default search action
Scott M. Summers
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c29]Phillip Drake, Matthew J. Patitz, Scott M. Summers, Tyler Tracy:
Self-assembly of Patterns in the Abstract Tile Assembly Model. UCNC 2024: 89-103 - [i26]Phillip Drake, Matthew J. Patitz, Scott M. Summers, Tyler Tracy:
Self-Assembly of Patterns in the abstract Tile Assembly Model. CoRR abs/2402.16284 (2024) - [i25]David Furcy, Scott M. Summers:
Sequential non-determinism in tile self-assembly: a general framework and an application to efficient temperature-1 self-assembly of squares. CoRR abs/2408.06241 (2024) - 2023
- [j19]David Furcy, Scott M. Summers, Logan Withers:
Improved Lower and Upper Bounds on the Tile Complexity of Uniquely Self-Assembling a Thin Rectangle Non-Cooperatively in 3D. Theory Comput. Syst. 67(5): 1082-1130 (2023) - [c28]David Furcy, Scott M. Summers, Hailey Vadnais:
Tight Bounds on the Directed Tile Complexity of a Just-Barely 3D 2 ˟ N Rectangle at Temperature 1. UCNC 2023: 79-93 - 2021
- [j18]David Furcy, Scott M. Summers, Christian Wendlandt:
Self-assembly of and optimal encoding within thin rectangles at temperature-1 in 3D. Theor. Comput. Sci. 872: 55-78 (2021) - [j17]Sarah Cannon, Erik D. Demaine, Martin L. Demaine, Sarah Eisenstat, David Furcy, Matthew J. Patitz, Robert T. Schweller, Scott M. Summers, Andrew Winslow:
On the effects of hierarchical self-assembly for reducing program-size complexity. Theor. Comput. Sci. 894: 50-78 (2021) - [c27]David Furcy, Scott M. Summers, Logan Withers:
Improved Lower and Upper Bounds on the Tile Complexity of Uniquely Self-Assembling a Thin Rectangle Non-Cooperatively in 3D. DNA 2021: 4:1-4:18 - [c26]Daniel Hader, Matthew J. Patitz, Scott M. Summers:
Fractal Dimension of Assemblies in the Abstract Tile Assembly Model. UCNC 2021: 116-130 - 2020
- [j16]Jacob Hendricks, Joseph Opseth, Matthew J. Patitz, Scott M. Summers:
Hierarchical growth is necessary and (sometimes) sufficient to self-assemble discrete self-similar fractals. Nat. Comput. 19(2): 357-374 (2020) - [i24]David Furcy, Scott M. Summers, Logan Withers:
Improved lower and upper bounds on the tile complexity of uniquely self-assembling a thin rectangle non-cooperatively in 3D. CoRR abs/2007.11093 (2020)
2010 – 2019
- 2019
- [c25]David Furcy, Scott M. Summers, Christian Wendlandt:
New Bounds on the Tile Complexity of Thin Rectangles at Temperature-1. DNA 2019: 100-119 - 2018
- [j15]David Furcy, Scott M. Summers:
Optimal Self-Assembly of Finite Shapes at Temperature 1 in 3D. Algorithmica 80(6): 1909-1963 (2018) - [j14]Matthew J. Patitz, Robert T. Schweller, Trent A. Rogers, Scott M. Summers, Andrew Winslow:
Resiliency to multiple nucleation in temperature-1 self-assembly. Nat. Comput. 17(1): 31-46 (2018) - [j13]Jacob Hendricks, Matthew J. Patitz, Trent A. Rogers, Scott M. Summers:
The power of duples (in self-assembly): It's not so hip to be square. Theor. Comput. Sci. 743: 148-166 (2018) - [c24]Jacob Hendricks, Joseph Opseth, Matthew J. Patitz, Scott M. Summers:
Hierarchical Growth Is Necessary and (Sometimes) Sufficient to Self-assemble Discrete Self-similar Fractals. DNA 2018: 87-104 - [i23]Jacob Hendricks, Joseph Opseth, Matthew J. Patitz, Scott M. Summers:
Hierarchical Growth is Necessary and (Sometimes) Sufficient to Self-Assemble Discrete Self-Similar Fractals. CoRR abs/1807.04831 (2018) - [i22]David Furcy, Scott M. Summers, Christian Wendlandt:
Self-assembly of, and optimal encoding inside, thin rectangles at temperature-1 in 3D. CoRR abs/1808.04358 (2018) - 2017
- [j12]David Furcy, Samuel Micka, Scott M. Summers:
Optimal Program-Size Complexity for Self-Assembled Squares at Temperature 1 in 3D. Algorithmica 77(4): 1240-1282 (2017) - [j11]David Furcy, Scott M. Summers:
Scaled pier fractals do not strictly self-assemble. Nat. Comput. 16(2): 317-338 (2017) - 2016
- [j10]Erik D. Demaine, Matthew J. Patitz, Trent A. Rogers, Robert T. Schweller, Scott M. Summers, Damien Woods:
The Two-Handed Tile Assembly Model is not Intrinsically Universal. Algorithmica 74(2): 812-850 (2016) - [c23]Matthew J. Patitz, Trent A. Rogers, Robert T. Schweller, Scott M. Summers, Andrew Winslow:
Resiliency to Multiple Nucleation in Temperature-1 Self-Assembly. DNA 2016: 98-113 - [r1]Scott M. Summers:
Temperature Programming in Self-Assembly. Encyclopedia of Algorithms 2016: 2209-2212 - 2015
- [c22]David Furcy, Scott M. Summers:
Optimal Self-assembly of Finite Shapes at Temperature 1 in 3D. COCOA 2015: 138-151 - [c21]David Furcy, Samuel Micka, Scott M. Summers:
Optimal Program-Size Complexity for Self-Assembly at Temperature 1 in 3D. DNA 2015: 71-86 - [i21]David Furcy, Scott M. Summers:
Optimal self-assembly of finite shapes at temperature 1 in 3D. CoRR abs/1507.06365 (2015) - 2014
- [j9]Jennifer E. Padilla, Matthew J. Patitz, Robert T. Schweller, Nadrian C. Seeman, Scott M. Summers, Xingsi Zhong:
Asynchronous signal Passing for Tile Self-assembly: Fuel Efficient Computation and Efficient assembly of Shapes. Int. J. Found. Comput. Sci. 25(4): 459-488 (2014) - [c20]Jacob Hendricks, Matthew J. Patitz, Trent A. Rogers, Scott M. Summers:
The Power of Duples (in Self-Assembly): It's Not So Hip to Be Square. COCOON 2014: 215-226 - [c19]Pierre-Etienne Meunier, Matthew J. Patitz, Scott M. Summers, Guillaume Theyssier, Andrew Winslow, Damien Woods:
Intrinsic universality in tile self-assembly requires cooperation. SODA 2014: 752-771 - [c18]Kimberly Barth, David Furcy, Scott M. Summers, Paul Totzke:
Scaled Tree Fractals Do not Strictly Self-assemble. UCNC 2014: 27-39 - [i20]Jacob Hendricks, Matthew J. Patitz, Trent A. Rogers, Scott M. Summers:
The Power of Duples (in Self-Assembly): It's Not So Hip To Be Square. CoRR abs/1402.4515 (2014) - [i19]David Furcy, Scott M. Summers:
Scaled pier fractals do not strictly self-assemble. CoRR abs/1406.4197 (2014) - [i18]David Furcy, Samuel Micka, Scott M. Summers:
Optimal program-size complexity for self-assembly at temperature 1 in 3D. CoRR abs/1411.1122 (2014) - [i17]Kimberly Barth, David Furcy, Scott M. Summers, Paul Totzke:
Scaled tree fractals do not strictly self-assemble. CoRR abs/1411.3044 (2014) - 2013
- [c17]Erik D. Demaine, Matthew J. Patitz, Trent A. Rogers, Robert T. Schweller, Scott M. Summers, Damien Woods:
The Two-Handed Tile Assembly Model Is Not Intrinsically Universal. ICALP (1) 2013: 400-412 - [c16]Sarah Cannon, Erik D. Demaine, Martin L. Demaine, Sarah Eisenstat, Matthew J. Patitz, Robert T. Schweller, Scott M. Summers, Andrew Winslow:
Two Hands Are Better Than One (up to constant factors): Self-Assembly In The 2HAM vs. aTAM. STACS 2013: 172-184 - [c15]Jennifer E. Padilla, Matthew J. Patitz, Raul Pena, Robert T. Schweller, Nadrian C. Seeman, Robert Sheline, Scott M. Summers, Xingsi Zhong:
Asynchronous Signal Passing for Tile Self-assembly: Fuel Efficient Computation and Efficient Assembly of Shapes. UCNC 2013: 174-185 - [i16]Pierre-Etienne Meunier, Matthew J. Patitz, Scott M. Summers, Guillaume Theyssier, Andrew Winslow, Damien Woods:
Intrinsic universality in tile self-assembly requires cooperation. CoRR abs/1304.1679 (2013) - [i15]Erik D. Demaine, Matthew J. Patitz, Trent A. Rogers, Robert T. Schweller, Scott M. Summers, Damien Woods:
The two-handed tile assembly model is not intrinsically universal. CoRR abs/1306.6710 (2013) - 2012
- [j8]Scott M. Summers:
Reducing Tile Complexity for the Self-assembly of Scaled Shapes Through Temperature Programming. Algorithmica 63(1-2): 117-136 (2012) - [j7]Matthew J. Patitz, Scott M. Summers:
Identifying Shapes Using Self-assembly. Algorithmica 64(3): 481-510 (2012) - [c14]David Doty, Jack H. Lutz, Matthew J. Patitz, Robert T. Schweller, Scott M. Summers, Damien Woods:
The Tile Assembly Model is Intrinsically Universal. FOCS 2012: 302-310 - [i14]Sarah Cannon, Erik D. Demaine, Martin L. Demaine, Sarah Eisenstat, Matthew J. Patitz, Robert T. Schweller, Scott M. Summers, Andrew Winslow:
Two Hands Are Better Than One (up to constant factors). CoRR abs/1201.1650 (2012) - [i13]Jennifer E. Padilla, Matthew J. Patitz, Raul Pena, Robert T. Schweller, Nadrian C. Seeman, Robert Sheline, Scott M. Summers, Xingsi Zhong:
Asynchronous Signal Passing for Tile Self-Assembly: Fuel Efficient Computation and Efficient Assembly of Shapes. CoRR abs/1202.5012 (2012) - 2011
- [j6]James I. Lathrop, Jack H. Lutz, Matthew J. Patitz, Scott M. Summers:
Computability and Complexity in Self-assembly. Theory Comput. Syst. 48(3): 617-647 (2011) - [j5]Matthew J. Patitz, Scott M. Summers:
Self-assembly of decidable sets. Nat. Comput. 10(2): 853-877 (2011) - [j4]David Doty, Matthew J. Patitz, Scott M. Summers:
Limitations of self-assembly at temperature 1. Theor. Comput. Sci. 412(1-2): 145-158 (2011) - [j3]Matthew J. Patitz, Scott M. Summers:
Self-assembly of infinite structures: A survey. Theor. Comput. Sci. 412(1-2): 159-165 (2011) - [c13]Matthew J. Patitz, Robert T. Schweller, Scott M. Summers:
Exact Shapes and Turing Universality at Temperature 1 with a Single Negative Glue. DNA 2011: 175-189 - [c12]Erik D. Demaine, Matthew J. Patitz, Robert T. Schweller, Scott M. Summers:
Self-Assembly of Arbitrary Shapes Using RNAse Enzymes: Meeting the Kolmogorov Bound with Small Scale Factor (extended abstract). STACS 2011: 201-212 - [i12]Matthew J. Patitz, Robert T. Schweller, Scott M. Summers:
Exact Shapes and Turing Universality at Temperature 1 with a Single Negative Glue. CoRR abs/1105.1215 (2011) - [i11]David Doty, Jack H. Lutz, Matthew J. Patitz, Robert T. Schweller, Scott M. Summers, Damien Woods:
The tile assembly model is intrinsically universal. CoRR abs/1111.3097 (2011) - 2010
- [j2]Matthew J. Patitz, Scott M. Summers:
Self-assembly of discrete self-similar fractals. Nat. Comput. 9(1): 135-172 (2010) - [c11]David Doty, Matthew J. Patitz, Dustin Reishus, Robert T. Schweller, Scott M. Summers:
Strong Fault-Tolerance for Self-Assembly with Fuzzy Temperature. FOCS 2010: 417-426 - [c10]Matthew J. Patitz, Scott M. Summers:
Identifying Shapes Using Self-assembly - (Extended Abstract). ISAAC (2) 2010: 458-469 - [c9]David Doty, Jack H. Lutz, Matthew J. Patitz, Scott M. Summers, Damien Woods:
Intrinsic Universality in Self-Assembly. STACS 2010: 275-286 - [i10]David Doty, Jack H. Lutz, Matthew J. Patitz, Scott M. Summers, Damien Woods:
Intrinsic Universality in Self-Assembly. CoRR abs/1001.0208 (2010) - [i9]David Doty, Matthew J. Patitz, Dustin Reishus, Robert T. Schweller, Scott M. Summers:
Strong Fault-Tolerance for Self-Assembly with Fuzzy Temperature. CoRR abs/1004.0995 (2010) - [i8]Erik D. Demaine, Matthew J. Patitz, Robert T. Schweller, Scott M. Summers:
Self-Assembly of Arbitrary Shapes with RNA and DNA tiles (extended abstract). CoRR abs/1004.4383 (2010) - [i7]Matthew J. Patitz, Scott M. Summers:
Identifying Shapes Using Self-Assembly (extended abstract). CoRR abs/1006.3046 (2010)
2000 – 2009
- 2009
- [j1]James I. Lathrop, Jack H. Lutz, Scott M. Summers:
Strict self-assembly of discrete Sierpinski triangles. Theor. Comput. Sci. 410(4-5): 384-405 (2009) - [c8]David Doty, Matthew J. Patitz, Scott M. Summers:
Limitations of Self-assembly at Temperature One. DNA 2009: 35-44 - [c7]David Doty, Jack H. Lutz, Matthew J. Patitz, Scott M. Summers, Damien Woods:
Random Number Selection in Self-assembly. UC 2009: 143-157 - [i6]James I. Lathrop, Jack H. Lutz, Scott M. Summers:
Strict Self-Assembly of Discrete Sierpinski Triangles. CoRR abs/0903.1818 (2009) - [i5]David Doty, Matthew J. Patitz, Scott M. Summers:
Limitations of Self-Assembly at Temperature 1. CoRR abs/0903.1857 (2009) - [i4]Scott M. Summers:
Reducing Tile Complexity for the Self-Assembly of Scaled Shapes Through Temperature Programming. CoRR abs/0907.1307 (2009) - 2008
- [c6]James I. Lathrop, Jack H. Lutz, Matthew J. Patitz, Scott M. Summers:
Computability and Complexity in Self-assembly. CiE 2008: 349-358 - [c5]Matthew J. Patitz, Scott M. Summers:
Self-assembly of Discrete Self-similar Fractals. DNA 2008: 156-167 - [c4]Matthew J. Patitz, Scott M. Summers:
Self-assembly of Decidable Sets. UC 2008: 206-219 - [c3]David Doty, Matthew J. Patitz, Scott M. Summers:
Limitations of Self-Assembly at Temperature One (extended abstract). CSP 2008: 67-69 - [c2]Matthew J. Patitz, Scott M. Summers:
Self-Assembly of Infinite Structures. CSP 2008: 215-225 - [i3]Matthew J. Patitz, Scott M. Summers:
Self-Assembly of Discrete Self-Similar Fractals. CoRR abs/0803.1672 (2008) - [i2]James I. Lathrop, Jack H. Lutz, Matthew J. Patitz, Scott M. Summers:
Computability and Complexity in Self-Assembly. Electron. Colloquium Comput. Complex. TR08 (2008) - [i1]James I. Lathrop, Jack H. Lutz, Scott M. Summers:
Strict Self-Assembly of Discrete Sierpinski Triangles. Electron. Colloquium Comput. Complex. TR08 (2008) - 2007
- [c1]James I. Lathrop, Jack H. Lutz, Scott M. Summers:
Strict Self-assembly of Discrete Sierpinski Triangles. CiE 2007: 455-464
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-09-18 23:42 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint