 52:1-52:14 - [c30]Michael Dinitz, Yasamin Nazari:
Distributed Distance-Bounded Network Design Through Distributed Convex Programming. OPODIS 2017: 5:1-5:19 - [c29]Eden Chlamtác, Michael Dinitz, Guy Kortsarz, Bundit Laekhanukit:
Approximating Spanners and Directed Steiner Forest: Upper and Lower Bounds. SODA 2017: 534-553 - [c28]Eden Chlamtác, Michael Dinitz, Yury Makarychev:
Minimizing the Union: Tight Approximations for Small Set Bipartite Vertex Expansion. SODA 2017: 881-899 - [i19]Michael Dinitz, Naomi Ephraim:
Multicast Capacity Through Perfect Domination. CoRR abs/1702.03978 (2017) - [i18]Michael Dinitz, Yasamin Nazari:
Approximating k-spanners in the LOCAL model. CoRR abs/1703.07417 (2017) - [i17]Greg Bodwin, Michael Dinitz, Merav Parter, Virginia Vassilevska Williams:
Optimal Vertex Fault Tolerant Spanners (for fixed stretch). CoRR abs/1710.03164 (2017) - 2016
- [j8]Michael Dinitz, Guy Kortsarz, Ran Raz:
Label Cover Instances with Large Girth and the Hardness of Approximating Basic k-Spanner. ACM Trans. Algorithms 12(2): 25:1-25:16 (2016) - [j7]Eden Chlamtác, Michael Dinitz:
Lowest-Degree k-Spanner: Approximation and Hardness. Theory Comput. 12(1): 1-29 (2016) - [c27]Amitabh Basu, Michael Dinitz, Xin Li:
Computing Approximate PSD Factorizations. APPROX-RANDOM 2016: 2:1-2:12 - [c26]Eden Chlamtác, Michael Dinitz, Christian Konrad, Guy Kortsarz, George Rabanca:
The Densest k-Subhypergraph Problem. APPROX-RANDOM 2016: 6:1-6:19 - [c25]Asaf Valadarsky, Gal Shahaf, Michael Dinitz, Michael Schapira:
Xpander: Towards Optimal-Performance Datacenters. CoNEXT 2016: 205-219 - [c24]Michael Dinitz, Zeyu Zhang:
Approximating Low-Stretch Spanners. SODA 2016: 821-840 - [i16]Amitabh Basu, Michael Dinitz, Xin Li:
Computing approximate PSD factorizations. CoRR abs/1602.07351 (2016) - [i15]Eden Chlamtác, Michael Dinitz, Christian Konrad, Guy Kortsarz, George Rabanca:
The Densest k-Subhypergraph Problem. CoRR abs/1605.04284 (2016) - [i14]Eden Chlamtác, Michael Dinitz, Guy Kortsarz, Bundit Laekhanukit:
Approximating Spanners and Directed Steiner Forest: Upper and Lower Bounds. CoRR abs/1607.06068 (2016) - [i13]Eden Chlamtác, Michael Dinitz, Yury Makarychev:
Minimizing the Union: Tight Approximations for Small Set Bipartite Vertex Expansion. CoRR abs/1611.07866 (2016) - [i12]Michael Dinitz, Zeyu Zhang:
Approximating Approximate Distance Oracles. CoRR abs/1612.05623 (2016) - 2015
- [j6]Atish Das Sarma, Michael Dinitz, Gopal Pandurangan:
Efficient distributed computation of distance sketches in networks. Distributed Comput. 28(5): 309-320 (2015) - [j5]Michael Dinitz, Torsten Hoefler:
Introduction to the Special Issue on SPAA 2013. ACM Trans. Parallel Comput. 2(3): 14e:1-14e:2 (2015) - [c23]Michael Dinitz, Robert Krauthgamer, Tal Wagner:
Towards Resistance Sparsifiers. APPROX-RANDOM 2015: 738-755 - [c22]Michael Dinitz, Michael Schapira, Asaf Valadarsky:
Explicit Expanding Expanders. ESA 2015: 399-410 - [c21]Asaf Valadarsky, Michael Dinitz, Michael Schapira:
Xpander: Unveiling the Secrets of High-Performance Datacenters. HotNets 2015: 16:1-16:7 - [c20]Michael Dinitz, Jeremy T. Fineman, Seth Gilbert, Calvin C. Newport:
Smoothed Analysis of Dynamic Networks. DISC 2015: 513-527 - [i11]Michael Dinitz, Robert Krauthgamer, Tal Wagner:
Towards Resistance Sparsifiers. CoRR abs/1506.07568 (2015) - [i10]Michael Dinitz, Michael Schapira, Asaf Valadarsky:
Explicit Expanding Expanders. CoRR abs/1507.01196 (2015) - [i9]Michael Dinitz, Jeremy T. Fineman, Seth Gilbert, Calvin Newport:
Smoothed Analysis of Dynamic Networks. CoRR abs/1508.03579 (2015) - 2014
- [j4]Michael Dinitz, Guy Kortsarz:
Matroid Secretary for Regular and Decomposable Matroids. SIAM J. Comput. 43(5): 1807-1830 (2014) - [c19]Eden Chlamtác, Michael Dinitz:
Lowest Degree k-Spanner: Approximation and Hardness. APPROX-RANDOM 2014: 80-95 - [c18]Michael Dinitz, Guy Kortsarz, Zeev Nutov:
Improved Approximation Algorithm for Steiner k-Forest with Nearly Uniform Weights. APPROX-RANDOM 2014: 115-127 - 2013
- [j3]Michael Dinitz:
Recent advances on the matroid secretary problem. SIGACT News 44(2): 126-142 (2013) - [c17]Michael Dinitz, Anupam Gupta:
Packing Interdiction and Partial Covering Problems. IPCO 2013: 157-168 - [c16]Michael Dinitz, Guy Kortsarz:
Matroid Secretary for Regular and Decomposable Matroids. SODA 2013: 108-117 - [c15]Michael Dinitz, Merav Parter:
Braess's Paradox in Wireless Networks: The Danger of Improved Technology. DISC 2013: 477-491 - [i8]Michael Dinitz, Merav Parter:
Braess's Paradox in Wireless Networks: The Danger of Improved Technology. CoRR abs/1308.0173 (2013) - 2012
- [c14]Michael Dinitz, Gordon T. Wilfong:
iBGP and Constrained Connectivity. APPROX-RANDOM 2012: 122-133 - [c13]Eden Chlamtac, Michael Dinitz, Robert Krauthgamer:
Everywhere-Sparse Spanners via Dense Subgraphs. FOCS 2012: 758-767 - [c12]Michael Dinitz, Guy Kortsarz, Ran Raz:
Label Cover Instances with Large Girth and the Hardness of Approximating Basic k-Spanner. ICALP (1) 2012: 290-301 - [c11]Atish Das Sarma, Michael Dinitz, Gopal Pandurangan:
Efficient computation of distance sketches in distributed networks. SPAA 2012: 318-326 - [i7]Michael Dinitz, Guy Kortsarz, Ran Raz:
Label Cover instances with large girth and the hardness of approximating basic k-spanner. CoRR abs/1203.0224 (2012) - [i6]Eden Chlamtac, Michael Dinitz, Robert Krauthgamer:
Everywhere-Sparse Spanners via Dense Subgraphs. CoRR abs/1205.0144 (2012) - [i5]Michael Dinitz, Guy Kortsarz:
Matroid Secretary for Regular and Decomposable Matroids. CoRR abs/1207.5146 (2012) - 2011
- [c10]Michael Dinitz, Robert Krauthgamer:
Fault-tolerant spanners: better and simpler. PODC 2011: 169-178 - [c9]Michael Dinitz, Robert Krauthgamer:
Directed spanners via flow-based linear programs. STOC 2011: 323-332 - [i4]Michael Dinitz, Robert Krauthgamer:
Fault-Tolerant Spanners: Better and Simpler. CoRR abs/1101.5753 (2011) - [i3]Michael Dinitz, Gordon T. Wilfong:
iBGP and Constrained Connectivity. CoRR abs/1107.2299 (2011) - [i2]Atish Das Sarma, Michael Dinitz, Gopal Pandurangan:
Efficient Computation of Distance Sketches in Distributed Networks. CoRR abs/1112.1210 (2011) - 2010
- [b1]Michael Dinitz:
Algorithms and Models for Problems in Networking. Carnegie Mellon University, USA, 2010 - [j2]Michael Dinitz, Jonah M. Gold, Thomas C. Sharkey, Lorenzo Traldi:
Graphical representations of clutters. Ars Comb. 94 (2010) - [c8]Michael Dinitz:
Distributed Algorithms for Approximating Wireless Network Capacity. INFOCOM 2010: 1397-1405 - [i1]Michael Dinitz, Robert Krauthgamer:
Directed Spanners via Flow-Based Linear Programs. CoRR abs/1011.3701 (2010)
2000 – 2009
- 2009
- [c7]Matthew Andrews, Michael Dinitz:
Maximizing Capacity in Arbitrary Wireless Networks in the SINR Model: Complexity and Game Theory. INFOCOM 2009: 1332-1340 - [c6]Michael Dinitz:
Brief announcement: distributed algorithms for approximating wireless network capacity. PODC 2009: 328-329 - [c5]Moshe Babaioff, Michael Dinitz, Anupam Gupta, Nicole Immorlica, Kunal Talwar:
Secretary problems: weights and discounts. SODA 2009: 1245-1254 - 2008
- [c4]Michael Dinitz:
Online and dynamic embeddings of approximate ultrametrics. PODC 2008: 416 - [c3]Michael Dinitz:
Online, Dynamic, and Distributed Embeddings of Approximate Ultrametrics. DISC 2008: 152-166 - 2007
- [c2]Michael Dinitz:
Compact routing with slack. PODC 2007: 81-88 - 2006
- [j1]Michael Dinitz:
Full Rank Tilings of Finite Abelian Groups. SIAM J. Discret. Math. 20(1): 160-170 (2006) - [c1]T.-H. Hubert Chan, Michael Dinitz, Anupam Gupta:
Spanners with Slack. ESA 2006: 196-207
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-20 20:58 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint