default search action
Ke Tang 0001
Person information
- affiliation: Southern University of Science and Technology, Shenzhen China
- affiliation (former): University of Science and Technology of China, School of Computer Science and Technology, China
- affiliation (former): Nanyang Technological University, Singapore
Other persons with the same name
- Ke Tang — disambiguation page
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j125]Yayu Zhang, Yuhua Qian, Guoshuai Ma, Xinyan Liang, Guoqing Liu, Qingfu Zhang, Ke Tang:
ESSR: Evolving Sparse Sharing Representation for Multitask Learning. IEEE Trans. Evol. Comput. 28(3): 748-762 (2024) - [j124]Tong Guo, Yi Mei, Ke Tang, Wenbo Du:
A Knee-Guided Evolutionary Algorithm for Multi-Objective Air Traffic Flow Management. IEEE Trans. Evol. Comput. 28(4): 994-1008 (2024) - [j123]Tong Guo, Yi Mei, Ke Tang, Wenbo Du:
Cooperative Co-Evolution for Large-Scale Multiobjective Air Traffic Flow Management. IEEE Trans. Evol. Comput. 28(6): 1644-1658 (2024) - [j122]Shengcai Liu, Ning Lu, Wenjing Hong, Chao Qian, Ke Tang:
Effective and Imperceptible Adversarial Textual Attack Via Multi-objectivization. ACM Trans. Evol. Learn. Optim. 4(3): 16:1-16:23 (2024) - [j121]Ning Lu, Shengcai Liu, Rui He, Yew-Soon Ong, Qi Wang, Ke Tang:
Large Language Models can be Guided to Evade AI-generated Text Detection. Trans. Mach. Learn. Res. 2024 (2024) - [j120]Guiying Li, Peng Yang, Chao Qian, Richang Hong, Ke Tang:
Stage-Wise Magnitude-Based Pruning for Recurrent Neural Networks. IEEE Trans. Neural Networks Learn. Syst. 35(2): 1666-1680 (2024) - [j119]Zhiyao Zhang, Yong Wang, Jiao Liu, Guangyong Sun, Ke Tang:
A Two-Phase Kriging-Assisted Evolutionary Algorithm for Expensive Constrained Multiobjective Optimization Problems. IEEE Trans. Syst. Man Cybern. Syst. 54(8): 4579-4591 (2024) - [j118]Ming Chen, Yonghao Du, Ke Tang, Lining Xing, Yuning Chen, Yingwu Chen:
Learning to Construct a Solution for the Agile Satellite Scheduling Problem With Time-Dependent Transition Times. IEEE Trans. Syst. Man Cybern. Syst. 54(10): 5949-5963 (2024) - [c121]Wenjing Hong, Cheng Chen, Zexuan Zhu, Ke Tang:
An Elite Archive-Assisted Multi-Objective Evolutionary Algorithm for mRNA Design. CEC 2024: 1-8 - [c120]Shengcai Liu, Caishun Chen, Xinghua Qu, Ke Tang, Yew-Soon Ong:
Large Language Models as Evolutionary Optimizers. CEC 2024: 1-8 - [c119]Hui Ouyang, Cheng Chen, Ke Tang:
Divide-and-Conquer Strategy for Large-Scale Dynamic Bayesian Network Structure Learning. Intelligent Information Processing (1) 2024: 63-78 - [i69]Tianyu Zhang, Chengbin Hou, Rui Jiang, Xuegong Zhang, Chenghu Zhou, Ke Tang, Hairong Lv:
Label Informed Contrastive Pretraining for Node Importance Estimation on Knowledge Graphs. CoRR abs/2402.17791 (2024) - [i68]Yongfan Lu, Zixiang Di, Bingdong Li, Shengcai Liu, Hong Qian, Peng Yang, Ke Tang, Aimin Zhou:
Towards Geometry-Aware Pareto Set Learning for Neural Multi-Objective Combinatorial Optimization. CoRR abs/2405.08604 (2024) - [i67]Bingdong Li, Zixiang Di, Yongfan Lu, Hong Qian, Feng Wang, Peng Yang, Ke Tang, Aimin Zhou:
Expensive Multi-Objective Bayesian Optimization Based on Diffusion Models. CoRR abs/2405.08674 (2024) - [i66]Shengcai Liu, Zhiyuan Wang, Yew-Soon Ong, Xin Yao, Ke Tang:
Learning Mixture-of-Experts for General-Purpose Black-Box Discrete Optimization. CoRR abs/2405.18884 (2024) - [i65]Bingdong Li, Zixiang Di, Yanting Yang, Hong Qian, Peng Yang, Hao Hao, Ke Tang, Aimin Zhou:
It's Morphing Time: Unleashing the Potential of Multiple LLMs via Multi-objective Optimization. CoRR abs/2407.00487 (2024) - [i64]Jiahao Wu, Ning Lu, Zeiyu Dai, Wenqi Fan, Shengcai Liu, Qing Li, Ke Tang:
Backdoor Graph Condensation. CoRR abs/2407.11025 (2024) - [i63]Wenhao Mao, Chengbin Hou, Tianyu Zhang, Xinyu Lin, Ke Tang, Hairong Lv:
Parse Trees Guided LLM Prompt Compression. CoRR abs/2409.15395 (2024) - 2023
- [j117]Shengcai Liu, Yu Zhang, Ke Tang, Xin Yao:
How Good is Neural Combinatorial Optimization? A Systematic Evaluation on the Traveling Salesman Problem. IEEE Comput. Intell. Mag. 18(3): 14-28 (2023) - [j116]Biyue Li, Tong Guo, Yi Mei, Yumeng Li, Jun Chen, Yu Zhang, Ke Tang, Wenbo Du:
A multi-objective memetic algorithm with adaptive local search for airspace complexity mitigation. Swarm Evol. Comput. 83: 101400 (2023) - [j115]Wenjie Chen, Wenjing Hong, Hu Zhang, Peng Yang, Ke Tang:
Multi-Fidelity Simulation Modeling for Discrete Event Simulation: An Optimization Perspective. IEEE Trans Autom. Sci. Eng. 20(2): 1156-1169 (2023) - [j114]Chao Qian, Dan-Xuan Liu, Chao Feng, Ke Tang:
Multi-objective evolutionary algorithms are generally good: Maximizing monotone submodular functions over sequences. Theor. Comput. Sci. 943: 241-266 (2023) - [j113]Peilan Xu, Wenjian Luo, Xin Lin, Yatong Chang, Ke Tang:
Difficulty and Contribution-Based Cooperative Coevolution for Large-Scale Optimization. IEEE Trans. Evol. Comput. 27(5): 1355-1369 (2023) - [j112]Rui He, Shengcai Liu, Shan He, Ke Tang:
Multi-Domain Active Learning: Literature Review and Comparative Study. IEEE Trans. Emerg. Top. Comput. Intell. 7(3): 791-804 (2023) - [j111]Zhenwei Zhang, Ke Chen, Ke Tang, Yuping Duan:
Fast Multi-Grid Methods for Minimizing Curvature Energies. IEEE Trans. Image Process. 32: 1716-1731 (2023) - [j110]Zeyu Dai, Shengcai Liu, Qing Li, Ke Tang:
Saliency Attack: Towards Imperceptible Black-box Adversarial Attack. ACM Trans. Intell. Syst. Technol. 14(3): 45:1-45:20 (2023) - [c118]Shengcai Liu, Fu Peng, Ke Tang:
Reliable Robustness Evaluation via Automatically Constructed Attack Ensembles. AAAI 2023: 8852-8860 - [c117]Shaofeng Zhang, Shengcai Liu, Ke Tang:
A Sample Reuse Strategy for Dynamic Influence Maximization Problem. BIC-TA (2) 2023: 107-120 - [c116]Donghui Zhao, Xiaofen Lu, Ke Tang:
An Adaptive Knowledge Transfer Strategy for Evolutionary Dynamic Multi-objective Optimization. BIC-TA (1) 2023: 185-199 - [c115]Rui He, Zeyu Dai, Shan He, Ke Tang:
Perturbation-Based Two-Stage Multi-Domain Active Learning. CIKM 2023: 3933-3937 - [c114]Rui He, Shengcai Liu, Jiahao Wu, Shan He, Ke Tang:
Multi-Domain Learning from Insufficient Annotations. ECAI 2023: 1028-1035 - [i62]Lan Tang, Xiaxi Li, Jinyuan Zhang, Guiying Li, Peng Yang, Ke Tang:
Enabling surrogate-assisted evolutionary reinforcement learning via policy embedding. CoRR abs/2301.13374 (2023) - [i61]Ning Lu, Shengcai Liu, Zhirui Zhang, Qi Wang, Haifeng Liu, Ke Tang:
Less is More: Understanding Word-level Textual Adversarial Attack via n-gram Frequency Descend. CoRR abs/2302.02568 (2023) - [i60]Rui He, Shengcai Liu, Jiahao Wu, Shan He, Ke Tang:
Multi-Domain Learning From Insufficient Annotations. CoRR abs/2305.02757 (2023) - [i59]Ning Lu, Shengcai Liu, Rui He, Qi Wang, Ke Tang:
Large Language Models can be Guided to Evade AI-Generated Text Detection. CoRR abs/2305.10847 (2023) - [i58]Rui He, Zeyu Dai, Shan He, Ke Tang:
Perturbation-Based Two-Stage Multi-Domain Active Learning. CoRR abs/2306.10700 (2023) - [i57]Xuanfeng Li, Shengcai Liu, Jin Wang, Xiao Chen, Yew-Soon Ong, Ke Tang:
Data-Driven Chance-Constrained Multiple-Choice Knapsack Problem: Model, Algorithms, and Applications. CoRR abs/2306.14690 (2023) - [i56]Wenjie Chen, Shengcai Liu, Yew-Soon Ong, Ke Tang:
Neural Influence Estimator: Towards Real-time Solutions to Influence Blocking Maximization. CoRR abs/2308.14012 (2023) - [i55]Jiahao Wu, Wenqi Fan, Shengcai Liu, Qijiong Liu, Qing Li, Ke Tang:
Enhancing Graph Collaborative Filtering via Uniformly Co-Clustered Intent Modeling. CoRR abs/2309.12723 (2023) - [i54]Jiahao Wu, Wenqi Fan, Shengcai Liu, Qijiong Liu, Rui He, Qing Li, Ke Tang:
Dataset Condensation for Recommendation. CoRR abs/2310.01038 (2023) - [i53]Dan-Xuan Liu, Yu-Ran Gu, Chao Qian, Xin Mu, Ke Tang:
Migrant Resettlement by Evolutionary Multi-objective Optimization. CoRR abs/2310.08896 (2023) - [i52]Jiahao Wu, Qijiong Liu, Hengchang Hu, Wenqi Fan, Shengcai Liu, Qing Li, Xiao-Ming Wu, Ke Tang:
Leveraging Large Language Models (LLMs) to Empower Training-Free Dataset Condensation for Content-Based Recommendation. CoRR abs/2310.09874 (2023) - [i51]Shengcai Liu, Caishun Chen, Xinghua Qu, Ke Tang, Yew-Soon Ong:
Large Language Models as Evolutionary Optimizers. CoRR abs/2310.19046 (2023) - [i50]Shaofeng Zhang, Shengcai Liu, Ke Tang:
A Sample Reuse Strategy for Dynamic Influence Maximization Problem. CoRR abs/2311.15345 (2023) - [i49]Muyao Zhong, Shengcai Liu, Bingdong Li, Haobo Fu, Ke Tang, Peng Yang:
Pointer Networks Trained Better via Evolutionary Algorithms. CoRR abs/2312.01150 (2023) - [i48]Hui Ouyang, Cheng Chen, Ke Tang:
Divide-and-Conquer Strategy for Large-Scale Dynamic Bayesian Network Structure Learning. CoRR abs/2312.01739 (2023) - 2022
- [j109]Hongze Wang, Xuerong Li, Wenjing Hong, Ke Tang:
Multi-objective approaches to portfolio optimization with market impact costs. Memetic Comput. 14(4): 411-421 (2022) - [j108]Peng Yang, Hu Zhang, Yanglong Yu, Mingjia Li, Ke Tang:
Evolutionary reinforcement learning via cooperative coevolutionary negatively correlated search. Swarm Evol. Comput. 68: 100974 (2022) - [j107]Shengcai Liu, Ning Lu, Cheng Chen, Ke Tang:
Efficient Combinatorial Optimization for Word-Level Adversarial Textual Attack. IEEE ACM Trans. Audio Speech Lang. Process. 30: 98-111 (2022) - [j106]Shengcai Liu, Ke Tang, Xin Yao:
Generative Adversarial Construction of Parallel Portfolios. IEEE Trans. Cybern. 52(2): 784-795 (2022) - [j105]Tao Sun, Ke Tang, Dongsheng Li:
Gradient Descent Learning With Floats. IEEE Trans. Cybern. 52(3): 1763-1771 (2022) - [j104]Zhi-Zhong Liu, Bing-Chuan Wang, Ke Tang:
Handling Constrained Multiobjective Optimization Problems via Bidirectional Coevolution. IEEE Trans. Cybern. 52(10): 10163-10176 (2022) - [j103]Xiaofen Lu, Ke Tang, Stefan Menzel, Xin Yao:
Dynamic Optimization in Fast-Changing Environments via Offline Evolutionary Search. IEEE Trans. Evol. Comput. 26(3): 431-445 (2022) - [j102]Liang Feng, Yuxiao Huang, Ivor W. Tsang, Abhishek Gupta, Ke Tang, Kay Chen Tan, Yew-Soon Ong:
Towards Faster Vehicle Routing by Transferring Knowledge From Customer Representation. IEEE Trans. Intell. Transp. Syst. 23(2): 952-965 (2022) - [j101]Biyue Li, Wenbo Du, Yu Zhang, Jun Chen, Ke Tang, Xianbin Cao:
A Deep Unsupervised Learning Approach for Airspace Complexity Evaluation. IEEE Trans. Intell. Transp. Syst. 23(8): 11739-11751 (2022) - [j100]Chengbin Hou, Han Zhang, Shan He, Ke Tang:
GloDyNE: Global Topology Preserving Dynamic Network Embedding. IEEE Trans. Knowl. Data Eng. 34(10): 4826-4837 (2022) - [c113]Lan Tang, Xiaxi Li, Jinyuan Zhang, Guiying Li, Peng Yang, Ke Tang:
Enabling Surrogate-Assisted Evolutionary Reinforcement Learning via Policy Embedding. BIC-TA 2022: 233-247 - [c112]Jiahao Wu, Wenqi Fan, Jingfan Chen, Shengcai Liu, Qing Li, Ke Tang:
Disentangled Contrastive Learning for Social Recommendation. CIKM 2022: 4570-4574 - [c111]Wenjian Luo, Hongwei Zhang, Linghao Kong, Zhijian Chen, Ke Tang:
Defending Adversarial Examples by Negative Correlation Ensemble. DMBD (2) 2022: 424-438 - [c110]Chengbin Hou, Han Zhang, Shan He, Ke Tang:
GloDyNE: Global Topology Preserving Dynamic Network Embedding (Extended Abstract). ICDE 2022: 1545-1546 - [c109]Zhiyuan Wang, Cheng Chen, Ke Tang:
Zero-Shot Knowledge Graph Completion for Recommendation System. IDEAL 2022: 188-198 - [c108]Shaohui Peng, Xing Hu, Rui Zhang, Ke Tang, Jiaming Guo, Qi Yi, Ruizhi Chen, Xishan Zhang, Zidong Du, Ling Li, Qi Guo, Yunji Chen:
Causality-driven Hierarchical Structure Discovery for Reinforcement Learning. NeurIPS 2022 - [c107]Fu Peng, Shengcai Liu, Ning Lu, Ke Tang:
Training Quantized Deep Neural Networks via Cooperative Coevolution. ICSI (2) 2022: 81-93 - [i47]Dongbin Jiao, Lingyu Wang, Peng Yang, Weibo Yang, Yu Peng, Zhanhuan Shang, Ke Tang, Fengyuan Ren:
Near-Optimal Trajectory Design and Restoration Areas Allocation for UAV-Enabled Grassland Restoration. CoRR abs/2204.04666 (2022) - [i46]Zeyu Dai, Shengcai Liu, Ke Tang, Qing Li:
Saliency Attack: Towards Imperceptible Black-box Adversarial Attack. CoRR abs/2206.01898 (2022) - [i45]Wenjian Luo, Hongwei Zhang, Linghao Kong, Zhijian Chen, Ke Tang:
Defending Adversarial Examples by Negative Correlation Ensemble. CoRR abs/2206.10334 (2022) - [i44]Jiahao Wu, Wenqi Fan, Jingfan Chen, Shengcai Liu, Qing Li, Ke Tang:
Disentangled Contrastive Learning for Social Recommendation. CoRR abs/2208.08723 (2022) - [i43]Shengcai Liu, Yu Zhang, Ke Tang, Xin Yao:
How Good Is Neural Combinatorial Optimization? CoRR abs/2209.10913 (2022) - [i42]Shaohui Peng, Xing Hu, Rui Zhang, Ke Tang, Jiaming Guo, Qi Yi, Ruizhi Chen, Xishan Zhang, Zidong Du, Ling Li, Qi Guo, Yunji Chen:
Causality-driven Hierarchical Structure Discovery for Reinforcement Learning. CoRR abs/2210.06964 (2022) - [i41]Shengcai Liu, Fu Peng, Ke Tang:
Reliable Robustness Evaluation via Automatically Constructed Attack Ensembles. CoRR abs/2211.12713 (2022) - 2021
- [j99]Chao Qian, Chao Bian, Yang Yu, Ke Tang, Xin Yao:
Analysis of Noisy Evolutionary Optimization When Sampling Fails. Algorithmica 83(4): 940-975 (2021) - [j98]Chao Bian, Chao Qian, Yang Yu, Ke Tang:
On the robustness of median sampling in noisy evolutionary optimization. Sci. China Inf. Sci. 64(5) (2021) - [j97]Jialin Liu, Ke Tang, Xin Yao:
Robust Optimization in Uncertain Capacitated Arc Routing Problems: Progresses and Perspectives [Review Article]. IEEE Comput. Intell. Mag. 16(1): 63-82 (2021) - [j96]Peng Yang, Qi Yang, Ke Tang, Xin Yao:
Parallel exploration via negatively correlated search. Frontiers Comput. Sci. 15(5): 155333 (2021) - [j95]Wenjing Hong, Peng Yang, Ke Tang:
Evolutionary Computation for Large-scale Multi-objective Optimization: A Decade of Progresses. Int. J. Autom. Comput. 18(2): 155-169 (2021) - [j94]Yunwen Lei, Ting Hu, Ke Tang:
Generalization Performance of Multi-pass Stochastic Gradient Descent with Convex Loss Functions. J. Mach. Learn. Res. 22: 25:1-25:41 (2021) - [j93]Minshi Chen, Jianxun Chen, Peng Yang, Shengcai Liu, Ke Tang:
A heuristic repair method for dial-a-ride problem in intracity logistic based on neighborhood shrinking. Multim. Tools Appl. 80(20): 30775-30787 (2021) - [j92]Yunwen Lei, Ke Tang:
Learning Rates for Stochastic Gradient Descent With Nonconvex Objectives. IEEE Trans. Pattern Anal. Mach. Intell. 43(12): 4505-4511 (2021) - [j91]Zeyu Dai, Wei Fang, Ke Tang, Qing Li:
An optima-identified framework with brain storm optimization for multimodal optimization problems. Swarm Evol. Comput. 62: 100827 (2021) - [j90]Shengcai Liu, Ke Tang, Xin Yao:
Memetic search for vehicle routing with simultaneous pickup-delivery and time windows. Swarm Evol. Comput. 66: 100927 (2021) - [j89]Liang Feng, Yuxiao Huang, Lei Zhou, Jinghui Zhong, Abhishek Gupta, Ke Tang, Kay Chen Tan:
Explicit Evolutionary Multitasking for Combinatorial Optimization: A Case Study on Capacitated Vehicle Routing Problem. IEEE Trans. Cybern. 51(6): 3143-3156 (2021) - [j88]Wenjing Hong, Chao Qian, Ke Tang:
Efficient Minimum Cost Seed Selection With Theoretical Guarantees for Competitive Influence Maximization. IEEE Trans. Cybern. 51(12): 6091-6104 (2021) - [j87]Ke Tang, Shengcai Liu, Peng Yang, Xin Yao:
Few-Shots Parallel Algorithm Portfolio Construction via Co-Evolution. IEEE Trans. Evol. Comput. 25(3): 595-607 (2021) - [j86]Bo Yuan, Xiaofen Lu, Ke Tang, Xin Yao:
Cooperative Coevolution-based Design Space Exploration for Multi-mode Dataflow Mapping. ACM Trans. Embed. Comput. Syst. 20(3): 21:1-21:25 (2021) - [j85]Yu Zhang, Peter Tiño, Ales Leonardis, Ke Tang:
A Survey on Neural Network Interpretability. IEEE Trans. Emerg. Top. Comput. Intell. 5(5): 726-742 (2021) - [c106]Chang Cao, Xiaofen Lu, Yachen Li, Junda Zhu, Ke Tang:
The Performance Effect of Model Accuracy on Classification-Assisted Evolutionary Algorithms. CEC 2021: 1527-1536 - [c105]Chengbin Hou, Ke Tang:
Towards Robust Dynamic Network Embedding. IJCAI 2021: 4889-4890 - [c104]Qi Yang, Peng Yang, Ke Tang:
Parallel Random Embedding with Negatively Correlated Search. ICSI (2) 2021: 339-351 - [e5]Hujun Yin, David Camacho, Peter Tiño, Richard Allmendinger, Antonio J. Tallón-Ballesteros, Ke Tang, Sung-Bae Cho, Paulo Novais, Susana Nascimento:
Intelligent Data Engineering and Automated Learning - IDEAL 2021 - 22nd International Conference, IDEAL 2021, Manchester, UK, November 25-27, 2021, Proceedings. Lecture Notes in Computer Science 13113, Springer 2021, ISBN 978-3-030-91607-7 [contents] - [i40]Wenjie Chen, Shengcai Liu, Ke Tang:
A New Knowledge Gradient-based Method for Constrained Bayesian Optimization. CoRR abs/2101.08743 (2021) - [i39]Chao Qian, Dan-Xuan Liu, Chao Feng, Ke Tang:
Multi-objective Evolutionary Algorithms are Generally Good: Maximizing Monotone Submodular Functions over Sequences. CoRR abs/2104.09884 (2021) - [i38]Chengbin Hou, Guoji Fu, Peng Yang, Shan He, Ke Tang:
Robust Dynamic Network Embedding via Ensembles. CoRR abs/2105.14557 (2021) - [i37]Rui He, Shan He, Ke Tang:
Multi-Domain Active Learning: A Comparative Study. CoRR abs/2106.13516 (2021) - [i36]Shengcai Liu, Ning Lu, Cheng Chen, Ke Tang:
Efficient Combinatorial Optimization for Word-level Adversarial Textual Attack. CoRR abs/2109.02229 (2021) - [i35]Shengcai Liu, Ning Lu, Cheng Chen, Chao Qian, Ke Tang:
HydraText: Multi-objective Optimization for Adversarial Textual Attack. CoRR abs/2111.01528 (2021) - [i34]Fu Peng, Shengcai Liu, Ke Tang:
Training Quantized Deep Neural Networks via Cooperative Coevolution. CoRR abs/2112.14834 (2021) - 2020
- [j84]Ning Shi, Zexuan Zhu, Ke Tang, David Parker, Shan He:
ATEN: And/Or tree ensemble for inferring accurate Boolean network topology and dynamics. Bioinform. 36(2): 578-585 (2020) - [j83]Chengbin Hou, Shan He, Ke Tang:
RoSANE: Robust and scalable attributed network embedding for sparse networks. Neurocomputing 409: 231-243 (2020) - [j82]Dongbin Jiao, Peng Yang, Liqun Fu, Liangjun Ke, Ke Tang:
Optimal Energy-Delay Scheduling for Energy-Harvesting WSNs With Interference Channel via Negatively Correlated Search. IEEE Internet Things J. 7(3): 1690-1703 (2020) - [j81]Chao Bian, Chao Qian, Ke Tang, Yang Yu:
Running time analysis of the (1+1)-EA for robust linear optimization. Theor. Comput. Sci. 843: 57-72 (2020) - [j80]Feng Wang, Yixuan Li, Aimin Zhou, Ke Tang:
An Estimation of Distribution Algorithm for Mixed-Variable Newsvendor Problems. IEEE Trans. Evol. Comput. 24(3): 479-493 (2020) - [j79]Wenbo Du, Wen Ying, Peng Yang, Xianbin Cao, Gang Yan, Ke Tang, Dapeng Oliver Wu:
Network-Based Heterogeneous Particle Swarm Optimization and Its Application in UAV Communication Coverage. IEEE Trans. Emerg. Top. Comput. Intell. 4(3): 312-323 (2020) - [j78]Yunwen Lei, Ting Hu, Guiying Li, Ke Tang:
Stochastic Gradient Descent for Nonconvex Learning Without Bounded Gradient Assumptions. IEEE Trans. Neural Networks Learn. Syst. 31(10): 4394-4400 (2020) - [j77]Di Wu, Nan Jiang, Wenbo Du, Ke Tang, Xianbin Cao:
Particle Swarm Optimization with Moving Particles on Scale-Free Networks. IEEE Trans. Netw. Sci. Eng. 7(1): 497-506 (2020) - [c103]Shengcai Liu, Ke Tang, Yunwen Lei, Xin Yao:
On Performance Estimation in Automatic Algorithm Configuration. AAAI 2020: 2384-2391 - [c102]Wenjing Hong, Peng Yang, Yiwen Wang, Ke Tang:
Multi-objective Magnitude-Based Pruning for Latency-Aware Deep Neural Network Compression. PPSN (1) 2020: 470-483 - [c101]Xiaofen Lu, Ke Tang, Stefan Menzel, Xin Yao:
A Competitive Co-evolutionary optimization Method for the Dynamic Vehicle Routing Problem. SSCI 2020: 305-312 - [i33]Ke Tang, Shengcai Liu, Peng Yang, Xin Yao:
Few-shots Parameter Tuning via Co-evolution. CoRR abs/2007.00501 (2020) - [i32]Chengbin Hou, Han Zhang, Shan He, Ke Tang:
GloDyNE: Global Topology Preserving Dynamic Network Embedding. CoRR abs/2008.01935 (2020) - [i31]Hu Zhang, Peng Yang, Yanglong Yu, Mingjia Li, Ke Tang:
Evolutionary Reinforcement Learning via Cooperative Coevolutionary Negatively Correlated Search. CoRR abs/2009.03603 (2020) - [i30]Shengcai Liu, Ke Tang, Xin Yao:
Memetic Search for Vehicle Routing with Simultaneous Pickup-Delivery and Time Windows. CoRR abs/2011.06331 (2020) - [i29]Yu Zhang, Peter Tiño, Ales Leonardis, Ke Tang:
A Survey on Neural Network Interpretability. CoRR abs/2012.14261 (2020)
2010 – 2019
- 2019
- [j76]Peng Yang, Ke Tang, Xin Yao:
A Parallel Divide-and-Conquer-Based Evolutionary Algorithm for Large-Scale Optimization. IEEE Access 7: 163105-163118 (2019) - [j75]Chao Qian, Yang Yu, Ke Tang, Xin Yao, Zhi-Hua Zhou:
Maximizing submodular or monotone approximately submodular functions by multi-objective evolutionary algorithms. Artif. Intell. 275: 279-294 (2019) - [j74]Chao Qian, Chao Bian, Wu Jiang, Ke Tang:
Running Time Analysis of the ( $$1+1$$ 1 + 1 )-EA for OneMax and LeadingOnes Under Bit-Wise Noise. Algorithmica 81(2): 749-795 (2019) - [j73]José Antonio Lozano, Ke Tang, Xin Yao:
Preface. Nat. Comput. 18(2): 285-286 (2019) - [j72]Xiaofen Lu, Tao Sun, Ke Tang:
Evolutionary optimization with hierarchical surrogates. Swarm Evol. Comput. 47: 21-32 (2019) - [j71]Zhi-Zhong Liu, Yong Wang, Shengxiang Yang, Ke Tang:
An Adaptive Framework to Tune the Coordinate Systems in Nature-Inspired Optimization Algorithms. IEEE Trans. Cybern. 49(4): 1403-1416 (2019) - [j70]Xiaoliang Ma, Xiaodong Li, Qingfu Zhang, Ke Tang, Zhengping Liang, Weixin Xie, Zexuan Zhu:
A Survey on Cooperative Co-Evolutionary Algorithms. IEEE Trans. Evol. Comput. 23(3): 421-441 (2019) - [j69]Wenjing Hong, Ke Tang, Aimin Zhou, Hisao Ishibuchi, Xin Yao:
A Scalable Indicator-Based Evolutionary Algorithm for Large-Scale Multiobjective Optimization. IEEE Trans. Evol. Comput. 23(3): 525-537 (2019) - [j68]Xinle Liang, A. Kai Qin, Ke Tang, Kay Chen Tan:
QoS-Aware Web Service Selection with Internal Complementarity. IEEE Trans. Serv. Comput. 12(2): 276-289 (2019) - [c100]Shengcai Liu, Ke Tang, Xin Yao:
Automatic Construction of Parallel Portfolios via Explicit Instance Grouping. AAAI 2019: 1560-1567 - [c99]Chao Feng, Chao Qian, Ke Tang:
Unsupervised Feature Selection by Pareto Optimization. AAAI 2019: 3534-3541 - [c98]Weiming Liu, Yinda Zhou, Bin Li, Ke Tang:
Cooperative Co-evolution with Soft Grouping for Large Scale Global Optimization. CEC 2019: 318-325 - [c97]Dongbin Jiao, Peng Yang, Liqun Fu, Liangjun Ke, Ke Tang:
Optimal Energy-Delay Scheduling for Energy Harvesting WSNs via Negatively Correlated Search. ICC 2019: 1-7 - [c96]Yunwen Lei, Peng Yang, Ke Tang, Ding-Xuan Zhou:
Optimal Stochastic and Online Learning with Individual Iterates. NeurIPS 2019: 5416-5426 - [c95]Liangpeng Zhang, Ke Tang, Xin Yao:
Explicit Planning for Efficient Exploration in Reinforcement Learning. NeurIPS 2019: 7486-7495 - [i28]Yunwen Lei, Ting Hu, Ke Tang:
Stochastic Gradient Descent for Nonconvex Learning without Bounded Gradient Assumptions. CoRR abs/1902.00908 (2019) - [i27]Chao Bian, Chao Qian, Ke Tang:
Running Time Analysis of the (1+1)-EA for Robust Linear Optimization. CoRR abs/1906.06873 (2019) - [i26]Chengbin Hou, Han Zhang, Ke Tang, Shan He:
DynWalks: Global Topology and Recent Changes Awareness Dynamic Network Embedding. CoRR abs/1907.11968 (2019) - [i25]Xiaofen Lu, Ke Tang, Stefan Menzel, Xin Yao:
Competitive Co-evolution for Dynamic Constrained Optimisation. CoRR abs/1907.13529 (2019) - [i24]Peng Yang, Ke Tang, Xin Yao:
Negatively Correlated Search as a Parallel Exploration Search Strategy. CoRR abs/1910.07151 (2019) - [i23]Shengcai Liu, Ke Tang, Yunwen Lei, Xin Yao:
On Performance Estimation in Automatic Algorithm Configuration. CoRR abs/1911.08200 (2019) - 2018
- [j67]Wenbo Du, Mingyuan Zhang, Wen Ying, Matjaz Perc, Ke Tang, Xianbin Cao, Dapeng Wu:
The networked evolutionary algorithm: A network science perspective. Appl. Math. Comput. 338: 33-43 (2018) - [j66]Thomas Weise, Xiaofeng Wang, Qi Qi, Bin Li, Ke Tang:
Automatically discovering clusters of algorithm and problem instance behaviors as well as their causes from experimental data, algorithm setups, and instance features. Appl. Soft Comput. 73: 366-382 (2018) - [j65]Chao Qian, Yang Yu, Ke Tang, Yaochu Jin, Xin Yao, Zhi-Hua Zhou:
On the Effectiveness of Sampling for Evolutionary Optimization in Noisy Environments. Evol. Comput. 26(2) (2018) - [j64]Jinyuan Zhang, Aimin Zhou, Ke Tang, Guixu Zhang:
Preselection via classification: A case study on evolutionary multiobjective optimization. Inf. Sci. 465: 388-403 (2018) - [j63]Peng Yang, Ke Tang, Xin Yao:
Turning High-Dimensional Optimization Into Computationally Expensive Optimization. IEEE Trans. Evol. Comput. 22(1): 143-156 (2018) - [j62]Xiaofen Lu, Stefan Menzel, Ke Tang, Xin Yao:
Cooperative Co-Evolution-Based Design Optimization: A Concurrent Engineering Perspective. IEEE Trans. Evol. Comput. 22(2): 173-188 (2018) - [j61]Chao Qian, Jing-Cheng Shi, Ke Tang, Zhi-Hua Zhou:
Constrained Monotone k-Submodular Function Maximization Using Multiobjective Evolutionary Algorithms With Theoretical Guarantee. IEEE Trans. Evol. Comput. 22(4): 595-608 (2018) - [j60]Yu Sun, Ke Tang, Zexuan Zhu, Xin Yao:
Concept Drift Adaptation by Exploiting Historical Knowledge. IEEE Trans. Neural Networks Learn. Syst. 29(10): 4822-4832 (2018) - [c94]Chao Qian, Yibo Zhang, Ke Tang, Xin Yao:
On Multiset Selection With Size Constraints. AAAI 2018: 1395-1402 - [c93]Chao Qian, Chao Bian, Yang Yu, Ke Tang, Xin Yao:
Analysis of noisy evolutionary optimization when sampling fails. GECCO 2018: 1507-1514 - [c92]Mengxi Wu, Chao Qian, Ke Tang:
Dynamic Mutation Based Pareto Optimization for Subset Selection. ICIC (3) 2018: 25-35 - [c91]Wu Jiang, Chao Qian, Ke Tang:
Improved Running Time Analysis of the (1+1)-ES on the Sphere Function. ICIC (1) 2018: 729-739 - [c90]Chao Bian, Chao Qian, Ke Tang:
A General Approach to Running Time Analysis of Multi-objective Evolutionary Algorithms. IJCAI 2018: 1405-1411 - [c89]Chao Qian, Yang Yu, Ke Tang:
Approximation Guarantees of Stochastic Greedy Algorithms for Subset Selection. IJCAI 2018: 1478-1484 - [c88]Chao Qian, Chao Feng, Ke Tang:
Sequence Selection by Pareto Optimization. IJCAI 2018: 1485-1491 - [c87]Chao Qian, Guiying Li, Chao Feng, Ke Tang:
Distributed Pareto Optimization for Subset Selection. IJCAI 2018: 1492-1498 - [c86]Chunhui Jiang, Guiying Li, Chao Qian, Ke Tang:
Efficient DNN Neuron Pruning by Minimizing Layer-wise Nonlinear Reconstruction Error. IJCAI 2018: 2298-2304 - [c85]Yunwen Lei, Shao-Bo Lin, Ke Tang:
Generalization Bounds for Regularized Pairwise Learning. IJCAI 2018: 2376-2382 - [c84]Guiying Li, Chao Qian, Chunhui Jiang, Xiaofen Lu, Ke Tang:
Optimization based Layer-wise Magnitude-based Pruning for DNN Compression. IJCAI 2018: 2383-2389 - [c83]Yunwen Lei, Ke Tang:
Stochastic Composite Mirror Descent: Optimal Bounds with High Probabilities. NeurIPS 2018: 1526-1536 - [c82]Chao Bian, Chao Qian, Ke Tang:
Towards a Running Time Analysis of the (1+1)-EA for OneMax and LeadingOnes Under General Bit-Wise Noise. PPSN (2) 2018: 165-177 - [c81]Dongjun Qian, Peng Yang, Ke Tang:
A Fast Heuristic Path Computation Algorithm for the Batch Bandwidth Constrained Routing Problem in SDN. PRICAI (1) 2018: 490-502 - [i22]Shengcai Liu, Ke Tang, Xin Yao:
Automatic Construction of Parallel Portfolios via Explicit Instance Grouping. CoRR abs/1804.06088 (2018) - [i21]Chao Qian, Chao Bian, Yang Yu, Ke Tang, Xin Yao:
Analysis of Noisy Evolutionary Optimization When Sampling Fails. CoRR abs/1810.05045 (2018) - [i20]Yibo Zhang, Chao Qian, Ke Tang:
Maximizing Monotone DR-submodular Continuous Functions by Derivative-free Optimization. CoRR abs/1810.06833 (2018) - [i19]Chengbin Hou, Shan He, Ke Tang:
Attributed Network Embedding for Incomplete Structure Information. CoRR abs/1811.11728 (2018) - [i18]Peng Yang, Ke Tang, Xin Yao:
A Parallel Divide-and-Conquer based Evolutionary Algorithm for Large-scale Optimization. CoRR abs/1812.02500 (2018) - 2017
- [j59]Yuzhou Zhang, Yi Mei, Ke Tang, Keqin Jiang:
Memetic algorithm with route decomposing for periodic capacitated arc routing problem. Appl. Soft Comput. 52: 1130-1142 (2017) - [j58]He Jiang, Ke Tang, Justyna Petke, Mark Harman:
Search Based Software Engineering [Guest Editorial]. IEEE Comput. Intell. Mag. 12(2): 23-71 (2017) - [j57]Xingyi Zhang, Fuchen Duan, Lei Zhang, Fan Cheng, Yaochu Jin, Ke Tang:
Pattern Recommendation in Task-oriented Applications: A Multi-Objective Perspective [Application Notes]. IEEE Comput. Intell. Mag. 12(3): 43-53 (2017) - [j56]Jiaqi Zhao, Vitor Basto-Fernandes, Licheng Jiao, Iryna Yevseyeva, Asep Maulana, Rui Li, Thomas Bäck, Ke Tang, Michael T. M. Emmerich:
Corrigendum to 'Multiobjective optimization of classifiers by means of 3D convex-hull-based evolutionary algorithms' [Information Sciences volumes 367-368 (2016) 80-104]. Inf. Sci. 403: 55 (2017) - [j55]Xiao-Peng Ji, Xian-Bin Cao, Wenbo Du, Ke Tang:
An evolutionary approach for dynamic single-runway arrival sequencing and scheduling problem. Soft Comput. 21(23): 7021-7037 (2017) - [j54]Ke Tang, Juan Wang, Xiaodong Li, Xin Yao:
A Scalable Approach to Capacitated Arc Routing Problems Based on Hierarchical Decomposition. IEEE Trans. Cybern. 47(11): 3928-3940 (2017) - [j53]Kaiquan Cai, Jun Zhang, Ming-Ming Xiao, Ke Tang, Wenbo Du:
Simultaneous Optimization of Airspace Congestion and Flight Delay in Air Traffic Network Flow Management. IEEE Trans. Intell. Transp. Syst. 18(11): 3072-3082 (2017) - [j52]Jinhong Zhong, Peng Yang, Ke Tang:
A Quality-Sensitive Method for Learning from Crowds. IEEE Trans. Knowl. Data Eng. 29(12): 2643-2654 (2017) - [c80]Yunzhou Zhang, Bo Yuan, Ke Tang:
Enhanced Pairwise Learning for Personalized Ranking from Implicit Feedback. BIC-TA 2017: 580-595 - [c79]Chao Qian, Chao Bian, Wu Jiang, Ke Tang:
Running time analysis of the (1+1)-EA for onemax and leadingones under bit-wise noise. GECCO 2017: 1399-1406 - [c78]Chao Qian, Jing-Cheng Shi, Yang Yu, Ke Tang, Zhi-Hua Zhou:
Optimizing Ratio of Monotone Set Functions. IJCAI 2017: 2606-2612 - [c77]Chao Qian, Jing-Cheng Shi, Yang Yu, Ke Tang:
On Subset Selection with General Cost Constraints. IJCAI 2017: 2613-2619 - [c76]Ge Xie, Yu Sun, Minlong Lin, Ke Tang:
A Selective Transfer Learning Method for Concept Drift Adaptation. ISNN (2) 2017: 353-361 - [c75]Guiying Li, Junlong Liu, Chunhui Jiang, Liangpeng Zhang, Minlong Lin, Ke Tang:
Relief R-CNN: Utilizing Convolutional Features for Fast Object Detection. ISNN (1) 2017: 386-394 - [c74]Liangpeng Zhang, Ke Tang, Xin Yao:
Log-normality and Skewness of Estimated State/Action Values in Reinforcement Learning. NIPS 2017: 1804-1814 - [c73]Chao Qian, Jing-Cheng Shi, Yang Yu, Ke Tang, Zhi-Hua Zhou:
Subset Selection under Noise. NIPS 2017: 3560-3570 - [e4]Yuhui Shi, Kay Chen Tan, Mengjie Zhang, Ke Tang, Xiaodong Li, Qingfu Zhang, Ying Tan, Martin Middendorf, Yaochu Jin:
Simulated Evolution and Learning - 11th International Conference, SEAL 2017, Shenzhen, China, November 10-13, 2017, Proceedings. Lecture Notes in Computer Science 10593, Springer 2017, ISBN 978-3-319-68758-2 [contents] - [i17]Yu Sun, Ke Tang, Zexuan Zhu, Xin Yao:
Concept Drift Adaptation by Exploiting Historical Knowledge. CoRR abs/1702.03500 (2017) - [i16]Zhi-Zhong Liu, Yong Wang, Shengxiang Yang, Ke Tang:
An Adaptive Framework to Tune the Coordinate Systems in Evolutionary Algorithms. CoRR abs/1703.06263 (2017) - [i15]Shengcai Liu, Ke Tang, Xin Yao:
Experience-based Optimization: A Coevolutionary Approach. CoRR abs/1703.09865 (2017) - [i14]Bingshui Da, Yew-Soon Ong, Liang Feng, A. Kai Qin, Abhishek Gupta, Zexuan Zhu, Chuan-Kang Ting, Ke Tang, Xin Yao:
Evolutionary Multitasking for Single-objective Continuous Optimization: Benchmark Problems, Performance Metric, and Baseline Results. CoRR abs/1706.03470 (2017) - [i13]Jinyuan Zhang, Aimin Zhou, Ke Tang, Guixu Zhang:
Preselection via Classification: A Case Study on Evolutionary Multiobjective Optimization. CoRR abs/1708.01146 (2017) - [i12]Chao Qian, Chao Bian, Wu Jiang, Ke Tang:
Running Time Analysis of the (1+1)-EA for OneMax and LeadingOnes under Bit-wise Noise. CoRR abs/1711.00956 (2017) - [i11]Chao Qian, Yang Yu, Ke Tang, Xin Yao, Zhi-Hua Zhou:
Maximizing Non-monotone/Non-submodular Functions by Multi-objective Evolutionary Algorithms. CoRR abs/1711.07214 (2017) - 2016
- [j51]Zhenyu Yang, Bernhard Sendhoff, Ke Tang, Xin Yao:
Target shape design optimization by evolving B-splines with cooperative coevolution. Appl. Soft Comput. 48: 672-682 (2016) - [j50]Jiaqi Zhao, Vitor Basto-Fernandes, Licheng Jiao, Iryna Yevseyeva, Asep Maulana, Rui Li, Thomas Bäck, Ke Tang, Michael T. M. Emmerich:
Multiobjective optimization of classifiers by means of 3D convex-hull-based evolutionary algorithms. Inf. Sci. 367-368: 80-104 (2016) - [j49]Thomas Weise, Yuezhong Wu, Raymond Chiong, Ke Tang, Jörg Lässig:
Global versus local search: the impact of population sizes on evolutionary algorithm performance. J. Glob. Optim. 66(3): 511-534 (2016) - [j48]Ke Tang, Peng Yang, Xin Yao:
Negatively Correlated Search. IEEE J. Sel. Areas Commun. 34(3): 542-550 (2016) - [j47]Wenjing Hong, Ke Tang:
Convex hull-based multi-objective evolutionary computation for maximizing receiver operating characteristics performance. Memetic Comput. 8(1): 35-44 (2016) - [j46]Xiao-Peng Ji, Xianbin Cao, Ke Tang:
Sequence searching and evaluation: a unified approach for aircraft arrival sequencing and scheduling problems. Memetic Comput. 8(2): 109-123 (2016) - [j45]Juan Wang, Ke Tang, José Antonio Lozano, Xin Yao:
Estimation of the Distribution Algorithm With a Stochastic Local Search for Uncertain Capacitated Arc Routing Problems. IEEE Trans. Evol. Comput. 20(1): 96-109 (2016) - [j44]Shan He, Guanbo Jia, Zexuan Zhu, Dan A. Tennant, Qiang Huang, Ke Tang, Jing Liu, Mirco Musolesi, John K. Heath, Xin Yao:
Cooperative Co-Evolutionary Module Identification With Application to Cancer Disease Module Discovery. IEEE Trans. Evol. Comput. 20(6): 874-891 (2016) - [j43]Bingdong Li, Ke Tang, Jinlong Li, Xin Yao:
Stochastic Ranking Algorithm for Many-Objective Optimization Based on Multiple Indicators. IEEE Trans. Evol. Comput. 20(6): 924-938 (2016) - [j42]Yu Sun, Ke Tang, Leandro L. Minku, Shuo Wang, Xin Yao:
Online Ensemble Learning of Data Streams with Gradually Evolved Classes. IEEE Trans. Knowl. Data Eng. 28(6): 1532-1545 (2016) - [c72]Yu Sun, Ke Tang:
Incremental Learning with Concept Drift: A Knowledge Transfer Perspective. BIC-TA (1) 2016: 473-479 - [c71]Bingdong Li, Chao Qian, Jinlong Li, Ke Tang, Xin Yao:
Search based recommender system using many-objective evolutionary algorithm. CEC 2016: 120-126 - [c70]Peng Yang, Guanzhou Lu, Ke Tang, Xin Yao:
A multi-modal optimization approach to single path planning for unmanned aerial vehicle. CEC 2016: 1735-1742 - [c69]Chao Qian, Jing-Cheng Shi, Yang Yu, Ke Tang, Zhi-Hua Zhou:
Parallel Pareto Optimization for Subset Selection. IJCAI 2016: 1939-1945 - [c68]Jiayi Fu, Jinhong Zhong, Yunfeng Liu, Zhenyu Wang, Ke Tang:
A non-parametric approach for learning from crowds. IJCNN 2016: 2228-2235 - [c67]Chunhui Jiang, Guiying Li, Junlong Liu, Yunfeng Liu, Ke Tang:
A trajectory-based approach for object detection from video. IJCNN 2016: 2887-2893 - [c66]Xiaofen Lu, Ke Tang, Xin Yao:
Speciated Evolutionary Algorithm for Dynamic Constrained Optimisation. PPSN 2016: 203-213 - [c65]Zhilei Ren, He Jiang, Jifeng Xuan, Ke Tang, Yan Hu:
Analyzing Inter-objective Relationships: A Case Study of Software Upgradability. PPSN 2016: 442-452 - [c64]Chao Qian, Ke Tang, Zhi-Hua Zhou:
Selection Hyper-heuristics Can Provably Be Helpful in Evolutionary Multi-objective Optimization. PPSN 2016: 835-846 - [i10]Guiying Li, Junlong Liu, Chunhui Jiang, Ke Tang:
Relief Impression Image Detection : Unsupervised Extracting Objects Directly From Feature Arrangements of Deep CNN. CoRR abs/1601.06719 (2016) - [i9]Peng Yang, Ke Tang, Xin Yao:
High-dimensional Black-box Optimization via Divide and Approximate Conquer. CoRR abs/1603.03518 (2016) - [i8]Liangpeng Zhang, Ke Tang, Xin Yao:
Success Probability of Exploration: a Concrete Analysis of Learning Efficiency. CoRR abs/1612.00882 (2016) - 2015
- [j41]Bingdong Li, Jinlong Li, Ke Tang, Xin Yao:
Many-Objective Evolutionary Algorithms: A Survey. ACM Comput. Surv. 48(1): 13:1-13:35 (2015) - [j40]Mohammad Nabi Omidvar, Xiaodong Li, Ke Tang:
Designing benchmark problems for large-scale continuous optimization. Inf. Sci. 316: 419-436 (2015) - [j39]Xiaodong Li, Ke Tang, Ponnuthurai N. Suganthan, Zhenyu Yang:
Editorial for the special issue of Information Sciences Journal (ISJ) on "Nature-inspired algorithms for large scale global optimization". Inf. Sci. 316: 437-439 (2015) - [j38]Peng Yang, Ke Tang, Xiaofen Lu:
Improving Estimation of Distribution Algorithm on Multimodal Problems by Detecting Promising Areas. IEEE Trans. Cybern. 45(8): 1438-1449 (2015) - [j37]Lingxi Li, Ke Tang:
History-Based Topological Speciation for Multimodal Optimization. IEEE Trans. Evol. Comput. 19(1): 136-150 (2015) - [j36]Pu Wang, Michael Emmerich, Rui Li, Ke Tang, Thomas Bäck, Xin Yao:
Convex Hull-Based Multiobjective Genetic Programming for Maximizing Receiver Operating Characteristic Performance. IEEE Trans. Evol. Comput. 19(2): 188-200 (2015) - [j35]Haobo Fu, Bernhard Sendhoff, Ke Tang, Xin Yao:
Robust Optimization Over Time: Problem Difficulties and Benchmark Problems. IEEE Trans. Evol. Comput. 19(5): 731-745 (2015) - [j34]Lunjun Wan, Ke Tang, Mingzhi Li, Yanfei Zhong, A. Kai Qin:
Collaborative Active and Semisupervised Learning for Hyperspectral Remote Sensing Image Classification. IEEE Trans. Geosci. Remote. Sens. 53(5): 2384-2396 (2015) - [j33]Xiaoxing Yang, Ke Tang, Xin Yao:
A Learning-to-Rank Approach to Software Defect Prediction. IEEE Trans. Reliab. 64(1): 234-246 (2015) - [j32]Peng Yang, Ke Tang, José Antonio Lozano, Xianbin Cao:
Path Planning for Single Unmanned Aerial Vehicle by Separately Evolving Waypoints. IEEE Trans. Robotics 31(5): 1130-1146 (2015) - [c63]Chen Jin, A. Kai Qin, Ke Tang:
Local ensemble surrogate assisted crowding differential evolution. CEC 2015: 433-440 - [c62]Wenjing Hong, Guanzhou Lu, Peng Yang, Yong Wang, Ke Tang:
A new Evolutionary multi-objective algorithm for Convex Hull Maximization. CEC 2015: 931-938 - [c61]Yuzhou Wu, Yu Sun, Xinle Liang, Ke Tang, Zixing Cai:
Evolutionary semi-supervised ordinal regression using weighted kernel Fisher discriminant analysis. CEC 2015: 3279-3286 - [c60]Shengcai Liu, Yufan Wei, Ke Tang, A. Kai Qin, Xin Yao:
QoS-aware long-term based service composition in cloud computing. CEC 2015: 3362-3369 - [c59]Guanbo Jia, Shan He, Zexuan Zhu, Jing Liu, Ke Tang:
A Multimodal Optimization and Surprise Based Consensus Community Detection Algorithm. GECCO (Companion) 2015: 1407-1408 - [c58]Jinhong Zhong, Ke Tang, Zhi-Hua Zhou:
Active Learning from Crowds with Unsure Option. IJCAI 2015: 1061-1068 - [c57]Liangpeng Zhang, Ke Tang, Xin Yao:
Increasingly Cautious Optimism for Practical PAC-MDP Exploration. IJCAI 2015: 4033-4040 - [e3]Maoguo Gong, Linqiang Pan, Tao Song, Ke Tang, Xingyi Zhang:
Bio-Inspired Computing - Theories and Applications - 10th International Conference, BIC-TA 2015, Hefei, China, September 25-28, 2015, Proceedings. Communications in Computer and Information Science 562, Springer 2015, ISBN 978-3-662-49013-6 [contents] - [i7]Ke Tang, Peng Yang, Xin Yao:
Negatively Correlated Cooperative Search. CoRR abs/1504.04914 (2015) - 2014
- [j31]Thomas Weise, Raymond Chiong, Jörg Lässig, Ke Tang, Shigeyoshi Tsutsui, Wenxiang Chen, Zbigniew Michalewicz, Xin Yao:
Benchmarking Optimization Algorithms: An Open Source Framework for the Traveling Salesman Problem. IEEE Comput. Intell. Mag. 9(3): 40-52 (2014) - [j30]Xiaofen Lu, Ke Tang, Bernhard Sendhoff, Xin Yao:
A review of concurrent optimisation methods. Int. J. Bio Inspired Comput. 6(1): 22-31 (2014) - [j29]Pu Wang, Ke Tang, Thomas Weise, Edward P. K. Tsang, Xin Yao:
Multiobjective genetic programming for maximizing ROC performance. Neurocomputing 125: 102-118 (2014) - [j28]Xiaofen Lu, Ke Tang, Bernhard Sendhoff, Xin Yao:
A new self-adaptation scheme for differential evolution. Neurocomputing 146: 2-16 (2014) - [j27]Ke Tang, Fei Peng, Guoliang Chen, Xin Yao:
Population-based Algorithm Portfolios with automated constituent algorithms selection. Inf. Sci. 279: 94-104 (2014) - [j26]Thomas Weise, Mingxu Wan, Pu Wang, Ke Tang, Alexandre Devert, Xin Yao:
Frequency Fitness Assignment. IEEE Trans. Evol. Comput. 18(2): 226-243 (2014) - [c56]A. Kai Qin, Ke Tang, Hong Pan, Si-Yu Xia:
Self-adaptive differential evolution with local search chains for real-parameter single-objective optimization. IEEE Congress on Evolutionary Computation 2014: 467-474 - [c55]Peng Yang, Ke Tang, José Antonio Lozano:
Estimation of Distribution Algorithms based Unmanned Aerial Vehicle path planner using a new coordinate system. IEEE Congress on Evolutionary Computation 2014: 1469-1476 - [c54]Haobo Fu, Peter R. Lewis, Bernhard Sendhoff, Ke Tang, Xin Yao:
What are dynamic optimization problems? IEEE Congress on Evolutionary Computation 2014: 1550-1557 - [c53]Thomas Weise, Mingxu Wan, Ke Tang, Xin Yao:
Evolving exact integer algorithms with Genetic Programming. IEEE Congress on Evolutionary Computation 2014: 1816-1823 - [c52]Bingdong Li, Jinlong Li, Ke Tang, Xin Yao:
An improved Two Archive Algorithm for Many-Objective optimization. IEEE Congress on Evolutionary Computation 2014: 2869-2876 - [c51]Jinhong Zhong, Ke Tang, A. Kai Qin:
Finding convex hull vertices in metric space. IJCNN 2014: 1587-1592 - [c50]Tianshi Chen, Qi Guo, Ke Tang, Olivier Temam, Zhiwei Xu, Zhi-Hua Zhou, Yunji Chen:
ArchRanker: A ranking approach to design space exploration. ISCA 2014: 85-96 - [c49]Xiaofen Lu, Stefan Menzel, Ke Tang, Xin Yao:
The Performance Effects of Interaction Frequency in Parallel Cooperative Coevolution. SEAL 2014: 82-93 - [e2]Grant Dick, Will N. Browne, Peter A. Whigham, Mengjie Zhang, Lam Thu Bui, Hisao Ishibuchi, Yaochu Jin, Xiaodong Li, Yuhui Shi, Pramod Singh, Kay Chen Tan, Ke Tang:
Simulated Evolution and Learning - 10th International Conference, SEAL 2014, Dunedin, New Zealand, December 15-18, 2014. Proceedings. Lecture Notes in Computer Science 8886, Springer 2014, ISBN 978-3-319-13562-5 [contents] - 2013
- [j25]Yaochu Jin, Ke Tang, Xin Yu, Bernhard Sendhoff, Xin Yao:
A framework for finding robust optimal solutions over time. Memetic Comput. 5(1): 3-18 (2013) - [j24]Minlong Lin, Ke Tang, Xin Yao:
Dynamic Sampling Approach to Training Neural Networks for Multiclass Imbalance Classification. IEEE Trans. Neural Networks Learn. Syst. 24(4): 647-660 (2013) - [c48]Wenxiang Chen, Ke Tang:
Impact of problem decomposition on Cooperative Coevolution. IEEE Congress on Evolutionary Computation 2013: 733-740 - [c47]Mingzhi Li, Rui Wang, Ke Tang:
Combining Semi-Supervised and active learning for hyperspectral image classification. CIDM 2013: 89-94 - [c46]Haobo Fu, Bernhard Sendhoff, Ke Tang, Xin Yao:
Finding Robust Solutions to Dynamic Optimization Problems. EvoApplications 2013: 616-625 - [c45]Rui Wang, Weishan Dong, Yu Wang, Ke Tang, Xin Yao:
Pipe failure prediction: A data mining method. ICDE 2013: 1208-1218 - [c44]Jinpeng Liu, Ke Tang:
Scaling Up Covariance Matrix Adaptation Evolution Strategy Using Cooperative Coevolution. IDEAL 2013: 350-357 - [c43]Lunjun Wan, Ke Tang, Rui Wang:
Gradient Boosting-Based Negative Correlation Learning. IDEAL 2013: 358-365 - [c42]Lili Zhuang, Ke Tang, Yaochu Jin:
Metamodel Assisted Mixed-Integer Evolution Strategies Based on Kendall Rank Correlation Coefficient. IDEAL 2013: 366-375 - [c41]Zhigao Miao, Ke Tang:
Semi-supervised Ranking via List-Wise Approach. IDEAL 2013: 376-383 - [c40]Juan Wang, Ke Tang, Xin Yao:
A memetic algorithm for uncertain Capacitated Arc Routing Problems. Memetic Computing 2013: 72-79 - [e1]Hujun Yin, Ke Tang, Yang Gao, Frank Klawonn, Minho Lee, Thomas Weise, Bin Li, Xin Yao:
Intelligent Data Engineering and Automated Learning - IDEAL 2013 - 14th International Conference, IDEAL 2013, Hefei, China, October 20-23, 2013. Proceedings. Lecture Notes in Computer Science 8206, Springer 2013, ISBN 978-3-642-41277-6 [contents] - [i6]Pu Wang, Michael Emmerich, Rui Li, Ke Tang, Thomas Bäck, Xin Yao:
Convex Hull-Based Multi-objective Genetic Programming for Maximizing ROC Performance. CoRR abs/1303.3145 (2013) - 2012
- [j23]Kaiquan Cai, Jun Zhang, Chi Zhou, Xianbin Cao, Ke Tang:
Using computational intelligence for large scale air route networks design. Appl. Soft Comput. 12(9): 2790-2800 (2012) - [j22]Alexandre Devert, Thomas Weise, Ke Tang:
A Study on Scalable Representations for Evolutionary Optimization of Ground Structures. Evol. Comput. 20(3): 453-472 (2012) - [j21]Rui Wang, Ke Tang:
Feature selection for MAUC-oriented classification systems. Neurocomputing 89: 39-54 (2012) - [j20]Thomas Weise, Raymond Chiong, Ke Tang:
Evolutionary Optimization: Pitfalls and Booby Traps. J. Comput. Sci. Technol. 27(5): 907-936 (2012) - [j19]Xiaofen Lu, Ke Tang:
Classification- and Regression-Assisted Differential Evolution for Computationally Expensive Problems. J. Comput. Sci. Technol. 27(5): 1024-1034 (2012) - [j18]Tianshi Chen, Ke Tang, Guoliang Chen, Xin Yao:
A large population size can be unhelpful in evolutionary algorithms. Theor. Comput. Sci. 436: 54-70 (2012) - [j17]Thomas Weise, Ke Tang:
Evolving Distributed Algorithms With Genetic Programming. IEEE Trans. Evol. Comput. 16(2): 242-265 (2012) - [j16]Zhenyu Yang, Xiaoli Li, Chris P. Bowers, Thorsten Schnier, Ke Tang, Xin Yao:
An Efficient Evolutionary Approach to Parameter Identification in a Building Thermal Model. IEEE Trans. Syst. Man Cybern. Part C 42(6): 957-969 (2012) - [c39]Haobo Fu, Bernhard Sendhoff, Ke Tang, Xin Yao:
Characterizing environmental changes in Robust Optimization Over Time. IEEE Congress on Evolutionary Computation 2012: 1-8 - [c38]Thomas Weise, Alexandre Devert, Ke Tang:
A developmental solution to (dynamic) capacitated arc routing problems using genetic programming. GECCO 2012: 831-838 - [c37]Xiaoxing Yang, Ke Tang, Xin Yao:
A Learning-to-Rank Algorithm for Constructing Defect Prediction Models. IDEAL 2012: 167-175 - [c36]Qiang Huang, Thomas White, Guanbo Jia, Mirco Musolesi, Nil Turan, Ke Tang, Shan He, John K. Heath, Xin Yao:
Community Detection Using Cooperative Co-evolutionary Differential Evolution. PPSN (2) 2012: 235-244 - [i5]Rui Wang, Ke Tang:
Minimax Classifier for Uncertain Costs. CoRR abs/1205.0406 (2012) - [i4]Tianshi Chen, Ke Tang, Guoliang Chen, Xin Yao:
A Large Population Size Can Be Unhelpful in Evolutionary Algorithms. CoRR abs/1208.2345 (2012) - [i3]Rui Wang, Ke Tang:
An Empirical Study of MAUC in Multi-class Problems with Uncertain Cost Matrices. CoRR abs/1209.1800 (2012) - 2011
- [j15]Xin Yu, Ke Tang, Xin Yao:
Immigrant schemes for evolutionary algorithms in dynamic environments: Adapting the replacement rate. Sci. China Inf. Sci. 54(7): 1352-1364 (2011) - [j14]Zhenyu Yang, Ke Tang, Xin Yao:
Scalability of generalized adaptive differential evolution for large-scale continuous optimization. Soft Comput. 15(11): 2141-2155 (2011) - [j13]Yi Mei, Ke Tang, Xin Yao:
Decomposition-Based Memetic Algorithm for Multiobjective Capacitated Arc Routing Problem. IEEE Trans. Evol. Comput. 15(2): 151-165 (2011) - [c35]Ke Tang, Rui Wang, Tianshi Chen:
Towards Maximizing the Area Under the ROC Curve for Multi-Class Classification Problems. AAAI 2011: 483-488 - [c34]Pu Wang, Ke Tang, Edward P. K. Tsang, Xin Yao:
A Memetic Genetic Programming with decision tree-based local search for classification problems. IEEE Congress on Evolutionary Computation 2011: 917-924 - [c33]Xiaofen Lu, Ke Tang, Xin Yao:
Classification-assisted Differential Evolution for computationally expensive problems. IEEE Congress on Evolutionary Computation 2011: 1986-1993 - [c32]Mingxu Wan, Thomas Weise, Ke Tang:
Novel Loop Structures and the Evolution of Mathematical Algorithms. EuroGP 2011: 49-60 - [c31]Fei Peng, Ke Tang:
Alleviate the Hypervolume Degeneration Problem of NSGA-II. ICONIP (2) 2011: 425-434 - [c30]Mingming Xiao, Jun Zhang, Kaiquan Cai, Xianbin Cao, Ke Tang:
Cooperative Co-evolution with Weighted Random Grouping for Large-Scale Crossing Waypoints Locating in Air Route Network. ICTAI 2011: 215-222 - [c29]Xiannian Fan, Ke Tang, Thomas Weise:
Margin-Based Over-Sampling Method for Learning from Imbalanced Datasets. PAKDD (2) 2011: 309-320 - [c28]Lisong Chen, Huanhuan Chen, Ke Tang:
Semi-supervised learning with extremely sparse labeled data on multiple semi-supervised assumptions. SoCPaR 2011: 242-247 - [i2]Rui Wang, Ke Tang:
Feature Selection for MAUC-Oriented Classification Systems. CoRR abs/1105.2943 (2011) - [i1]Tianshi Chen, Yunji Chen, Ke Tang, Guoliang Chen, Xin Yao:
The Impact of Mutation Rate on the Computation Time of Evolutionary Dynamic Optimization. CoRR abs/1106.0566 (2011) - 2010
- [j12]Ke Tang, Kay Chen Tan, Hisao Ishibuchi:
Guest editorial: Memetic Algorithms for Evolutionary Multi-Objective Optimization. Memetic Comput. 2(1): 1 (2010) - [j11]Tianshi Chen, Ke Tang, Guoliang Chen, Xin Yao:
Analysis of Computational Time of Simple Estimation of Distribution Algorithms. IEEE Trans. Evol. Comput. 14(1): 1-22 (2010) - [j10]Fei Peng, Ke Tang, Guoliang Chen, Xin Yao:
Population-Based Algorithm Portfolios for Numerical Optimization. IEEE Trans. Evol. Comput. 14(5): 782-800 (2010) - [j9]Zai Wang, Ke Tang, Xin Yao:
Multi-Objective Approaches to Optimal Testing Resource Allocation in Modular Software Systems. IEEE Trans. Reliab. 59(3): 563-575 (2010) - [j8]Zai Wang, Ke Tang, Xin Yao:
A Memetic Algorithm for Multi-Level Redundancy Allocation. IEEE Trans. Reliab. 59(4): 754-765 (2010) - [c27]Pu Wang, Edward P. K. Tsang, Thomas Weise, Ke Tang, Xin Yao:
Using GP to evolve decision rules for classification in financial data sets. IEEE ICCI 2010: 720-727 - [c26]Haobo Fu, Yi Mei, Ke Tang, Yanbo Zhu:
Memetic algorithm with heuristic candidate list strategy for Capacitated Arc Routing Problem. IEEE Congress on Evolutionary Computation 2010: 1-8 - [c25]Yi Mei, Ke Tang, Xin Yao:
Capacitated arc routing problem in uncertain environments. IEEE Congress on Evolutionary Computation 2010: 1-8 - [c24]Xin Yu, Yaochu Jin, Ke Tang, Xin Yao:
Robust optimization over time - A new perspective on dynamic optimization problems. IEEE Congress on Evolutionary Computation 2010: 1-6 - [c23]Xiannian Fan, Ke Tang:
Enhanced Maximum AUC Linear Classifier. FSKD 2010: 1540-1544 - [c22]Thomas Weise, Li Niu, Ke Tang:
AOAB: automated optimization algorithm benchmarking. GECCO (Companion) 2010: 1479-1486 - [c21]Xiaofen Lu, Ke Tang, Xin Yao:
Evolving Neural Networks with Maximum AUC for Imbalanced Data Classification. HAIS (1) 2010: 335-342 - [c20]Wenxiang Chen, Thomas Weise, Zhenyu Yang, Ke Tang:
Large-Scale Global Optimization Using Cooperative Coevolution with Variable Interaction Learning. PPSN (2) 2010: 300-309 - [c19]Xin Yu, Thomas Weise, Ke Tang, Steffen Bleul:
QoS-aware semantic web service composition for SOAs. SOCA 2010: 1-4
2000 – 2009
- 2009
- [j7]Ke Tang, Xin Yao:
From nature to computing and back. Frontiers Comput. Sci. China 3(1): 1-3 (2009) - [j6]Ke Tang, Minlong Lin, Fernanda L. Minku, Xin Yao:
Selective negative correlation learning approach to incremental learning. Neurocomputing 72(13-15): 2796-2805 (2009) - [j5]Xin Yu, Ke Tang, Tianshi Chen, Xin Yao:
Empirical analysis of evolutionary algorithms with immigrants schemes for dynamic optimization. Memetic Comput. 1(1): 3-24 (2009) - [j4]Ke Tang, Yi Mei, Xin Yao:
Memetic Algorithm With Extended Neighborhood Search for Capacitated Arc Routing Problems. IEEE Trans. Evol. Comput. 13(5): 1151-1166 (2009) - [j3]Yi Mei, Ke Tang, Xin Yao:
A Global Repair Operator for Capacitated Arc Routing Problem. IEEE Trans. Syst. Man Cybern. Part B 39(3): 723-734 (2009) - [c18]Zhenyu Yang, Jingqiao Zhang, Ke Tang, Xin Yao, Arthur C. Sanderson:
An adaptive coevolutionary Differential Evolution algorithm for large-scale optimization. IEEE Congress on Evolutionary Computation 2009: 102-109 - [c17]Zai Wang, Tianshi Chen, Ke Tang, Xin Yao:
A multi-objective approach to Redundancy Allocation Problem in parallel-series systems. IEEE Congress on Evolutionary Computation 2009: 582-589 - [c16]Yunji Chen, Ke Tang, Tianshi Chen:
A stochastic method for controlling the scaling parameters of Cauchy mutation in fast evolutionary programming. IEEE Congress on Evolutionary Computation 2009: 1101-1107 - [c15]Tianshi Chen, Per Kristian Lehre, Ke Tang, Xin Yao:
When is an estimation of distribution algorithm better than an evolutionary algorithm? IEEE Congress on Evolutionary Computation 2009: 1470-1477 - [c14]Yi Mei, Ke Tang, Xin Yao:
Improved memetic algorithm for Capacitated Arc Routing Problem. IEEE Congress on Evolutionary Computation 2009: 1699-1706 - [c13]Fei Peng, Ke Tang, Guoliang Chen, Xin Yao:
Multi-start JADE with knowledge transfer for numerical optimization. IEEE Congress on Evolutionary Computation 2009: 1889-1895 - [c12]Tianshi Chen, Ke Tang, Guoliang Chen, Xin Yao:
Rigorous time complexity analysis of Univariate Marginal Distribution Algorithm with margins. IEEE Congress on Evolutionary Computation 2009: 2157-2164 - [c11]Rui Wang, Ke Tang:
Feature Selection for Maximizing the Area Under the ROC Curve. ICDM Workshops 2009: 400-405 - [c10]Xiaoxing Yang, Ke Tang, Xin Yao:
The Minimum Redundancy - Maximum Relevance Approach to Building Sparse Support Vector Machines. IDEAL 2009: 184-190 - [c9]Shuo Wang, Ke Tang, Xin Yao:
Diversity exploration and negative correlation learning on imbalanced data sets. IJCNN 2009: 3259-3266 - 2008
- [j2]Ke Tang, Xin Yao:
Special Issue on "Nature Inspired Problem-Solving". Inf. Sci. 178(15): 2983-2984 (2008) - [j1]Zhenyu Yang, Ke Tang, Xin Yao:
Large scale evolutionary optimization using cooperative coevolution. Inf. Sci. 178(15): 2985-2999 (2008) - [c8]Zhenyu Yang, Ke Tang, Xin Yao:
Self-adaptive differential evolution with neighborhood search. IEEE Congress on Evolutionary Computation 2008: 1110-1116 - [c7]Xin Yu, Ke Tang, Xin Yao:
An immigrants scheme based on environmental information for genetic algorithms in changing environments. IEEE Congress on Evolutionary Computation 2008: 1141-1147 - [c6]Zai Wang, Ke Tang, Xin Yao:
A multi-objective approach to testing resource allocation in modular software systems. IEEE Congress on Evolutionary Computation 2008: 1148-1153 - [c5]Zhenyu Yang, Ke Tang, Xin Yao:
Multilevel cooperative coevolution for large scale optimization. IEEE Congress on Evolutionary Computation 2008: 1663-1670 - [c4]Ke Tang, Zai Wang, Xianbin Cao, Jun Zhang:
A multi-objective evolutionary approach to aircraft landing scheduling problems. IEEE Congress on Evolutionary Computation 2008: 3650-3656 - [c3]Minlong Lin, Ke Tang, Xin Yao:
Selective negative correlation learning algorithm for incremental learning. IJCNN 2008: 2525-2530 - 2007
- [c2]Tianshi Chen, Ke Tang, Guoliang Chen, Xin Yao:
On the analysis of average time complexity of estimation of distribution algorithms. IEEE Congress on Evolutionary Computation 2007: 453-460 - [c1]Zhenyu Yang, Ke Tang, Xin Yao:
Differential evolution for high-dimensional function optimization. IEEE Congress on Evolutionary Computation 2007: 3523-3530
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-12-23 19:32 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint